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A Nonlinear System Under Combined Periodic
and Random Excitation
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The anharmonic oscillator under combined sinusoidal and white noise
excitation is studied using the Gaussian closure approximation. The mean
response and the steady-state variance of the system is obtained by the WKBJ
approximation and also by the Fokker—Planck equation. The multiple steady-
state solutions are obtained and their stability analysis is presented. Numerical
results are obtained for a particular set of system parameters. The theoretical
results are compared with a digital simulation study to bring out the usefulness
of the present approximate theory.

KEY WORDS: Nonlinear equation; stochastic process; stability; steady-state;
Gaussian closure.

1. INTRODUCTION

Duffing’s equation (also called the anharmonic oscillator) has attracted
much attention as a typical nonlinear system. Under purely sinusoidal
excitations the system is known to possess multiple steady-state solutions.
On the other hand, under a zero mean stationary random excitation the
response is also a zero mean stationary random process. In the first case it
is common to use the technique of averaging or harmonic linearization
over one period of the solution. In the latter, random case the statistical
linearization in the sense of ensemble averaging is popular. When the input
is a combination of the two, it is natural to pursue a combination of the
two types of linearizations for getting a solution. This is the approach
taken by Caughey," Budgor,® and Bulsara, Lindenberg and Schuler.® In
the present paper the above nonlinear problem is studied by the Gaussian
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closure technique. This technique, previously described by Iyengar and
Dash,® presupposes that certain joint probability density functions are
Gaussian, to arrive at a closed hierarchy of moment equations through
ensemble averaging. It is shown that the solution contains a periodic mean
part and a random part, which attains stationarity in the long run.
However, such a solution is found to be stable only for som¢ values of the
excitation frequency. Digital simulations have also been undertaken to a
limited extent to verify the theoretical predictions.

2. NONLINEAR SYSTEM
The anharmonic oscillator is governed by the equation
54 2nws + w*z + Bz* = QA% sin At + f(1) (1)

where f(¢) is a Gaussian white noise process with autocorrelation
CAy) [ty =T6(1,—1,) (2)

and # is the viscous damping coefficient less than unity. Transformation of
the response variable as
x=z/o,,  oi=1/(4nw) 3)
leads to
%+ 2nwx + w’x + poix® = (ffo,) + (A>Q/o ) sin it (4)

Here, it may be noted that o7 is the steady-state variance of eq. (1) when
f=0. In this case the system is linear and hence the sinusoidal excitation
contributes only to the mean response. However, in the nonlinear case this
is no longer true. Also, when /=0, the nonlinear oscillator exhibits mul-
tiple steady-state solutions. It is interesting to study what happens to these
if the excitation contains a random part also.

3. GAUSSIAN CLOSURE
The response process is expressed as

x(1) =m(t) + y(1) (3)

where m is the mean part and y is the random process part. The Gaussian
closure approximation assumes that the random processes y(¢) and f(¢) are
jointly normally distributed. Substitution of eq. (5) in eq. (4) gives

L7 + 2nonit + w*m + Ba(m’ + 3y°m)]
+ [F+ 20wy + 0’z + foi(y* +3m’y)]1 = (flo,) + (A*Q/a,) sin it (6)
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Taking ensemble averages, the Gaussian assumption on y leads to
w1+ 2nom + w*m + fo(m’ + 30°m) = (A°Qfa,) sin it (7)

Here, o(¢) is the unknown standard deviation of the process y(z). Now,
multiplying eq. (6) by f(¢;) and taking averages, one gets, for the cross
correlation between y(¢) and f{¢,), the equation

R, + 2anyf+ ©°R,+ 3foi(m® + 0%) R,y= Ry (1, t)/0, (8)

Similarly one can derive an equation for the autocorrelation function
R (t,t,) also. These equations together are equivalent to the linear
equation

o+ 200y + 0y + 3o (m’ +02) y = flo, 9)

which has m(t) and o(¢) as time-varying coefficients. The solution of eq. (7)
in the steady-state to the first approximation can be taken as

m=Rsin(At — ¢) (10)

In case y(¢) attains stationarity, ¢ will be a slowly varying function in
comparison with m(¢} and will approach a constant value for large ¢. Thus,
in the first approximation, ¢ may be treated as a constant in eqgs. (7) and
(9). From harmonic balance, eq. (7) may be analyzed to get

R = 0%(1Jo)Y/[(1 + 3ea? + 0.75eR? — 2/w?)? + 2nijw)?] (11)

tan ¢ = 2n(A/w)/[1+ 302+ 0.75¢R* — 1 /w?] (12)
0=0Q/o, (13)
&= foijw’ (14)

It remains to solve eq. (9) along with the above equations. Since m is not a
constant, eq. (9) cannot be solved exactly. Approximations via the WKBJ
approach or the Fokker—Planck equation are, however, possible.

4. WKBJ APPROXIMATION

When ¢ is small, the solution of eq. (9) can be explicitly written as

Y= ey [ fDe(0) g(2) " expl—nao(t = 7)]

xsin[g,(1) — g,(t)] dr (15)
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Here
g(t)=pu[1—35cos 2(At — ¢)]V? (16)
pr=w’[1—n*+3e(6*+0.5R%)] (17)
5 =1.5¢2R*/u? (18)
gu(n)= gt) dr (19)

Since f(f) is a white noise, it follows from standard random vibration
theory, that

o*(1) = l/g() 03] [ g ~'(x) exp[ —2n0o(t — 7))
xsin[,(1) ~ g1(1)] de (20)

When the steady state is of primary interest, functions with (¢ —7) as the
argument will be the main contributing terms in the above integral. This
essentially amounts to expanding the integrand and retaining the first few
dominant terms. Thus it may be shown that

[g(?) g(r)] ' =p?[a®+0.5a3cos 24t — 1)+ -] (21)
cos 2[ g,(2) — g1(t)] = cos 2uas(t — t)[J3(as) + 2J5(a,) cos 2A(1 — 1) ]
+2J2(ay) cos dA(t—1)+ -] (22)
a,=(1+35%/16) (23)
a,=(0.56 +156°/64) (24)
a; = (1—8%/16) (25)
ay=0.51 8/A (26)

Here, J,(a,) is the Bessel function of order n and argument a,. After some
more algebra it may be found that, with =4/, = u/w

o= (n/i?)((ay/n) + [0.5a34/(n* + 72)] — [b, fias/(n* + a3 i*) ]
—0.55,[ (A + as i)/ [n* + (A + 3ay)* 1+ (A—as @)/ [n* + (A — fas)*1}
— 0.5, { (24 + as 1)/ [n* + (21 + fias)*]
+ (24— a; @)/In* + (22— fia,)*1}) (27)
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by=(a;J2+05/%a2) (28)
by=(2a2J? + 0.5a2J% + 0.5a2 J2) (29)
by = (2a2 2+ 0.5a2.J2 + 0542 J%) (30)

Equations (11), (12), and (27) have to be solved simultaneously to find R,
¢, and o.

5. FOKKER-PLANCK EQUATION

An alternate to the above approximation, particularly attractive when
f(t) is white noise, is to write down the Fokker-Planck equation
corresponding to eq. (9) and the joint density function p(y, y; ). This is
easily obtained as

p_ op 0 o*p

_ i Sle? —— 31
Frie ya + {p[2nwy+wy+3ﬂa (6% + m? y]}+051018y2 (31)

From this the equations for the second-order moments of y and p, namely

=)y =0 =), s3=L<p(0) #0) (32)

are obtained as

ds, /di = 2s, (33)
ds,/dt =Ijo? —2[w” + 3Bai(m* + 67)] 55 — dnws, (34)
dssjdt = s, — [@® + 3fo2(m? + 6%)] 51 — 2nws; (35)

When the steady state is of primary interest the time varying term m?(t)
can be averaged over a period of oscillation to get approximately
r* ~0.5R> Further in the steady state, the moment derivatives in egs.
(33-35) vanish leading to

o= {[(1+15eR*)*+ 12¢]"> — (1 + 1.5eR?) }/(6¢) (36)

Again, eqgs. (11), (12), and (36) are to be solved simultaneously to arrive at
numerical results on R, ¢, and o.

6. STABILITY ANALYSIS

In the absence of the random excitation f(¢), the amplitude R can have
three solutions of which one is unstable. Thus it is possible that in the
present case also R and hence, in turn ¢, may exhibit three solutions.
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However, these will be realizable only if they are stable also. This calls for
the stability analysis of eq. (4), which is complicated due to the presence of
the stochastic term. An approximate analysis is possible along the following
lines. The sample solution of eq. (4) is in the form

xo(t}= R sin(At — ¢) + asin(w,t — 0) (37)

where a(t) and 0(¢) are the slowly varying envelope and phase of the
narrowband approximately ergodic Gaussian process y(t). The dominant
frequency present in y(¢) is the effective natural frequency of the nonlinear
oscillator given by

w,=o[1+3e0.5R*+¢*)]"? (38)

The above solution will be stable, provided small departures from this
eventually vanish. This amounts to ascertaining the almost sure asymptotic
stability of the variational equation of eq. (4) which is

4 2nwd + w*v + 3foxiv=0 (39)

Now, introducing a nondimensional time wf=7t and with the transfor-

mation
v=ue " (40)

one gets
W' 4 (Cy— C,cos 2(A,1—¢)— Cycos 2(1—0)
+ Cs{cos[(1—4,)t—0+¢]—cos[(1+1,)t—0—4]})u=0
l,=Aw,; Cy=1—n>+15ea*>+R?)
C,=15¢R?*; C,=15ea*; Cy=3eaR (41)

Here the primes denote derivatives with respect to 7. This equation con-
tains the slowly varying stochastic coefficients ¢ and 6 and also the
parametric frequencies 2, 24,, (4,—1), and (4,4 1). In the primary har-
monic region the dominant parametric frequency is 2, and hence one can
take the solution for the above equation as

u=Acost+ Bsint (42)

Since a and 0 are slowly varying in comparison with the frequency of «,
following the quasistatic approach of Stratonovich,”®’ one can get averaged
equations for 4 and B as

A'=—-CyA—CpB;, B =CyA+CynB (43)
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The coefficients are

C,;=025C, sin 2¢ + [cos 20(1 — cos 4n/A,)/(8nw,)] C, —0.5C;1,
C,=0.5(A2— Cy) —0.25C cos 2¢ —0.25C, cos 20 + C, 1,

C,y =0.5(4%2— Cy) 4+ 0.25C, cos 2¢ + 0.25C, cos 20 — C; 15

C,,=025C, sin 2¢ + [cos 20(1 —cos 4n/A,)/(8nw,)] C, +0.5C;1,
wy=(1+171) (44)

1= )" [ sin 29 Lcos(hh b — 0+ ) — cos(y e+ —0— )]
1= )~ [ sin® Y Lcos(hia, — = 0+ §) — cos(y/ .+~ 0~ )]
Fi= ) [ cos? Y Loos(h/he— =0+ §) —costhi. + b~ 0— )] dy
Equation (43) can be satisfied by a solution of the type
A=A, exp (foféds) B=B,exp (ﬂm) (45)
This gives

£(r)=0.5(Cpp— C1y) £ 0.5[(Cyr — C1y)* = 4(C 12 Cyy — €11 C35) 12 (46)

For almost sure asymptotic stability of the solution given by eq. {37) the
condition would be

lim exp{—n—real[(l/r)f £(s) ds]}zo (47)

Since a and 6 are ergodic processes in the steady-state solution, & will also
be ergodic, and hence the above time average can be replaced by the
ensemble average to get the condition for stability as

n>real{&(a, 0)) (48)

The joint density function of a and 8 is given by

pla, 8)=(2r) ' (a/c?) exp(—0.5a%/c?) (49)
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Since it can be shown that {((C,,— C;;)> =0 the stability condition further
reduces to

n>05 JR (Caa— C11) = 4(CpyCo — €y, Cy) 2 x pla, ) dadd (50)

where the integration is done over the region in which the integrand is real.

7. NUMERICAL EXAMPLE

Numerical results have been obtained from the above theory for a
system with

n=008, ¢=05 =05

The amplitude R of the mean solution and the corresponding variance ¢°
are shown in Figs. 1 and 2 as functions of /w.

In Fig. 1 the deterministic response amplitude in the absence of the
random excitation (ie., f=0) is also shown. The WKBJ solution and the

70 ———— wkBJ Approx
I Deterministic , f=0
—-— F.P. EqD.
B0 e Bulsara, Lindenberg and Shuler
| . Simulation

Fig. 1. Mean amplitude in steady-state for a system with ¢=0.5, #=0.08, 0 =0.5.
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WKBJ Approx

0.7 r

! —.— F P Eqn.

---------- Bulsara | Lindenberg and
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0 i1 PN TR IO |
0 10 20 30 40
AMw

Fig. 2. Variance in steady-state for a system with ¢=0.5, # =0.08,  =0.5.

F-P equation solution for R are almost the same and are very similar to
the deterministic case. The steady-state variance in the absence of non-
linearity (i.e., e=0) is unity. At the other extreme, in the absence of the
random excitation, the variance is zero. The present steady-state value of
variance must lie between zero and unity. Figure 2 shows the reduction of
o> from unity as A/w varies. Both the WKBJ and the F-P equation
approaches give comparably similar results for ¢ Simultaneously, the
stability analysis has been carried out at every value of A/w to ascertain the
realizability of the steady-state results. The stable and unsteble regions are
marked in Figs. 1 and 2. Bulsara, Lindenberg, and Shuler® have studied
the present problem by a combination of harmonic and statistical
averaging methods. It would be interesting to compare their results with
the ones obtained here. In the notation of the present paper, the results of
the above authors for R and ¢? are

R= 0 [4n2]2 + (¢~ 2— 12)2]~ 12 (51)
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62 = 1 +3¢[0” + (0214/D) + 0.1250°1%/(c2 D?)]
x [1+0.50%A*/(¢*> D)]~*
D=[47*2*+ (62— 2%)*] (52)

These two equations have also been solved simultaneously and the results
are shown in Figs. 1 and 2. It is seen that the present solution and the
solution of Bulsara, Lindenberg, and Shuler®® in general compare well.

8. NUMERICAL SIMULATION

In the absence of exact solutions, the above approximate theoretical
predictions can be verified further through a numerical simulation of the
basic eq. (4). This has been done by solving eq. (4) by the Runge-Kutta
scheme for 100 samples of the white noise input. It would be convenient to
measure time, in the numerical integration scheme in terms of cycles of
oscillations 7 = wt/2xn. This transforms eq. (4) to

x" +4nnx’ + 4n’x + 4n’ex’
=4n*(w?c,) " f(2nt/w)+ 4n*2*Q sin(2nir) (53)

where the primes denote derivatives with respect to 7. The first term on the
right side of this equation is the white noise process measured in the new
time 7. The strength of this process is

I' =161*(w’0,) ? (Iw/2n) = 32y7> (54)

In the numerical solution, this white noise process is simulated as a
sequence of independent Gaussian random variables with zero mean and
variance I'. The mean and variance are found by ensemble-averaging at
every time instant across the 100 samples. The length of integration is to be
based on the time required for the solutions to reach a steady-state. In the
present context the steady-state is to be viewed as a stable periodic solution
for the mean m(z) and also a constant variance value for the process y(f).
For a linear system under white noise excitation, the approach to the
steady-state depends on how fast e ~*"™* approaches zero. For 1 =0.08 this
is achieved in less than 10 cycles. Thus, after allowing for the nonlinearity,
the length of integration is taken as 50 cycles. The amplitude of the last
cycle of the mean response is taken as an estimate of R and shown in
Fig. 1. Similarly the average of the sample variance in the last cycle is taken
as an estimate of the steady variance and plotted in Fig. 2. The con-
vergence of the simulated mean and variance with respect to the sample
size has been checked. It is found that for values of 1 where the theoretical
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results are stable, 50 samples produce statistically acceptable results. In
Figs. 3 and 4, typical simulated results of m(t) and ¢’(r) with 50 samples
are shown for A/o=1 and 3, respectively. However, in Figs. 1 and 2 the
simulated steady values are for 100 samples. In the stable regions of these
figures the theoretical results compare favorably well with the simulated
statistics. In the unstable region the sample variance plotted in Fig. 2 is
largely different from the theoretical steady-state values. It must be noted
that while in the unstable regions of Fig. 2, y(¢) does not tend to be a
stationary process, the Gaussian closure method will still be able to yield
good approximations. To demonstrate this, the moment eqgs. (33-35) and

——— Simulation
—~-~ Theoretical
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Fig. 3. (a) Nonstationary mean; 4/w =1, (b) nonstationary standard deviation; 4/w = 1.
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eq. (7) have been simultaneously solved numerically for /w=1, 2, and 3
to obtain the time-dependent mean and variance without assuming a
possible steady-state. These results are shown in Figs. 3, 4, and 5, along
with the corresponding simulations on the exact equation. Again the
present theory compares favorably with the numerical simulation.

9. DISCUSSION AND CONCLUSION

It is interesting to observe that introduction of a small random noise
into a sinusoidal excitation can alter the response of a Duffing’s oscillator
considerably. The variance is here represented as a fraction of the steady-
state variance of the linear case. It is known that for the hardening type of
nonlinearity (¢ > 0) the variance under white noise input (1= 0) decreases
fro the linear case. In the case of the combined excitation as in the present
study, the mean and the second moments interact to reduce the variance
further as 4, the frequency of the excitation increases. It would seem that as
A/w, approaches unity, the sinusoidal term drives the system lessening the
randomness and thus increasing the mean but decreasing the response
variance. On the other hand, away from resonance the white noise has con-
siderable influence over the response and hence the variance increases with
decreasing mean. However, the left branch of the solutions in Figs. 1 and 2
become unstable with increase in A/w and hence the steady-state itself may
break down. For the example considered here, this happens at a value of
about 1/ =1.2. Beyond about i/w = 1.85 three solutions become possible,
but all of them are unstable. From about /o =2.1 the smallest of the mean
and correspondingly the largest variance becomes stable. The numerical
simulations were carried out with the initial amplitude being near the
stable deterministic value. Thus, for A/w =2, 2.5, 3, and 3.5 the simulation
was repeated with two different initial conditions. For A/w =2, in both the
cases instability was noticed. At A/w=2.5 and 3 the two different starting
conditions lead to different mean values as shown, but to essentially the
same variance value, at the end of 50 cycles.

The major result of this study is that the cubic oscillator of eq. (4)
driven by both a noise and a harmonic term can have a steady-state
solution that has a periodic mean and a nearly constant variance.
However, the variance will cease to be constant for particular values of the
external harmonic frequency. In conclusion, it may be noted here that the
Gaussian closure technique provides a useful approach to study either the
transient or stationary responses of nonlinear stochastic systems.
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