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The anharmonic oscillator under combined sinusoidal and white noise 

excitation is studied using the Gaussian closure approximation. The mean 

response and the steady-state variance of the system is obtained by the WKBJ 

approximation and also by the Fokker Planck equation. The multiple steady- 

state solutions are obtained and their stability analysis is presented. Numerical 

results are obtained for a particular set of system parameters. The theoretical 

results are compared with a digital simulation study to bring out the usefulness 

of the present approximate theory. 

KEY WORDS: Nonlinear equation; stochastic process; stability; steady-state; 

Gaussian closure. 

1. I N T R O D U C T I O N  

Duffing's equa t ion  (also called the a n h a r m o n i c  osc i l la tor )  has a t t r ac ted  

much a t t en t ion  as a typical  non l inea r  system. U n d e r  pure ly  s inusoida l  

exci ta t ions  the system is k n o w n  to possess mul t ip le  s teady-s ta te  solut ions.  

On  the o ther  hand,  under  a zero mean  s t a t iona ry  r a n d o m  exci ta t ion  the 

response is also a zero mean  s t a t iona ry  r a n d o m  process.  In  the first case it 

is c o m m o n  to use the technique of averaging  or  h a r m o n i c  l inear iza t ion  

over  one pe r iod  of the solut ion.  In  the lat ter ,  r a n d o m  case the s ta t is t ical  

l inear iza t ion  in the sense of ensemble  averaging  is popula r .  W h e n  the input  

is a c o m b i n a t i o n  of  the two, it  is na tu ra l  to pursue  a c o m b i n a t i o n  of  the 

two types of l inear iza t ions  for get t ing a solut ion.  This  is the a p p r o a c h  

taken by  Caughey,  (~) Budgor,(2~ and Bulsara ,  L indenbe rg  and  Schuler.(3) In 

the present  p a p e r  the above  non l inea r  p r o b l e m  is s tudied by  the G a u s s i a n  
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closure technique. This technique, previously described by Iyengar and 

Dash, (4) presupposes that certain joint probability density functions are 

Gaussian, to arrive at a closed hierarchy of moment equations through 

ensemble averaging. It is shown that the solution contains a periodic mean 

part and a random part, which attains stationarity in the long run. 

However, such a solution is found to be stable only for som~ values of the 

excitation frequency. Digital simulations have also been undertaken to a 

limited extent to verify the theoretical predictions. 

2. NONLINEAR SYSTEM 

The anharmonic oscillator is governed by the equation 

+ 2qoo~ + co2z + flz 3 = Q2 2 sin 2t + f ( t )  (1) 

where f ( t )  is a Gaussian white noise process with autocorrelation 

( f ( t , )  f ( t2 )  ) = I6(t2 - tl) (2) 

and q is the viscous damping coefficient less than unity. Transformation of 

the response variable as 

x = z/a1, tr~ =//(4~/co 3) (3) 

leads to 

2 + 2~0o2 + co2x + f l t72x  3 = ( f / a l )  + (22Q/a1) sin 2t (4) 

Here, it may be noted that a2 is the steady-state variance of eq. (1) when 

fl--0. In this case the system is linear and hence the sinusoidal excitation 

contributes only to the mean response. However, in the nonlinear case this 

is no longer true. Also, when f =  0, the nonlinear oscillator exhibits mul- 

tiple steady-state solutions. It is interesting to study what happens to these 

if the excitation contains a random part also. 

3. GAUSSIAN CLOSURE 

The response process is expressed as 

x( t )  =m(t )  + y(t)  (5) 

where m is the mean part and y is the random process part. The Gaussian 

closure approximation assumes that the random processes y(t)  and f ( t )  are 

jointly normally distributed. Substitution of eq. (5) in eq. (4) gives 

[/h + 2tloorh + ~2m Jr fltr~(m 3 h- 3y2m)] 

+ [f~+2tlco29+oo2z+fla21(y3+3m2y)] = ( f / a l ) + ( 2 2 Q / a l ) s i n 2 t  (6) 
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Taking ensemble averages, the Gaussian assumption on y leads to 

/h + 2tlcorh + coZm + fla21(m3 -k- 3o'2m) = ()o2Q/~1) sin 2t (7) 

Here, a(t) is the unknown standard deviation of the process y(t). Now, 

multiplying eq. (6) by f ( t l )  and taking averages, one gets, for the cross 

correlation between y(t) and f(t~), the equation 

]~yS+ 2qcO/~yf + ooZRyf+ 3/~cr2(m 2 + a 2) Ryf= Rfj-(t, t 1 )/a, (8) 

Similarly one can derive an equation for the autocorrelation function 

Ryy(l, tl) also. These equations together are equivalent to the linear 

equation 

.9 + 2~lc@ + o92y q- 3fla~(m 2 + ~r 2) y = ffirl (9) 

which has m(t) and a(t) as time-varying coefficients. The solution of eq. (7) 

in the steady-state to the first approximation can be taken as 

m = R sin(2t - ~b) (10) 

In case y(t) attains stationarity, a 2 will be a slowly varying function in 

comparison with re(t) and will approach a constant value for large t. Thus, 

in the first approximation, a may be treated as a constant in eqs. (7) and 

(9). From harmonic balance, eq. (7) may be analyzed to get 

R 2 = 02(2/o)4/[(1 + 3ca 2 + 0.75eR 2 - 22/e92) 2 + (2r/2/~o) 2] (11) 

tan ~b = 2q(2/co)/[1 + 3ca 2 + 0.75eR 2 - 22/~o 2 ] (12) 

Q=Q/a~ (13) 

e = fla2/oo 2 (14) 

It remains to solve eq. (9) along with the above equations. Since m is not a 

constant, eq. (9) cannot be solved exactly. Approximations via the WKBJ 

approach or the Fokker-Planck equation are, however, possible. 

4. WKBJ APPROXIMATION 

When e is small, the solution of eq. (9) can be explicitly written as 

f2 y(t)=(1/rrl) f ( r ) [g ( t )  g(~) 1 / 2 e x p [ - t / e ) ( t - r ) ]  

x sinl-gl(t) - g l ( r ) ]  d~ (15) 
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Here 

g( t )  =/~[1 - 6 cos 2 ( 2 t -  ~b)] m 

#2 = o92[- 1 _ r/2 + 3~(a2 + 0.5R2)] 

5 = 1.5e2R2/# 2 

(16) 

(17) 

(18) 

g~(t) = f g( t )  dt (19) 

Since f ( t )  is a white noise, it follows from 

theory,  that  

s tandard r andom vibrat ion 

When the steady state is of pr imary interest, functions with ( t - r )  as the 

argument  will be the main contr ibut ing terms in the above integral. This 

essentially amounts  to expanding the integrand and retaining the first few 

dominant  terms. Thus it may  be shown that  

[g ( t )  g ( r ) ]  -1 = 221-a2 + 0.5a 2 cos 22(t - z) + " " ]  (21) 

cos 2 [ g l ( t )  - g l ( z ) ]  = cos 2 2 a 3 ( t -  z)[-Jo2(a4) + 2J~(a4) cos 2 2 ( t -  z)]  

+ 2J~2(a4) cos 42(t - z) + " ' 3  (22) 

a I = (1 --[- 362/16) (23) 

a2 = (0.56 + 1563/64) (24) 

a3 = (1 - 62/16) (25) 

a4 = 0.5# 6/2 (26) 

Here,  J n ( a 4 )  is the Bessel function of order  n and argument  a4. After some 

more  algebra it may  be found that, with 2 = 2/o9, fi = #/o9 

62 = (tl/Itz)((al/tl)  -t- [0.5a~2/(t/2 + 22)] -- [bl  kia3/(q2 + a322 -2)] 

- 0.562[(2 + a32)l[~/2 + (2 + Pa4) 2 ] + (2 - a3P)l[rl 2 + (2 - Pa4) 2 ] } 

- 0.5b3 { (22 + a3~) / [q  2 + (22 + #a4) 2 ] 

+ (22 - a3 fi)/[tl  2 + (22 --  ~a4) 2 ] }) (27) 

e t  

a2(t)  = [ I /g ( t )  a~] J o g  '(~) e x p [ -  2~/o9(t- ~)] 

x s i n 2 [ g l ( t ) -  g1(T)] d~ (20) 
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b, = (a~J~o + O.5J~a 2) 

b2 = (2a2J~ + 0.5a~J2o + 0.5a2J~2) 

b3 = (2a12~ + 0.5a2~ + 0.5a22~) 

(28) 

(29) 

(30) 

Equations (11), (12), and (27) have to be solved simultaneously to find R, 

~b, and 00. 

5. FOKKER-PLANCK EQUATION 

An alternate to the above approximation, particularly attractive when 

f ( t)  is white noise, is to write down the Fokker-Planck equation 

corresponding to eq. (9) and the joint density function p(y, ~; t). This is 

easily obtained as 

(~P " ~P ~ 2 ~ 2 p  
-~= --Y-~-fy+~f {P[2t103-O+032y+Bf100~(002+m2) Y]} + 0"5ICrl ~ 5  (31) 

From this the equations for the second-order moments of y and 3~, namely 

3,1 = ~ y 2 ( / ) )  ~---002 5" 2 = (~1)2 ( / ) ) ,  3' 3 = (y(t)  ~(t)) (32) 

are obtained as 

dsl/dt = 2s3 (33) 

ds2/dt= I/002- 21032 + 3fi002(m2 + 002) ] s3-4q03s 2 (34) 

ds3/dt = s2 - [03 2 + 3f100~(m 2 -+- 002)]  S1 _ 2t/03S 3 (35) 

When the steady state is of primary interest the time varying term mZ(t) 

can be averaged over a period of oscillation to get approximately 

rh2-  ~ 0.5R 2. Further in the steady state, the moment derivatives in eqs. 

(33-35) vanish leading to 

002 ~--. { F( l _.~ 1 .5GR2)2 _~_ 12~]  1/2 __ (1 + 1.5gR2)}/(6g) (36) 

Again, eqs. (11), (12), and (36) are to be solved simultaneously to arrive at 

numerical results on R, ~b, and 00. 

6. STABILITY ANALYSIS  

In the absence of the random excitationf(t),  the amplitude R can have 

three solutions of which one is unstable. Thus it is possible that in the 

present case also R and hence, in turn a, may exhibit three solutions. 
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However, these will be realizable only if they are stable also. This calls for 

the stability analysis of eq. (4), which is complicated due to the presence of 

the stochastic term. An approximate analysis is possible along the following 

lines. The sample solution of eq. (4) is in the form 

Xo(t)  = R sin(2t - ~b) + a sin(toe t - 0) (37) 

where a( t )  and O(t) are the slowly varying envelope and phase of the 

narrowband approximately ergodic Gaussian process y ( t ) .  The dominant 

frequency present in y ( t )  is the effective natural frequency of the nonlinear 

oscillator given by 

e~ e = coil + 3e(0.5R 2 + 0 2 ) ]  1/2 (38) 

The above solution will be stable, provided small departures from this 

eventually vanish. This amounts to ascertaining the almost sure asymptotic 

stability of the variational equation of eq. (4) which is 

i5 + 2tirol: + co2v + 3~0"2 xZv  = 0 (39) 

Now, introducing a nondimensional time ~ot--z and with the transfor- 

mation 

v = ue ~ (40) 

one gets 

u" + (Co - C1 cos 2(2e z -- ~b) - C2 cos 2(z - 0) 

q- C3 {c~ - -  ~e)  "[" - -  0 -~- ~ 3  - -  COS [-(1 -]- "~e) ~ - -  0 - -  ~ 3  } ) 1//7-- 0 

,~e=,~/O~e; C 0 = l - - q 2 q - l . 5 ~ ( a Z + R  2) 

C I = I . 5 e R  2; C2=1.5~a 2; C 3 = 3 e a R  (41) 

Here the primes denote derivatives with respect to r. This equation con- 

tains the slowly varying stochastic coefficients a and 0 and also the 

parametric frequencies 2, 22e, (2e--1),  and (2 e + 1). In the primary har- 

monic region the dominant parametric frequency is 2, and hence one can 

take the solution for the above equation as 

u = A cos z + B sin z (42) 

Since a and 0 are slowly varying in comparison with the frequency of u, 

following the quasistatic approach of Stratonovich, ~s) one can get averaged 

equations for A and B as 

A '  = - C l I A  - C12B; B'  = C : I A  + C22B (43) 
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The coefficients are 

Cll  = 0.25C1 sin 2~b + [cos  20(1 - cos 4rr /2e)/(8~o1)]  C2 - 0.5C311 

C12 = 0.5(2e 2 -- Co) --0.25C1 cos 2~b- 0.25C 2 cos 20 + C312 

C2~ = 0.5(2~ - Co) + 0.25C1 cos 2~b + 0 . 2 5 C  2 c o s  2 0  - -  C3[ 3 

C22 = 0.25C1 sin 2~b + [-cos 20(1 - cos 4~/2e)/(8~co1) ] C2 + 0.5C311 

co l = (1 + )re ~) (44) 

;? I~ = (2~z) -~ s in20[cos(O/2e-O-O+~)-cos(O/ . ; te+O-O-~b)]dO 

Z2 = (27c) -1 s in20[cos (O/2e-O-O+r  

f2 I 3 =  ( 2 ~ )  1 c o s  2 O[COS(I/J/~e--O--O-~-O)--COS(O/~e-J-O--O--O)] dO 

Equat ion  (43) can be satisfied by a solut ion of the type 

This gives 

(45) 

~(v) = 0.5(C22 - C11) _+ 0.5 [(C22 - CH) 2 - 4(C12C2~ - e l l  C22)] 1/2 (46) 

For  a lmost  sure asympto t ic  stability of the solut ion given by eq. (37) the 

condi t ion would be 

-r --, oo 

Since a and  0 are ergodic processes in the s teady-sta te  solution, ~ will also 

be ergodic, and  hence the above  t ime average  can be replaced by the 

ensemble average to get the condi t ion for stabili ty as 

r />  rea l (~(a ,  0 ) )  (48) 

The joint  density function of a and  0 is given by 

p(a, 0) = (2~) -1 (a/~r 2) exp( - 0.5a2/r a) (49) 
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Since it can be shown that ( ( C 2 2 -  e l l ) )  = 0 the stability condition further 

reduces to 

~>0.5 ffR (C22-Cll)2-4(C12C21-ClIC22)l/2• O) dadO (50) 

where the integration is done over the region in which the integrand is real. 

7.  N U M E R I C A L  E X A M P L E  

Numerical results have been obtained from the above theory for a 

system with 

~/= 0.08, e = 0.5, Q = 0.5 

The amplitude R of the mean solution and the corresponding variance a 2 

are shown in Figs. 1 and 2 as functions of 2/~o. 

In Fig. 1 the deterministic response amplitude in the absence of the 

random excitation (i.e., f =  0) is also shown. The WKBJ  solution and the 

7-C 
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5.0 

Z~.( 

3-C 

2.C 

1"0 

0 
0 

WKBJ Approx 

- -  Deterministic , f : 0  

- - - - -  F.P. Eqn. 

. . . . . . . . . .  Bulsara,  Lindenberg and Shuler 

�9 Simu[ation 

1.0 2.0 3-0 /,43 
X/ to  

Fig. 1. Mean amplitude in steady-state for a system with e = 0.5, r/= 0.08, Q = 0.5. 
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Fig. 2. 
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Var iance  in s teady-s ta te  for a sys tem wi th  e = 0.5, t / -  0.08, Q = 0.5. 

F - P  equation solution for R are almost the same and are very similar to 

the deterministic case. The steady-state variance in the absence of non- 

linearity (i.e., e = 0 )  is unity. At the other extreme, in the absence of the 

random excitation, the variance is zero. The present steady-state value of 

variance must lie between zero and unity. Figure 2 shows the reduction of 

~z from unity as 2/co varies. Both the WKBJ and the F - P  equation 

approaches give comparably similar results for er 2. Simultaneously, the 

stability analysis has been carried out at every value of 2/e~ to ascertain the 

realizability of the steady-state results. The stable and unstable regions are 

marked in Figs. 1 and 2. Bulsara, Lindenberg, and Shuler ~3) have studied 

the present problem by a combination of harmonic and statistical 

averaging methods. It would be interesting to compare their results with 

the ones obtained here. In the notation of the present paper, the results of 

the above authors for R and cr 2 are 

R = 022 [4t12)12 + ( ~ - 2  _ 2=)2] - , /=  (51) 
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o--2 = 1 + 3eEa 2 + (Q2;c4/D) + 0.1250428/(o -2 02) ]  

X 1-1 -t- 0.502,~4/(0"2 0 ) ]  1 

D = [4rf122 + (a -2 - -22)  2-] (52) 

These two equations have also been solved simultaneously and the results 

are shown in Figs. 1 and 2. It is seen that the present solution and the 

solution of Bulsara, Lindenberg, and Shuler ~3) in general compare well. 

8. N U M E R I C A L  S I M U L A T I O N  

In the absence of exact solutions, the above approximate theoretical 

predictions can be verified further through a numerical simulation of the 

basic eq. (4). This has been done by solving eq. (4) by the Runge-Kutta  

scheme for 100 samples of the white noise input. It would be convenient to 

measure time, in the numerical integration scheme in terms of cycles of 

oscillations v = ~ot/2~. This transforms eq. (4) to 

x" + 4t/~x' + 4~2x + 4g2gx 3 

= 4~2(co2al) 1 f(2~r/~o) + 4rc222 0 sin(2~z2r) (53) 

where the primes denote derivatives with respect to r. The first term on the 

right side of this equation is the white noise process measured in the new 

time r. The strength of this process is 

I '  = 16~4(co2cq) 2 (Ico/2~) = 32t/~ 3 (54) 

In the numerical solution, this white noise process is simulated as a 

sequence of independent Gaussian random variables with zero mean and 

variance I'. The mean and variance are found by ensemble-averaging at 

every time instant across the 100 samples. The length of integration is to be 

based on the time required for the solutions to reach a steady-state. In the 

present context the steady-state is to be viewed as a stable periodic solution 

for the mean m(t) and also a constant variance value for the process y(t). 

For a linear system under white noise excitation, the approach to the 

steady-state depends on how fast e - 4 ~  approaches zero. For  t /=  0.08 this 

is achieved in less than 10 cycles. Thus, after allowing for the nonlinearity, 

the length of integration is taken as 50 cycles. The amplitude of the last 

cycle of the mean response is taken as an estimate of R and shown in 

Fig. 1. Similarly the average of the sample variance in the last cycle is taken 

as an estimate of the steady variance and plotted in Fig. 2. The con- 

vergence of the simulated mean and variance with respect to the sample 

size has been checked. It is found that for values of 2 where the theoretical 
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results are stable, 50 samples produce statistically acceptable results. In 

Figs. 3 and 4, typical simulated results of m(~) and ~2(v) with 50 samples 

are shown for 2/~ = 1 and 3, respectively. However, in Figs. t and 2 the 

simulated steady values are for 100 samples. In the stable regions of these 

figures the theoretical results compare favorably well with the simulated 

statistics. In the unstable region the sample variance plotted in Fig. 2 is 

largely different from the theoretical steady-state values. It must be noted 

that while in the unstable regions of Fig. 2, y(t) does not tend to be a 

stationary process, the Gaussian closure method will still be able to yield 

good approximations. To demonstrate this, the moment eqs. (33-35) and 
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Fig. 3. (a) Nonstat ionary mean; 2/~o = 1, (b)  nonstationary standard deviation; 2/~o = 1. 
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eq. (7) have been simultaneously solved numerically for 2/0)= 1, 2, and 3 

to obtain the time-dependent mean and variance without assuming a 

possible steady-state. These results are shown in Figs. 3, 4, and 5, along 

with the corresponding simulations on the exact equation. Again the 

present theory compares favorably with the numerical simulation. 

9. D ISCUSSION A N D  CONCLUSION 

It is interesting to observe that introduction of a small random noise 

into a sinusoidal excitation can alter the response of a Duffing's oscillator 

considerably. The variance is here represented as a fraction of the steady- 

state variance of the linear case. It is known that for the hardening type of 

nonlinearity (5 > 0) the variance under white noise input (,I. = 0) decreases 

fro the linear case. In the case of the combined excitation as in the present 

study, the mean and the second moments interact to reduce the variance 

further as 2, the frequency of the excitation increases. It would seem that as 

2/co e approaches unity, the sinusoidal term drives the system lessening the 

randomness and thus increasing the mean but decreasing the response 

variance. On the other hand, away from resonance the white noise has con- 

siderable influence over the response and hence the variance increases with 

decreasing mean. However, the left branch of the solutions in Figs. 1 and 2 

become unstable with increase in 2/0) and hence the steady-state itself may 

break down. For the example considered here, this happens at a value of 

about 2/c0 = 1.2. Beyond about 2/co = 1.85 three solutions become possible, 

but all of them are unstable. From about 2/co -- 2.1 the smallest of the mean 

and correspondingly the largest variance becomes stable. The numerical 

simulations were carried out with the initial amplitude being near the 

stable deterministic value. Thus, for 2 /e)= 2, 2.5, 3, and 3.5 the simulation 

was repeated with two different initial conditions. For  2/co = 2, in both the 

cases instability was noticed. At 2/0)= 2.5 and 3 the two different starting 

conditions lead to different mean values as shown, but to essentially the 

same variance value, at the end of 50 cycles. 

The major result of this study is that the cubic oscillator of eq. (4) 

driven by both a noise and a harmonic term can have a steady-state 

solution that has a periodic mean and a nearly constant variance. 

However, the variance will cease to be constant for particular values of the 

external harmonic frequency. In conclusion, it may be noted here that the 

Gaussian closure technique provides a useful approach to study either the 

transient or stationary responses of nonlinear stochastic systems. 
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