
Proc.  Indian Acad. Sci. (Earth Planet. Sci.), Vol.  100, No. 2, June 1991, pp. 105­126.
©  Printed  in  India.

Application of principal component analysis to understand variabilit y of
rainfal l

R  N IYENGAR
Centre  for  Atmospheric  Sciences,  Indian  Institute  of  Science,  Bangalore  560012,  India

MS received 25 May 1990; revised 16 February 1991

Abstract.  The  usefulness of principal  component analysis  for  understanding  the  temporal
variability of monsoon rainfall is s.tudied. Monthly rainfall data of Karnataka, spread on 50
stations  for  a  period  of  82  years  have  been  analysed  for  interseasonal  and  interannual
variabilities. A subset of the above data comprising  10 stations from the coherent west zone
of Karnataka has also been investigated to bring out statistically significant interannual
signals in the southwest monsoon rainfall. Conditional probabilities are proposed for a few
above normal/below normal transitions. A sample prediction exercise for June­July using
such  a  transition  probability  has been  found  to  be  successful.
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1. Introductio n

Rainfall is perhaps the most important variable in the phenomenon of monsoon. The
amount of rainfall in a given week, month or season varies from year to year over a
wide range. This raises the question: is there an identifiable pattern in these variations,
or  is  the  variability  purely  random.  Variability  may  be  defined  as  a  tendency  of
rainfall  to  fluctuate around a  long­term average  (normal) value.  It  follows  that  one
can consider this variability on several time scales, such as, days, weeks and months,
and also on diverse spatial domains, that is, stations, districts or states. As the monsoon
is known to be organized spatially on a large scale and is persistent in time for several
months,  it  could  be  useful  to  study  the  data  on  a  few  optimal  scales.  However,  the
optimal  time and space  scales  for  rainfall  are unknown  and  thus one has  to  accept
the data as they are and estimate empirically the existence of patterns.  In the present
investigation, this is undertaken for the monthly rainfall data of Karnataka. A variety
of statistical  analyses  of  rainfall  on  the  monthly  scale,  have  been  made  earlier  by
several  investigators.  Thus,  information  on  the  mean,  standard  deviation,  coefficient
of variation  is  available.  The autocorrelation and power spectral density of the  time
series  of a  few stations have also been obtained (lyengar  1982,  1987; Fleer  1977).  It
is  found that these are white noise (purely  random) processes after  the  annual cycle
is  removed.  No  temporal  pattern  emerges  in  monthly  rainfall  at  station  level.  As
interstation  data  are  spatially  correlated  one  would  ask  whether  by  combining  the
data from several stations trends could be identified.  Identification of coherent zones
(Gadgil et  al  1988)  and clustering of stations  into  groups  (Gadgil  and  lyengar  1978)
are examples  of such  a study.  The present work  is  concerned  with  both  spatial  and
temporal variation by composing the large scale data into principal components (PC)
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in time and empirical orthogonal functions (EOF) in space. Previously Lorenz (1956),
Kutzbach  (1967),  Priesendorfer  et  al  (1981),  Overland  and  Priesendorfer  (1982),
Hastenrath and  Rosen  (1983),  Singh and  Kripalani  (1986),  Bedi  and  Bindra  (1980),
Rakhecha and Mandal (1977) among others have utilized this  technique. The main
emphasis in these studies has been on explaining the spatial structure of the field. In
the present study it is shown that principal components can be used to compare and,
if necessary, group the 'years'. The PC of monthly and seasonal data reveal interesting
information about seasonal, interseasonal and interannual variability. Further, some
patterns in predictability hitherto unsuspected are identified.

2. Data

The data analysed  in  this  investigation are  the monthly rainfall of Karnataka spread
over  50  stations  and  extending  over  82  years,  from  1901  to  1982.  The  State  of
Karnataka along with the stations considered is presented in figure 1. While it would
be useful  to  consider  the  all­India  data,  there  are  restrictions  due  to  data  gaps  and
unequal length of station time series.  It  is also not clear whether consideration of a
larger  area  improves  or  dilutes  the  temporal  signals  that  may  be  present.  Hence,
before studying the all­India rainfall variability, a part of the country is considered
in this study. The rainfall in Karnataka by itself is of considerable interest, as three
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Figure 1.  Station  data network: Karnataka.
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of the rainfall subdivisions of the Meteorological Department of India, namely, Coastal­
Karnataka (Sub. Div.  31),  North Karnataka  (Sub.  Div.  32) and South  Karnataka
(Sub.  Div.  33)  are  in  Karnataka.  Coastal  Karnataka  receives  the  highest  monsoon
rainfall among all the subdivisions. The seventy year mean summer monsoon rainfall
for  coastal  Karnataka  is  as  large  as  2907mm  as  reported  by  Shukla  (1986).  The
southwest  monsoon  (SWM)  or  the  summer season  (June­September)  accounts  for
the bulk of the rainfall of the year except in areas south of Bangalore.  In areas near
the west and  south  of Bangalore,  SWM  rainfall  is  less  than  50%  of the annual  and
to the south of Mysore this value is less than 40%. With this in view, the premonsoon
and  the post­monsoon seasonal rainfall data have also been analysed.

3. Analysis

The State­wide data matrix used here for any month or season is of size 50 x 82. The
average,  standard  deviation,  skewness  and  kurtosis  have  been  computed  for  each
station before further analysis. For principal component analysis (PCA) the centered
data are used. Thus,  if Rit is  the actual rainfall at station  i (i=  1.2...M)  in  the year
t (t = 1,2... N) the mean value  is

£*"•  M
the centered  data are

r. =  (R.  —m­)  (2)

The  covariance matrix  is

N

(3)

The eigenvalues  A/ and eigenvectors {<^}  of this symmetric matrix are extracted. The
principal  components  are

This  transforms  the  original  time  series  rjt  into  the new  time  series pjt.  The  first  few
Pjt's  are generally  sufficient  to  account  for  a  large  percentage  of the  spatial  variation
of  the  original  data.  Many  of  the  previous  rainfall  studies  along  this  line  have
concentrated on the EOF's or the eigenvectors  </>y, which represent spatial patterns.
It  is  found  here  that  pit  also  contains  useful  information  which  can  be  used  to
understand temporal variability. At this stage it would be necessary to identify how
many  pjt  have  to  be  retained  in  the  orthogonal  representation

M  •
r it=   ZP^O­  (5)

j= i

as significant. Preisendorfer et al (1981) have discussed different rules which can test
the  significance  of the eigenvalues  and  the principal components.  As pointed  out by  _
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them,  the  tests  should  be  designed  depending  on  the  end  use  of  orthogonal
decomposition.  First  the  eigenvalues  should  be  tested  to  verify  how  significantly  the
data deviate  from purely random noise.  If the basic data were spatially uncorrelated
with zero mean  and unit  variance,  the eigenvalues would all be equal  to  unity, each
explaining  100/M  per  cent  of  the  total  variance.  In  practice,  due  to  sampling
fluctuations  the  sample  eigenvalues  will  differ  from  this  value.  The  percentile  level
of  the  eigenvalues  for  several  combinations  of  M  and  N  has  been  obtained  by
Preisendorfer  (1981)  by  Monte  Carlo  simulation  of  large  samples.  To  test  the
significance of the eigenvalues they are normalized by

(6)

and  compared  with  the  simulated  significance  bands.  This  test  is  shown  in  figure  2
for  the monthly and seasonal data.  For all cases,  it  is found  that  the first three  terms
are  significant.  The  fourth  term  is  marginally  significant but  its  contribution  to  the
total variance is only about 4%. The first three  together explain 60­70% of the total
variance.

4. Monthly rainfal l

Monthly rainfall presents an interesting picture as shown by figure 2. While the  first
eigenvector dominates  the  spatial  structure,  A t  increases  in May and June  to  reach
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Figure 2.  Normalized eigenvalues; Comparison with random noise field.
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a  peak  in  July.  This  is  followed  by  a  decrease  in  August  and  September.  A  better
view of how  the  rainfall  field  is  getting  reorganized  is  provided  by  the eigenvectors
(e.v.) shown  in  figures 3  to 8.  Here the first  two eigenvectors, multiplied by  100 are
shown.  Since  the  first e.v.  is  always predominant,  the month­to­month  transition of
this  would  be  important.  It  is  seen  that  in  May  the  whole  State  remains  spatially
correlated.  This means  that  above/below normal  fluctuations  in  rainfall along  the
west coast stations, which have the largest weight, would indicate similar trends  in
other parts of the State. This picture changes  in June when the first e.v. produces a
spatial contrast, dividing the State into  three regions. As it is difficul t to verify the
significance of the sign and values of the station weights given by the eigenvectors,
the  first e.v.  in  June  may  be  taken  to  indicate  a  west­east  contrast.  Above/ljelow
normal rainfall  in  the west would  indicate below/above normal rainfall  in  the east.
This pattern intensifies in July and the contrast decreases, but the east­west divide is
still evident in the first e.v. of July and August.  In September, positive associations
of all stations are restored and this remains stable even in October. An interpretation
of the  second  e.v.  would  proceed  on  similar  lines.  As  this  accounts  for only  about
10% of the variance, it is perhaps a local feature not related with atmospheric scales.
The second e.v.  in June­September  indicates a contrast between  the west coast and
interior stations. The  third and fourth eigenvector patterns which are not presented
here depict further local scales over which the rainfall is fluctuating about its long­term
mean  value.  The  temporal  variability  of the  rainfall  is  carried  over  to  the  PC's  in
decreasing  order  of  importance.  Each  pjt,  (j=  1,2,3...)  is  a  time  series  sampled
annually, and would lead to information on interannual variability. All the first four
principal  components  of the  six  months  have  been  studied  to  test  the  existence  of

(a) (b)

Figure 3. a. First eigenvector ­ May. Variance explained = 45­85%; b. second eigenvector •
May.  Variance  explained =  13­97%.



110  R  N  lyengar

(a)
(b)

Figure 4. a. First eigenvector ­ June. Variance explained = 52­06%; b. second eigenvector ­
June.  Variance  explained = 11­11%.

(a)

Figure 5. a. First eigenvector ­ July. Variance explained = 60­41%; b. second eigenvector ­
July. Variance explained = 1147%.
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(a)

Figure 6. a. First eigenvector ­ August. Variance explained = 54­93%; b. second eigenvector ­
August.  Variance explained =  10­57%.

(a)

Figure  7. a.  First  eigenvector  ­ September.  Variance  explained = 33­54%;  b. second  eigen­
vector­September,  Variance explained = 21 '28%.



R  N  lyengar

(a) (b)

Figure 8. a. First eigenvector ­ October. Variance explained = 45' 15%; b. second eigenvector ­
October.  Variance explained = 8'54%.

autocorrelation for a maximum lag of 8 years. No significant autocorrrelation was
found in any of the components. As a further test of annual association, the number
of changes in the  sign  of the first two components,  namely (++, + —, — +,  )
has been collected in a two­way contingency table. These are tested against the expected
number of occurrences if the changes were just due to chance. No significant association
in the signs on the annual scale was found for any of the first two monthly principal
components.

4.1  Monthly  transitions

Earlier  it  has  been  mentioned  that  station  rainfall  does  not  show  month­to­month
correlation.  This  does  not  exclude  the  possibility  of a  correlaton  existing  in  area
rainfall time series. The principal components are area­rainfall time series, where the
weights are selected in an optimal fashion. However, the question whether the PC's
representing the  size  of a  state  like  Karnataka  are  able  to  bring  out  this  feature  or
not, is still open. But, if monthly associations are present in the basic data one could
expect  to see them reflected in the way the PC's evolve from month to month. Here
one particular indicator of this relation, namely the transition in the signs is studied.
If the rainfall in a given month is normal at all sampling stations, all the corresponding
PC's wil l be precisely zero. Since the first PC dominates the spatial variation, whenever
it  is zero  one  may expect  the  rainfall  also  to  be  near  its  own  normal value.  Thus,
dependence if any, in the signs would indicate patterns in the intraseasonal variability
of the rainfall. In table 1  the observed number of sequences of+ +, + —, — +,
are  listed  for  the  first  PC.
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For each  row  in  table  1  the persistence or change  in  the sign can be  shown on a
2 x2 contingency table. The significance of the association is tested against the number
expected,  if the  sign changes  were purely  by  chance.  For example,  in  May  the  first
PC  is  + ve,  17 + 12 = 29  times. The corresponding number for June  is  17 4­ 19 = 36.
Now, if the PC's of May and June are independent, the expected number of occurrences
of  the  ++  sequence  in  82  observations  would  be  (36 x 29)/82=  12­73.  These
frequencies are also  listed in  table  1. The full hypothesis H0  is "there is no dependence
in  the month­to­month  sign  changes".  The  x2  test  is  applied  to  test  this  hypothesis
(Rohatgi  1984).  The  observed  x2  values  listed  in  table  1  are  compared  with  the
tabulated x2 value of 3­84, at one degree of freedom and at 95% significance. Whenever
the observed value exceeds  the tabulated value,  the null  hypothesis wil l be  rejected.
It  is  seen  that  the  transitions  from  May  to  June  and  June  to  July could  be  accepted
as  exhibiting a pattern,  whereas  for  the next  two  months  the  transitions are purely
random. For September to October the null hypothesis  is accepted at 95%  level,  but
rejected  at  90%.  Thus,  it  is  possible  that  this  transition  is  also  not  purely  due  to
chance.  A  similar  analysis  for  the  sign  changes  of  the  second  PC  shows  that  all
transitions,  except  those  from  September  to  October  are  purely  random.  Cross­
correlations  between  the  first  and  second  PC's  have  also  been  studied.  Again,  only
the September­October transition is clearly identified as not due to chance.  In table 2
all  the  frequencies  observed  and  those  expected  due  to  chance  are  presented  for
September­October.

It  is  interesting  to  observe  that  September,  which  is  the  last  month  of  the  SW
monsoon,  provides  an  indication  of how  the  rainfall  could  be  in  the  first month  of

Table 1.  Frequency  of sign  sequences  in  the  I  PC  of monthly  rainfall  (N  =  82  yrs).

Month

May­June
June­July
July­August
August­Sept.
Sept.­Oct.

Obs.

17
12
15
11
20

Table 2.  Frequency of

Comp.

PCI ­PCI
PC1­PC2
PC2­PC1
PC2­PC2

Obs.

20
19
13
23

f +

Expt.

12­73
16­68
14­00
12­85
16­22

Obs.

12
26
22
20
15

sign  sequences

h +

Expt.

16­22
14­50
19­00
17­00

Obs.

15
16
28
18

Sign

1  ,

Expt.

16­27
21­32
23­00
18­15
18­78

—

Obs.

19
24
26
23
18

+

Expt.

23­27
19­32
17­00
21­15
21­78

­

Obs.

34
20
29
28
29

•­

Expt.

29­73
24­68
28­00
29­85
25­22

Obs.

3­93
4­36
0­21
0­73
2­86

for September­October (N = 82 yrs).

Sign

+ ­

Expt.

18­78
20­50
22­00
24­00

­

Obs.

18
15
25
11

+

Expt.

21­78
19­50
19­00
17­00

­

Obs.

29
32
16
30

­

Expt.

25­22
27­50
22­00
24­00

X2

Obs.

2­86
4­16
7­06
7­23
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Table  3.  (a)  Observed  transition  frequencies  (b)
Expected  transition  frequencies  purely  due  to
chance; Sept.­Oct.

(a)  <b)

4 9 2 4  3­25  4­63  5'56  5'56
2 8 9 3  3­75  5­36  643  6­43
3  2  10  10  4­27  6­1  7­31  7­31
5 1 3 7  2­73  3­90  4­68  4­68

the  northeast  monsoon  season.  From  figure  2  it  is  seen  that  in  September both  the
first  and second  PC's are important, as  they contribute  34% and 21% respectively  to
the  total  variance.  Thus,  it  would  be  more  appropriate  to  depict  the  state  of the
rainfall  in  terms  of  the  first  two  components.  One  would  ask  whether  the  two
components taken as a pair still show a significant relation between September and
October. The sign of the first two components  taken as a pair can be in any one of
the four states, I =  + +; II =  ­ +; III =  ; IV =  + ­. To study whether these four
states  in September  and  October are  dependent,  the  4  x 4  contingency  table of the
corresponding  observed  frequencies  and  the  expected  frequencies  due  to  chance  are
shown  in  table  3.  The calculated  x2  value  is  22­8,  while  the  tabulated  value  of x2  at
9 degrees of freedom is  only  16­9. Thus even with  this  stronger  test it  turns out  that
rainfall  in  October  is  related  to  rainfall  in  September.

5.  Seasonal  rainfall

The  year can  be divided  into  three  seasons, namely, premonsoon  (January  to  May),
SWM  (June  to  September)  and  the  Northeast  Monsoon  (NEM)  (October  to
December). An analysis similar to  the monthlies has been carried out on  the  three
seasonal rainfall data spread over the fift y stations. The first six normalized eigenvalues
are  plotted  in figure 2  to  test  the significance by  the  dominant  variance  rule.  It  is
clear that like the monthlies the seasonals also indicate the first three components to
be significant. For SWM, the fourth component is also significant with a contribution
of 6% to the total variance. The first two eigenvectors for the  three seasons are shown
in figures 9,  10 and  11. The first e.v. shows a highly correlated field in all three cases.
The  premonsoon  second  vector  shows  a  west  coast — interior  contrast.  The  SWM
second vector seems  to accentuate this with further contrast emerging in the SW­NE
direction.  The second e.v. of the NEM indicates  a contrast between stations which
predominantly receive the NEM rainfall and those which do not.

5.1  Interannual variability

The  interannual  variability  of  the  three  seasonal  rainfalls  has  been  investigated  as
explained  in  the  previous  section.  The  premonsoon  PC's  do  not  show  any  annual
relation,  as  verified  by  the  autocorrelation  or  through  the  dependence  in  the  sign
sequences.  The  SWM  principal  components  are,  however,  interesting  because  they
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(a)

Figure  9.  a.  First  eigenvector ­ premonsoon.  Variance  explained = 40­50%;  b.  second
eigenvector ­ premonsoon.  Variance  explained =  11­30%.

(a)

Figure  10.  a.  First  eigenvector ­ SW  monsoon.  Variance  explained = 47­07%;  b.  second
eigenvector ­ SW monsoon. Variance explained = 10­85%.
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(a)

V ­V

Figure  11.  a.  First  eigenvector ­ NE  monsoon.  Variance  explained = 46­44%;  b.  second
eigenvector ­ NE monsoon.  Variance  explained = 7­86%.

Table 4.  Frequency of annual sign  sequences (SWM  N = 81  yrs).

Sign

•f !

Comp.  Obs.  Expt.  Obs.  Expt.  Obs.  Expt.  Obs.  Expt.  Obs.

PCI
PC2
PCS
PC4

13
29
20
11

15­55
22­30
19­75
15­12

22
14
20
24

19­45
2070
20­25
19­88

23
13
20
24

20­45
19­70
20­25
19­88

23
25
21
22

25­55
18­30
20­75
26­12

1­23
8­90
0­01
3­48

indicate the presence of annual signals. In table 4 the frequencies of the sign sequences
for the four PC's of the SWM rainfall are shown and their significance is tested. This
table shows  that  the first PC has no pattern on  the annual scale. But the evolution
of the second component cannot be dismissed as due to chance. Similar tests on NEM
components show  that again  the second PC cannot  be  a purely  random  time series.
In figure 12 the second PC of the SWM data is presented. The results of the above
test can be interpreted to mean that the Karnataka State monsoon rainfall through
its first dominant component evolves on scales of the order of a month and less. The
second  component  of the  SWM  represents  a  pattern  with characteristic  time  as  a
year or a multiple of it. In fact, from figure 12 it would seem that this has a predominant
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Figure 12.  Second principal component of SWM rainfall  in Karnataka.

period of nearly three years. This component  is seen  to persist with  the same sign for
2  to 3  years before a  change  takes place.

5.2  Interseasonal  variability

The  eigenvectors  of the  premonsoon,  SWM  and  NEM  rainfall  have  been  presented
in  figures  9,  10  and  11.  The  associations  between  the  seasons  can  again  be  studied
conveniently  through  the  principal  components.  It  is  found  that  only  the  second
principal components of the SWM and the NEM rainfall show a mutual connection.
The sign sequence transition for this case leads to an observed  %2 value of 4­92 which
is  significantly  higher  than  the  tabulated  value  of  3­84.  This  trend  is  in  conformity
with  the  significant  dependence  in  the  transitions  from  September  to  October  as
shown  in table 3.

6. Grouping the years

When  rainfall  over a  large  area  is  considered,  the  current  practice  is  to  arrive  at  an
area  rainfall  value  as  a weighted average  of the  rainfall  at  the  individual  stations.  It
may  be  observed  that  the  first  PC  is  already  a  dominant  weighted  average  of  the
station  rainfall,  and  is a good measure  of the  areal  rainfall.  Further, since  the second
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Figure  13.  Variability  of  the  principal  components  of  the  SWM  rainfall  in  Karnataka
1901­1982. *­zero rainfall.

component is also always statistically significant, PĈ  and PC2 on any time­scale are
the two most important characteristics of rainfall in a given year for the whole network
of  stations.  Thus,  with  PĈ   and  PC2  as  coordinates  the  past  year's  data  can  be
represented  on  a  diagram.  Such  a  representation  produces  a  convenient  way  of
comparing the years as in figure 13 for the SWM rainfall. The ideal normal year, i.e.
when each station receives exactly its own normal rainfall, has all principal components
as zero. Such a year coincides with  the origin  in  figure 13. All  the data have been
marked in this figure and it is easy to see that the so­called normal years fall around
the origin. Years with excessive rainfall like 1961 have large positive PC! and PC2

values.  The hypothetical zero  rainfall year when  there  is no  rainfall at any of the
stations  has  coordinates  (—842,160).  Further  one  can  mark  years  with prescribed
percentage variations  about  the normal  rainfall  on  this figure. Nearness  of two  or
more years on this diagram indicates that for these years the atmospheric conditions
could have been similar. Such information could help in foreshadowing droughts and
floods.

7. Analysis in a coherent zone

The study presented so far referred  to  an area which  in  terms of either the climate
or  the  topography  is not homogeneous. Thus,  it would be relevant  to ask whether
the variability patterns found on different time scales for the State of Karnataka as
a whole would be also valid for smaller regions. A more interesting question would
be whether the interannual signals which may be too weak to be detected statistically
in  a  large  inhomogeneous  region  become  stronger  if the  principal  components  are
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found for a coherent rainfall  zone. With  this in view, a  set  of ten  stations  from  the
western region of Karnataka, referred henceforth as the west zone (WZ) is considered.
The  stations  are:  Mangalore,  Kundapur,  Karwar,  Supa,  Sirsi,  Soraba,  Belthangadi,
Mercara,  Somwarpet  and  Virajpet.  The  principal  components  for  this  set  of stations
have been found as explained earlier for the period  1901­1980. Here only some limited
results regarding the variability trends on monthly and annual scales are studied,  in
tables  5  and  6  the  frequency  of  sign  sequences  for  the  first  and  second  principal
components of monthly rainfall is presented. From table 5, it is seen that the transition
of PCt  from  June  to  July shows  a  significant ^­value,  a  trend  also  present  for  the
whole  State  (table  1).  While  the  Karnataka  data  show  significant  transitions  from
September  to October in  PCX  and PC2,  this  trend  is weakened in  the west zone data.
This  behaviour  seems  reasonable  because  with  the  onset  of  the  NEM  rainfall  in
October,  the eigenvector patterns (figures  12 and  13) change and  the dominance of
the western region is reduced. This line of argument would indicate that for the SWM
seasonal  rainfall,  the  interannual  variability  trends,  if  present,  should  be  better
detectable in  the PC's of the WZ,  than  in  the  PC's  of the entire Karnataka data. This
hypothesis  is  verified  in  table  7  through  the  sign  sequences  of  the  SWM  rainfall
principal components.  It  is interesting to observe that while the observed  %2 value for
the all­Karnataka data is  only  1­23, for  the coherent WZ this value is 4­69, which  is
conspicuously significant. Thus, it may be seen that the annual signal of the first PC

Table  5.  Frequency of sign  sequences  in  the  I  PC  of WZ  monthly  rainfall.

Sign

Comp. Obs.  Expt.  Obs.  Expt.  Obs.  Expt.  Obs.  Expt.  Obs.

April­May
May­June
June­July
July­August
Aug­Sept
Sept­Oct

9
12
11
16
1J
16

11­10
10­20
15­30
13­95
12­01
13­18

28
12
23
20
20
.15

25­90
13­80
18­70
22­05
18­99
17­83

15
22
25
15
20
18

12­90
23­80
20­70
17­05
18­99
20­83

28
34
21
29
29
31

30­10
32­20
25­30
26­95
30­01
28­17

1­05
079
3­82
0'89
0­23
1­72

Table 6.  Frequency of sign  sequences  in  the  II PC of WZ monthly  rainfall.

Sign

Comp. Obs.  Expt.  Obs.  Expt.  Obs.  Expt,  Obs.  Expt.  Obs.

April­May
May­June
June­July
July­August
Aug­Sept
Sept­Oct

22
21
20
19
14
22

22­55
21­45
19­50
19­50
•17­5 5
18­00

19
23
19
21
25
14

18­45
22­55
19­50
20­50
21­45
18­00

22
18
20
20
22
18

21­45
17­55
20­50
19­50
18­45
22­00

17
18
21
20
19
26

17­55
1845
20­50
20­50
22­55
22­00

0­06
0­04
0­05
0­05
2­55
3­23
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Table  7.  Frequency  of annual  sign  sequences  WZ SWM  rainfall  (N = 79  yrs).

Sign

++  +­  ­+

Comp.  Obs.  Expt.  Obs.  Expt.  Obs.  Expt.  Obs.  Expt.  Obs.

PCI
PC2
PC3
PC4
PCS

13
23
20
25
23

17­80
17­33
17­80
22­86
21­28

24
14
17
17
18

19­20
19­67
19­20
19­14
19­72

25
14
18
18
18

20­20
19­67
20­20
20­14
19­72

17
28
24
19
20

21­80
22­33
21­80
16­86
18­28

4­69
6­56
0­99
0­94
0­60

of the SWM rainfall is enhanced in  the WZ rainfall data. Moreover, the PC2 of both
the  entire  State  and  the  WZ  rainfall  show  significant  annual  transitions.

8. Predictabilit y

A question closely connected with  rainfall  variability  is one  of predictability.  If the
variability, which  is a deviation of rainfall about  its  long­term average value, is not
purely  random,  one  expects  a  temporal  relationship  to  be  detectable.  The  most
desirable relationship is a  linear one. But, in  the present context  it has been pointed
out  that monthly  rainfall anomalies show no significant autocorrelations. Thus,  linear
relationships  for  time­wise  evolution  usually get  rejected  by  appropriate  statistical
tests.  On  the  other hand,  it  is  not  obvious  what  kind  of statistical  methodology  one
should  adopt  to  detect  and  test  nonlinear  relations.  Principal  component  analysis
does not  provide  a direct answer  to  this  question.  But,  as  principal  components  are
found  to  posses  statistically  significant  trends  it  may  be  more  appropriate  to  first
predict  the principal  components  and  then foreshadow  the  rainfall  in  terms  of past
data  with  the help of a diagram  like figure  13.  The  region ideally suited  to  attempt
this kind of predictability is  the coherent west zone of Karnataka.  In  this zone PQ
and  PC2  of  the  SWM  rainfall  show  significant  annual  transitions  and  one  can  ask
the  probability  of the next  year  PC  being above/below average (+  or  —),  if in  the
present year it is above/below average (+ or  —). From table 7 the two­state transition
probability matrix for PCj  and PC2  are found  to be:

0­35  0­65'
0.60  0­40 2w —

O­62  0­38
0'33  0­67

Such  quantification helps  one  to understand  the physical  significance of PCA, which
can also be interpreted as a modal decomposition of a multivariate rainfall time series.
Now, it is easy to see that PCj stands for an annual oscillatory mode, whereas PC2

stands for a persistence mode. This  interpretation is  true only  for the west zone data.
For Karnataka as a whole with the present data,  the oscillations in PCj  are attributable
to chance and hence prediction  through  a  transition probability is not justified. PC2

of the  State  data  has  significant  transition  probability  given  by

O'67  0­33
2s  '  ™*  0­66
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This  probability  matrix  is  almost  the  same  as  the  [P]2w  of  tne  wgst  zone.  Thus,
although  the second eigenvector of the  State and  the WZ are spatially of secondary
importance,  the corresponding PC2  time series stands for a stable persistence mode
valid  for  a  large  spatial  region.  The  question  whether  the  prediction  of a  secondary
component is of importance in forecasting the actual rainfall needs further investigation.
But it may be pointed out that even if PC2 is an atmospheric signal just present in the
rainfall  time series,  it gives  one coordinate in  locating an  year on the  PC diagram of
figure 13. However, without proper prediction of PĈ  which is of primary importance,
knowledge of PC2  may  not be of much  practical  use.  That  PCX  is directly  related  to
the area rainfall  is easily demonstrated as follows.  Let the area rainfall  .Rt be defined
as  the arithmetic average of the rainfall  at each  station (j — 1,2...M). Thus,

M

i  J

M

J=i

The correlation between Rt and the fcth principal component is

Hence  the  linear correlation  coefficient  between. R, and Pkt  is

1/2  M
;  (/).= £  0y.

(7)

(8)

(9)

Whenever the eigenvector elements are of the same sign, pk wil l be very nearly equal
to + 1. In the present analysis it has been found that the first eigenvector field rarely
exhibits spatial contrast.  Thus P1((PCj) will be highly correlated with the area rainfall
time series.  In  fact PCt  itself can be taken as a measure of the area rainfall.  For  the
second and higher eigenvectors the elements change sign often leading to small values
of   <j)j. This would lead to  lower or insignificant correlation between 1?, and  the higher
principal  components.  However,  if  instead  of the  complete  data  network  only  part
of the stations which have  the  same sign  in  their eigenvectors are considered,  the area
rainfall  for  these  special  regions  wil l  still  have  significant  correlations  with  the
corresponding principal  components.  In  table 8  the pt  value  for the WZ  rainfall  is
presented for monthly and SWM data. The strong correlation between PC1 and the
rainfall  leads  to  the  inference  that  the  transition probability [P]ls when significant,

Table 8.  Correlation  coefficient
between  rainfall  and PC,  for WZ.

Data
SWM
April
May
June
July
August
September
October

Pi
0­9976
0­9945
0­9938
0­9977
0­9810
0­9973
0­9937
0­9926

1

I1
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Table 9.  80  year  station  average  rainfall
in  cm.  for  the  WZ.

No. Station June July

1
2
3
4
5
6
7
8
9

10

Karwar
Supa
Sirsi
Mercara
Somwarpet
Virajpet
Mangalore
Belthangadi
Kundapura
Soraba

95­98
40­60
52­17
60­14
32­63
55­67
96­26
94­41

103­44
28­72

102­57
95­19
99­59

112­76
77­71
91­55

104­81
158­52
122­30
61­17

can be taken as an overall feature of the rainfall. Thus, for the WZ monsoon rainfall
an above­average­rainfall­year wil l be followed by a below­average­rainfall­year with
65% probability.  However, when a given year  is below average  the following year
would be above average with only 60% probability. This skewness in the oscillations
of rainfall  is  an  interesting  feature  which  has  come  out  systematically  through  the
present analysis.  In the intraseasonal study of table 5 for the WZ only the June­July
transition for PQ comes out as significant with

Mi­
'0­32  0

0­54  0

•68 1
•4 6 J

This is an interesting  transition in  that it  states  that given  the June rainfall to be
above normal,  July  rainfall  has  a  high probability  of being below normal.  On  the
other hand,  if in June  the  rainfall  is  below normal, no  predictive  tendencies  exist,  as
there is an almost equal chance for July to continue to be below normal, or become
above  normal.  To  check  the  above  transition  probability,  a  prediction  exercise  is
undertaken  for  the  10  stations  of the  WZ  for July.  For  this  purpose  the  June  and
July data of 1981  to  1985 not  included  in  the previous  analysis  are  used.  In  table 9,
the information on eighty year normal rainfall for the WZ stations  is presented.

In table 10  the prediction of the July rainfall, whenever the June rainfall  is above
normal  is  presented  and  compared  with  the  observed  July  rainfall.  It  is  to  be  noted
that  when the June rainfall  is  below normal,  no  prediction  is possible according  to
the June­July  transition probability.  Such  cases  are  indicated  as  +/—  in  table  10.
From table  10  it  is  observed  that  there have  been 28  cases  of June  rainfall being
above  normal  in  the  five years  considered  here.  For  all  these  cases  based  on  the
transition probability  matrix  [P]iw»  July  rainfall  is  predicted  to  be  below  average.
This  prediction  is  seen  to be correct  in  27  out of the  28  cases.

9. Discussion

The  popular  approach  in  time  series  studies  is  that  of autocorrelation  and  power
spectrum analysis.  One faces  several difficulties  in  understanding  monthly  rainfall



Table 10.  Prediction  of July  rainfall given  rainfall  in June.

+ : above average

Year

Stn.

1
2
3
4
5
6
7
8
9

10

— : below average
1981  1982  1983  1984  1985

June  July  July  June  July  July  June  July  July  June  July  July  June  July
Given  Pred.  Obsd.  Given  Pred.  Obsd.  Given  Pred.  Obsd.  Given  Pred.  Obsd.  Given  Pred.

+  —  —  — .  +/—  +  —  +/—  4­  +  —  —  +  —
+  ­  ­  ­  + /­  ­+­  ­+­  ­  4­  ­
­ ­  + / ­  ­  ­  + / ­  + +­  ­  +  ­  ­ +­
—  +/—  —  ­  +/­  ­  ­  +/­  ­  4­  ­  —  +  —
_  +/_  _  _  +/_  _  _  +/_  _  +  _  _  +  —

4­  ­  ­  ­  + /—  —  ­  +/—  —  +  ­  —  .  +  ­
­  +/­  ­  ­  +/­  +  +/­  ­  ­  +/­

July
Obsd.

—

—

—
—
—
—
—

­

Si

K>
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time series data through classical spectrum analysis. First, a large network of station
data will have to be simultaneously analysed for their cross­spectral densities as was
done  by  Hartmann  and  Michelsen  (1989).  As  the  sample  time  series  are  highly
correlated among  themselves due  to  spatial coherence, results  of a straightforward
spectral technique would be cumbersome, if not difficul t  to  interpret. On the other
hand, if each station data are analysed individually, the spatial structure is lost, which
may  be  important  in  enhancing  the  temporal  signals.  In  most  cases,  the  monthly
station data wil l be identified as white noise, meaning that the temporal variation is
purely  due  to  chance.  Since  autocorrelation/power  spectrum  analyses  study  linear
tendencies,  they are not strong enough particularly with non­gaussian data to  show
nonlinear temporal tendencies. This, in turn, demands more complicated higher order
spectral analysis like bispectrum computations. Sometimes the argument is put forth
that  instead  of  looking  at  individual  station  data,  as  the  atmospheric  system  is
organized  over  large  spatial  scales,  one  should  analyse  area  rainfall.  While  this  is
reasonable,  it  is  not  clear  whether  the  official  area  rainfall  values  put  forth  by
government agencies, which are either arithmetic averages or area weighted averages,
are  the right data for studying the natural variability patterns.  Principal component
analysis steers clear of these shortcomings,  retaining at the same time the simplicity
of a linear system analysis. Thus, the first principal component can represent the area
rainfall objectively, as  the weight  for  the  various  stations  are assigned by  the data
itself  in  an  optimal  way.  Again,  in  PCA  a  large  number  of  station  data  can  be
simultaneously handled to account for spatial variability, but invariably the final number
of components to be studied will be much less than the total number of stations. The
classical  power  spectrum  analysis  is  a  Fourier  decomposition,  wherein  the  energy
contained  at many  frequencies  are  found.  PCA  can  be  thought  of as  a  generalized
Fourier decomposition of a random field. Even though identification of a periodicity
is not directly possible, the energy contained in different components is extracted as
the eigenvalues of the covariance matrix. The present case study of Karnataka data
demonstrates the application of PCA in understanding monthly and seasonal rainfall
variability. Figure 2 shows how the significance of eigenvalues can be systematically
checked  to  arrive  at  the number of principal  components  to  be  retained  for  further
work.  It  is  interesting  to  observe  that not more  than  four components are  required
to  represent  the  rainfall  over  the  size  of a  state  as  large  as  Karnataka.  It  may  be
pointed  out  here  that  there  is  a  popular  misconcept  that  unless  the  cumulative
percentage of variance explained by the first few components in very high, say of the
order of 90%, PCA is not useful, in rainfall studies. Such a view is, however, unjustified
as shown by the present study. In this context, it is important to discriminate between
spatial connections and  temporal variability. PCA formally represents M­number of
given  time  series  data just  as  a  linear  combination  of another  M­number  of time
series.  But,  the  advantage  lies  in  the  fact  that  since  the  data  are  neither  perfectly
spatially correlated, nor exactly uncorrelated, after the first few terms the decomposition
loses its power to discriminate the remainder field from a purely random (white noise)
field. Hence the terms within this cut­off limit should contain the temporal variability
characteristics  valid  for  the  complete  station  network,  although  in  a  transformed
fashion.  The  advantage  of this  is  apparent  when  one  observes  that  for  Karnataka
SWM rainfall, the first eigenvector explains less than 50% of spatial variance; but the
PCi  and the area  rainfall  are correlated  with  p1 = 0­9805.  Again,  for  the west zone,
this correlation coefficient is consistently very high as shown in table 8. Similarly, the
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second and other significant PC's are connected to the area rainfall in regions wherein
the corresponding eigenvector elements have the same sign. Thus,  temporal  signals
that  may  be  present  over  a  large  spatial  regime  would  be  carried  over  into  the  first
few  principal  component  time  series  after  automatically  eliminating  what  may  be
termed spatial noise. This interpretation also points out a limitation of PCA, namely,
that it is necessary to establish a clear­cut quantitative relationship between rainfall
and the PC's before one can effectively use this approach. In this study due to space
limitations only a simple representation of the years (figure 13), which gives an intuitive
comparison  between  concepts  like  drought  years,  normal  years  and  flood  years  in
terms  of the  PC's  is  presented.  However,  the  simple  probabilities  proposed  here  for
above/below average transitions are found to be significant and consistent.

10. Summary and conclusion

Principal  component  analysis  produces  a  decomposition  of the  data field into  spatial
eigenvectors  and  a  temporal  time  series.  While  EOF  studies  are  quite  common  in
meteorological  data analysis,  the usefulness of the principal component  time series
in understanding temporal variability of rainfall has not received attention in the past.
The present  investigation  is  motivated by  the possibility  that the first few PC's may
contain  valuable  information  regarding  the  interseasonal,  intraseasonal  and  annual
rainfall  variability.  The  monthly  rainfall  data  of Karnataka  spread  over  50  stations
for  a  period  of 82  years  show  that  PCA  is  a  valuable  aid  in  gaining  insight  into
temporal  patterns  through  transition  probabilities  of the first and  second  principal
components.  For  the  State  as  a  whole,  the  rainfall  variations  in  May,  June,  July,
September and October are sequentially related. Transitions of fluctuations from July
to August and  again  to September are purely due  to chance. The connections­between
the variability  in the premonsoon, SWM and NEM rainfall are generally attributable
to chance, except for the connection between  the second principal components of the
SWM  and  NEM  data.  Again,  the  Karnataka  SWM  second  PC  exhibits  significant
interannual transitions, whereas the first PC shows no significant trend. However the
coherent west zone seems  to carry  the interannual variation signal of the  SWM in a
stronger manner since even the first PC of the WZ data shows a statistically significant
annual  transition,  different  from  chance.  The  preliminary  exercise  for predicting  the
June­July  transition  in  the  five  years  1981­85  through  an  estimated  transition
probability  has  been  surprisingly  successful.  However,  further detailed  analysis  is
required  to  quantify predictability of the  PC's as forecastable signals of impending
rainfall variations.
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