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SUMMARY

The effect of self-weight and vertical ground acceleration during earthquakes on vertical cantilevers has been
studied. The input is taken to be a bivariate normal random process, digitally simulated on a computer. The tip
deflection, base moment and shear force have been obtained numerically for three structures of different natural
frequencies. It is found that the presence of self-weight and vertical ground excitation could alter these three
quantities considerably. This leads to the conclusion that with tall structures a refined analysis, similar to the
one presented here, is advisable.

INTRODUCTION

In recent years there has been a steady growth of understanding of earthquakes and their effects on structures.
In the analysis of tall buildings, chimneys and towers it is customary to replace the structure by a suitable
model such as a shear beam or a cantilever.! One then proceeds to obtain the deflection, bending moment
and shear force under the horizontal ground motion. Though the effect of the horizontal component seems
to be more important, the effects of vertical acceleration and distributed mass need to be understood. It may
be pointed out here that in buckling analyses of columns free at the top, self-weight is also usually included.?
In the present paper an effort is made to study these two effects on tall structures which could be idealized
as uniform cantilevers. The effect of the vertical acceleration is considered only to change the weight of the
structure. The extensional motion and the effect of the second horizontal component are not included in
the analysis.

ANALYSIS
Referring to Figure 1, the equation of motion of the cantilever can be written as

2 2 2 —
B0 SR+ 450 [ mO 0 - U 8t) = i) G- LU0 0

where
U(y,t) = absolute lateral deflection

EI(y) = flexural rigidity

m(y) = mass density
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¢ = viscous damping coefficient

X, J, = horizontal and vertical ground acceleration
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Figure 1. Cantilever model

The second term on the right-hand side of equation (1) represents viscons damping assumed to be propor-
tional to the relative velocity. If the flexural rigidity and mass distribution remain uniform equation (1) can
be simplified as

64V l >V dVJ (82V ,,g) c oV )

TR |0 Ty | = 5 (G )
where V' is the relative motion with respect to the ground,

V(y> t) = U(y’ t)_xg(t) (3)

An approximation in a Galerkin sense (boundary conditions are satisfied but not the differential equation)
is used to solve equation (2) using the eigenfunctions of a cantilever beam.? Accordingly, the solution of
equation (2) is assumed in the form

N
Viy,t) = ElAn(l)(Dn(y) “
n=
where N is a positive integer, 4,(¢) are the generalized co-ordinates and ®,(y) are the eigenfunctions;?
. A,y A, ¥\ coshA,+cosA, Ay A )
= MY ogin) _COSAARTCOS Ay (0 AnY i AnY
©u») (COSh n g ) Sinh A, +sin X, ( n S, )

where
A2 = mw2 WY EI

A = 18751, A, =4-6941, A, = 7-8548
A = 10-9955, X, = 14-1371, A = 17-2787, ...

Substituting equation (4) into equation (2) and minimizing the mean square error over /4 one gets

" e [ X ¢
At = A+ A+ gtJg [ZAj(dij—hj}j+ ci,.)] =28, (i=1,2,..,N) (6)
m C@ j=1 Ci

in which

h
= [ d2dy
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h h
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where the prime indicates differentiation with respect to y. For given inputs %, and j, the number N of
equations in the above system has to be determined weighing the accuracy of the result against the com-
putational work involved. It is to be noted that the existence of j, gives rise to a system of equations
[equation (6)] with time-varying coefficients.

The ground excitations are random functions. In the literature!~® many models have been proposed for
the horizontal component. At present, however, it appears that not much is known about the vertical
component and its correlation with the horizontal component. It may be pointed out here that there is no
reason to believe the two components to be uncorrelated or the statistical structure of j, to have insignificant
effects on the solution. In the face of lack of definite information, it is decided in this study to choose a
bivariate stationary Gaussian process for X, and 7, with the following spectral properties:

Power spectrum of % :

Sulw) = S 7
W (02— )P +4(pww,) )
Power spectrum of j,:
w(w+4p® w?)
= g\We
S22(w) S2 (wg i w2)2 + 4(wag)2 (8)
Cross spectrum between X, and j,:
Sia(w) = Szexp (—w?/ w?) )]
The two components are generated using the expressions
n
% (1) = JQAw) ZlHn(wi) cos (w; 4+ @y,) (10)
4=
L
Fe(1) = J(2Aw) .Z_jl{Hm(‘“i) cos(w} 1+ Dy,) + | Hyy(ew;) | cos [w) ¢+ Hw;) + Dy} (1
where
Hy = (St
S11 Sea—]S1a?\¥
H.. = (21222 12 )
= ( Sn
Hyy = SyofHyy
Aw = S_wu—wl)
n

w; = w+([(—HAw, w;=w+dw
®,,, O,; = uniformly distributed random number in (0, 27)
_y Im Hy, (w)
Re Hy (w)

wy, w, = lower and upper cut-off frequencies in the spectra

0 = tan

dw = very small random frequency uniformly distributed in —Aw/2 and Aw/2

The theory behind the above procedure and other details have been presented elsewhere.»20 It is expected
that the structure subjected to such an excitation will produce a typical motion from which a good under-
standing of the structural response under real seismic excitation can be obtained.
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RESULTS AND DISCUSSION

The most significant responses of the structure under study would be the relative deflection at the tip,
bending moment and shear force at the base. In the present case these are given by

Vi) = 3 AL D h) (12)
1=1

MO, 1) = éAm [EIDL(0) + m(g + ) gi] (13)

S©0,1) = % A(t) EID}(0) (14)
1=1

These three responses have been studied in some detail for three cantilevers of different natural frequencies
and heights. These are designated as structures I, II and III and their properties are as in Table I. For

Table 1
Structure h (ft) m (Ib ft—2 sec?) EI (psf) Sfr* (cps)
1 50 10 36x108 1-:343
11 100 10 3:6x108 0-336
I 200 10 25:2x 108 0:222

* Fundamental frequency.

purposes of comparison, the responses have been computed also by neglecting the self-weight and vertical
acceleration. In each case, the system of equations given by equation (6) has been solved numerically by a
Runge-Kutta-Gill procedure on an IBM 360 computer for various sample inputs. The damping coefficient
¢ has been taken as

¢c=2nwm (15)

where » = 0-01 and o, is the fundamental natural frequency of the structure in radians per second. For the
simulated ground motion the various constants in equations (7-9) have been selected as

wy=6m, p=035
S; = 0-02p/mew,,

Sy = 2-2585;/(1 +4p%)
Sy = 0:05S,/p

(16)

A suitable choice of the number N of equations to be retained in equation (6) is essential for numerical
accuracy as well as economy in computer cost. In view of this, equation (6) has also been studied in the
frequency domain considering

ig — em
Ve = 0 an
A; = Hyeid

Substitution of this into equation (6) yields a system of algebraic equations for H;, which could be
solved easily. Using these values of H;, the frequency response functions of ¥(4,t), M(0,t) and S(0,¢) can
be obtained as

Hy () = SHO,0) 19)
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N n
Hy(X) = ZIH,(/\) (EID(0)+mgg;) (19
j=

Hy(A) = Jﬁ]:lHj()\) EI7(0) (20)

Figure 2 shows the result of such analysis performed on structure II plotting the amplitude of the frequency
response function. The input spectra are also shown in the same figure. The input spectra decay very fast

4.5 -

10710 10“%'97\\
/ ix154 6\

x40

aol
o,
{1}

—-— Hg (ib)
=== F, @/1D)

St S1p1 522

3y

10 i

1ho 1<'J°L !

1 J
100 -250
X {rad/sec)

Figure 2. Frequency response function of structure II and input spectra

and it is seen from the figure that only the first five modes significantly contribute to the response. Accordingly
in equation (6) five equations (¥ = 5) have been retained. Since the responses are random, one needs to know
their statistical properties in as much detail as possible. Herein estimates have been obtained for the r.m.s.
responses of all the three structures considered. Nine samples for structure I and nineteen samples for the
other two have been used in arriving at the estimates by ensemble-averaging. Three typical sample responses
are shown in Figures 3, 4 and 5. Only nine sample responses are computed for structure I since its natural
frequencies are much higher than those corresponding to other structures and hence it is much more time-

consuming to perform a time-domain analysis including up to the fifth mode. Figures 6, 7 and 8 show the
4
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Figure 4. Response history of structure II Figure 5. Response history of structure III
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Figure 6. R.m.s. response of structure I Figure 7. R.m.s. response of structure I

estimates of the r.m.s. responses as functions of time. These figures clearly indicate the effect of the self-
weight and the vertical acceleration. As one could expect, the difference is more considerable with the taller
structures (II, IIT) than with the shorter one. For structural design the highest absolute peak responses are
more significant and hence these are also obtained in all the samples during the first five seconds of
earthquake. Since the number of samples is small, it is not possible to obtain a reliable estimate of the proba-
bility density function. Instead, the (absolute) maximum responses of all the samples have been presented
in Figures 9-11. It is seen that the consideration of self-weight and j, might either increase or decrease
the peak responses. However, the difference either way seems to be considerable in most cases.
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Figure 8. R.m.s. response of structure III
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Figure 10, Effect of self-weight and vertical acceleration Figure 11. Effect of self-weight and vertical acceleration
for structure II in terms of absolute maximum response for structure III in terms of absolute maximum response

The above result implies that the effect of vertical acceleration could be much more pronounced, particu-
larly in beam response, when a frame structure is considered without recourse to the shear building
assumption. A general method of dynamic response analysis in which the distributed mass of the frame
structure can be taken into consideration was developed in Reference 11. It will be an interesting future
study to assess the effect of vertical acceleration on the response of the frame structure by combining the
method in Reference 11 with the simulation technique described here.
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