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It is shown that time series data of monsoon seasonal 
rainfall at subdivision level is decomposable into six 
uncorrelated components. These narrowband processes 
called intrinsic mode functions, in decreasing order of 
importance, reflect the influence of ENSO, sunspot acti-
vity and tidal cycle on inter annual rainfall variability. 
The decomposition helps in proposing a statistical 
method to forecast monsoon rainfall in the three sub-
divisions of Karnataka. 
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INDIAN rainfall data are available at two spatial scales in the 

archives of IITM, Pune (www.tropmet.res.in). The country 

is considered to be consisting of 33 subdivisions for re-

porting the monthly rainfall data for the period 1871–

2004. This is the smaller spatial scale database. Another 

database, consisting of the monthly rainfall at the larger 

spatial scale of eight regions including one at all-India 

level, is also made available. Recently, we have proposed
1
 

an approach to analyse and forecast monsoon rainfall data 

of the regional and all-India time series. The method is 

based on decomposing the data into empirical modes 

called Intrinsic Mode Functions (IMFs). The regional-level 

data have a coefficient of variation defined as the ratio of 

standard deviation to climatic average (σ/m), ranging from 

10 to 18%. The efficiency of the IMF model in one-step-

ahead forecasting is about 80%. Thus, the model is able 

to capture the most important inter-annual variability sig-

natures on the larger spatial scale. A known property of 

rainfall data is that on larger scales, the variability tends 

to decrease due to smoothening or averaging effects. 

Thus, subdivision-level data will show higher variability 

in comparison with regional data. Since IMF model  

decomposes the time series into basic uncorrelated em-

pirical modes, one would expect the approach to be quali-

tatively valid at any scale. However, the forecasting skill 

will depend on how best the temporal patterns of the sig-

natures are translated into the decomposed modes. The 

present investigation is aimed at studying the basic modes 

present in subdivision-level rainfall data, with a view to-

wards forecasting the amount of rainfall. 

 Rainfall data are available for 33 subdivisions (SD), 

which make up the geographical extent of the country. 

The data have been extensively studied for understanding 

spatial and inter-annual variability (IAV) of the mon-

soon
2–5

. Also, the data have been used to study the relation-

ship between rainfall and other atmospheric processes such 

as quasi-biennial oscillation (QBO)
6
, Southern oscillation 

index (SOI)
7
 and sunspot index

8
. In spite of the existence of 

long-term variability or memory signatures, quantitative 

forecasting of rainfall has remained a daunting task
9
. 

Here, seasonal (June–September) data of three subdivi-

sions are selected for further study. These are SDs 31, 32 

and 33 covering the State of Karnataka (Figure 1). This 

selection is based on previous studies
10

 on the variability 

structure of station-level rainfall in Karnataka. It was 

found that broadly the State comprises of three homoge-

nous regions nearly overlapping with the three IMD sub-

divisions. It was also found that coastal Karnataka (SD-

31) has a significant transition probability structure from 

June to July. There is a tendency for below-normal June 

rainfall to be compensated by above-normal rainfall in July. 

Parthasarathy and Pant
7
 have shown that rainfall in the 

above subdivisions is well correlated with QBO and that 

the data are significantly correlated at 14-year lag. The basic 

statistics of the data considered here is given in Table 1. 

 Monsoon rainfall evolves in a random fashion around a 

few central periods. This can be seen by spectral analysis, 

wavelet or principal component analysis. Recently, it has 
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Table 1. Subdivision (IITM data 1871–1990) 

Sub-  Mean SD COV 

division Name mR Cm. σR Cm. (σR /mR) % Skewness Kurtosis 
 

31 COKNT 285.22 50.94 15.42 0.624 4.310 

32 NIKNT 60.09 11.96 19.90 0.185 2.847 

33 SIKNT 50.33 10.19 20.25 0.334 2.752 

 

 
Table 2. Central period of the IMFs in years and % variance contributed to IAV 

 IMF1 IMF2 IMF3 IMF4 IMF5 
 

Region T IAV% T IAV% T IAV% T IAV% T IAV% 
 

COKNT 2.55 60.7 5.71 31.7 12 10.5 18 4.3 40 1.0 

NIKNT 3 62.4 5.71 17.6 12 11.9 20 6.6 60 4.1 

SIKNT 2.86 69.7 5.45 20.5 10.9 4.5 24 1.6 60 3.1 

 

 

 
 

Figure 1. Meteorological subdivisions of India and Karnataka. 

 

 

been shown that the empirical mode decomposition pro-

posed by Huang et al.
11

 has distinct advantages over other 

methods in identifying the dominant periods and their 

amplitudes. This method decomposes the data series into 

finite number of empirical modes called IMFs. These are 

uncorrelated with each other at zero lag, but correlated 

with the original data in a decreasing order of importance. 

IMF is a data-derived function such that in its interval of 

definition, the number of zeros and extrema is equal or 

differs as at most by one. Each IMF is a narrow band 

process with an identifiable central period. In Figure 2
 
a–c, 

the present data and their IMFs are shown. The sum of the 

IMFs will be equal to the original data at every time instant, 

that is R(t) = ∑IMFi(t). In each of the figures, data variance 

and variance of each mode are also presented. It is observed 

that IMFs can be organized with decreasing level of im-

portance. The sum of variances of IMFs should be ideally 

equal to the data variance. However, it is observed that 

the last two IMFs get correlated due to round-off errors 

and hence the precise decomposition of variance may not 

always be achieved. 

 In Table 2, the central period of the IMFs and the per-

centage of variability explained by each IMF are given. 

The last IMF in all the three cases is the climatic normal, 

which can be taken to be deterministic. Table 3 shows the 

correlation matrix of the IMFs. IMF1 is the predominant 

mode, with an average period of about 2.7 years, contribut-

ing to more than 60% of IAV. It is also the mode maximally 

correlated with the basic data. Like with the regional-

scale data studied previously
1
, here also IMF1 and IMF2 

are connected with QBO and ENSO, which show quasi-

periodic behaviour with a central period of 2–5 years. 

IMF3 can be associated with the 11-year sun-spot cycle. 

IMF4 most probably reflects tidal forcing linked to the 

Metonic cycle of 18–19 years. It is important to verify 

whether the extracted IMFs are spurious signatures of an 

originally uncorrelated random noise data sample. In Figure 3, 

the white noise test developed by Wu and Huang
12

 is applied 

on the IMFs of the three subdivisions. For a strict white 

noise, the variance of the IMFs and their respective cen-

tral periods varies linearly on a double log plot. Thus for 

the data to be accepted as pure noise, all the variance values 

have to lie within the 99% confidence band of acceptance. 

It is observed that the null hypothesis that original data are 

white noise with no patterns gets rejected. This indicates 

the possibility of statistical forecasting of the data series 

through modelling and forecasting of the IMFs. 

 A model is a mathematical equation or an algorithm 

that can closely replicate the data of a particular length 

with minimum error. Since such a model is not unique, the 

efficiency of any particular model can only be verified by 

comparing it with other claimants in a specified period of 
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Figure 2. IMFs of COKNT rainfall (a), NIKNT rainfall (b) and SIKNT rainfall (c). 
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Table 3. Correlation matrix 

 Data IMF1 IMF2 IMF3 IMF4 IMF5 
 

COKNT 

 Data 1.0000 0.7452 0.5126 0.2340 0.1199 0.0279 

 IMF1  1.0000 –0.0075 –0.0386 –0.0105 –0.0758 

 IMF2   1.0000 –0.0880 –0.0958 –0.0356 

 IMF3    1.0000 0.0025 –0.0517 

 IMF4     1.0000 –0.0929 

 IMF5      1.0000 

NIKNT 

 Data 1.0000 0.7615 0.4192 0.2370 0.2417 0.1838 

 IMF1  1.0000 –0.0020 –0.0734 –0.0016 0.0033 

 IMF2   1.0000 –0.0029 –0.0487 –0.0186 

 IMF3    1.0000 –0.0342 0.0048 

 IMF4     1.0000 –0.0378 

 IMF5      1.0000 

SIKNT 

 Data 1.0000 0.8260 0.4606 0.2406 0.1123 0.1677 

 IMF1  1.0000 –0.0011 0.0055 –0.0243 –0.0340 

 IMF2   1.0000 0.0369 –0.0141 –0.0041 

 IMF3    1.0000 –0.0020 0.0158 

 IMF4     1.0000 0.0931 

 IMF5      1.0000 

 

 

 
 

Figure 3. White noise test for rainfall of three subdivisions. *IMF,  
—— Expected for white noise. ---- 99% confidence bands. 

 

 

time. It is useful to benchmark a model with respect to 

the climatic variation explained by it in the modelling pe-

riod. The previous model of the authors
1
 for regional-scale 

rainfall had two parts denoted as nonlinear and linear. 

The former, which was IMF1, was shown to be amenable for 

modelling through artificial neural network (ANN) tech-

niques. The remainder was a stationary random process 

modelled with a simple linear representation regressed on 

the antecedent five years data. However, in the present 

case (Ri – IMF1i) at subdivisional level is found to be non-

stationary, as verified through the standard run test. Fur-

ther, it is seen that IMF2 cannot be treated as a Gaussian 

process, unlike in the case of regional data. On smaller 

spatial scales, not only does the variability increase, but 

also the non-Gaussian and hence the nonlinear character 

of rainfall time series gets accentuated. This necessitates 

modelling the first two IMFs individually through ANN 

approaches. The remaining part yi = (Ri – IMF1i – IMF2i) 

is nearly Gaussian and can be modelled as a linear process 

separately. It can be observed that as one goes to higher 

empirical modes, computing IMFs at the end-points be-

comes difficult. Since the data are available for (i = 1, 2, 

3, … , n), IMFs can be found only for (i = 2,…, n – 1). 

This makes the estimation of linear and nonlinear parts of 

the data for the last point difficult. This is precisely what 

would be required in a forecasting exercise that makes 

use of the above type of decomposition. This difficulty is 

overcome here by making yj depend on the known current 

rainfall Rj, the previous year value Rj–1 and three past 

values of yi. This model has been arrived at based on sev-

eral trials. The coefficients in the equation 

 

 yn+1 = C1Rn + C2Rn–1 + C3yn–2 + C4yn–3 + C5yn–4 + C6 + ε, 

 (1) 

 

are found by minimizing the mean square error between 

the model and the data in the modelling period (1871–1990). 

These are shown in Table 4. The modelling of IMF1i and 

IMF2i is carried out using ANN techniques. The architecture 

of the neural network model is shown in Figure 4. This 

consists of one hidden layer with five nodes, dependent on 

five past values. The model needs 36 parameters, which 

can be found with the help of MATLAB software using 
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Figure 4. ANN architecture for modelling IMF1 and IMF2. 

 

 

 
 

 
 

 
 

Figure 5. Comparison between actual data and hindcasts. a, COKNT; 
b, NIKNT and c, SIKNT. 
 

 

the backpropagation algorithm. At any stage, the model 

for Ri is given by (IMF1i + IMF2i + yi). The efficiency of 

this model has been first verified by hindcasting the data 

from the model algorithm. In Table 5, the goodness-of-fit 

is demonstrated by presenting three statistics. These are (i) 

standard deviation (σm) of the error ε in the model fit, (ii) 

correlation between the data and the model hindcast, and 

(iii) the performance parameter defined as PPm = 1 – σ2
m/σ2

d, 
where σ2

m is the mean square error and σ2
d is the actual data 

variance. In a perfect model, σm(ε) will be zero and both 

CCm and PPm will tend towards unity. It is observed that 

the present model consisting of eq. (1) and IMF1 and IMF2 

represented through the ANN architecture of Figure 4, 

explains 65–70% of the variance of rainfall over the subdi-

visions considered here. In Figure 5, the actual data and 

analytical hindcasts obtained from the present model are 

shown for a visual comparison of the goodness-of-fit. 

 Estimation of rainfall for year ( j + 1) based on know-

ledge of data of the current year j and past values of years 

( j – 1, j – 2, … 3, 2, 1) is defined as a forecast. If the 

process were to be stationary, constants found previously 

could be used in eq. (1) for finding yj + 1 and further 

IMF1,j + 1 and IMF2,j+1. In the present case, since statistical 

tests indicate the data to be non-stationary, all past data 

are used in every year j to find Rj+1. The modelling results 

are used in a qualitative sense retaining the same ANN 

architecture and eq. (1) for updating the model constants 

at each step. In Figure 6
 
a–c year-by-year forecasts along 

with observed values are shown for the three subdivisions 

of Karnataka. Forecasts are desired as unique numbers or 

as point estimates. However, the procedure leading to the 

forecast is statistical and hence the prediction has to be 

interpreted as a random variable with a definite probability 

distribution. The skill of such a forecast has to be evalu-

ated, necessarily again in a statistical sense by carrying 

out the exercise on an independent sample. Here this has 

been carried out for the period 1991–2004, as shown in 

Figure 6
 
a–c. In Table 5, the forecast skill measures, namely 

σf (ε), CCf and PPf are presented. With a length of 14 

years, correlation between observed and forecast values 

can be taken to be significant if it is higher than about 

0.55. It is seen that the forecast skill of the present metho-

dology is much above the threshold of significance. The 

performance parameters are quantitatively less than the 

ones during the modelling period. This is clearly attribut-
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Table 4. Coefficients of eq. (1) 

Region C1 C2 C3 C4 C5 C6 σy(ε)  CC 
 

COKNT 0.0793 0.0246 1.8409 –2.8216 1.3164 160.1436 16.7992 0.6380 

NIKNT 0.0304 –0.0053 3.6532 –5.2693 2.2582 20.0185 3.4299 0.8128 

SIKNT 0.0023 –0.0119 3.6290 –5.1141 2.1857 15.7583 1.8636 0.8004 

 
Table 5. Performance index 

 Modelling period (1872–1990) Forecasting period (1991–2004) 
 

Region σm(ε) CCm PPm σf (ε) CCf PPf 
 

COKNT 30.13 0.81 0.65 24.18 0.77 0.53 

SIKNT 5.21 0.85 0.72 6.65 0.83 0.68 

NIKNT 6.31 0.86 0.71 5.95 0.69 0.53 

 

 

  
 

 
 

Figure 6. Independent test forecasting. a, COKNT; b, NIKNT and c, SIKNT. 

 

 

able to the short length of 14 years of forecasting regime. 

As the forecast exercise length increases, the performance 

parameter PPf would approach PPm. 

 A novel statistical approach for forecasting monsoon 

rainfall at subdivision level has been proposed here. This 

is an extension of our previous work
1
 on forecasting all-

India and regional rainfall using empirical mode decom-

position. It is recognized that seasonal monsoon rainfall 

on a given space regime exhibits specific patterns on a 

few preferred timescales. The subdivision data studied 

here show higher coefficients of variation than the larger-

scale regional data series. Like the regional data, the pre-

sent data also get decomposed into six uncorrelated IMFs. 

These can again be interpreted in decreasing order of im-
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portance, as being related to ENSO, sunspot and tidal 

phenomena. The modelling and forecasting skill of the 

proposed method has been demonstrated to be statistically 

significant. Apart from the statistics reported in Table 5, re-

sults of Figure 6
 
a–c are interesting. It is observed that 

the nature of departure from long-term average (normal) 

rainfall has been foreshadowed correctly in eleven out of 

fourteen years. Even in years where the forecast appears 

to be poor, the value is within a known error band. Persis-

tence of drought-like conditions in SIKNT and NIKNT 

during 1999–2003 has also been captured by the present 

model in a forecast mode. In comparison with regional-

scale rainfall, the present data show lower levels of mod-

elling and forecasting efficiency measured in terms of PPm 

and PPf. This is attributable to the higher coefficient of 

variation and lack of stationarity property with the present 

data series. The efficiency of the present method for 

modelling other subdivisions which have still higher levels 

of (σ/m) value is yet to be investigated. 
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Quick look isoseismal map of  

8 October 2005 Kashmir earthquake 
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The isoseismal map for the devastating M 7.6 Kashmir 
earthquake of 8 October 2005 is constructed based on 
the immediate damage scenario provided by the teach-
ers trained under the Himalayan School Earthquake 
Laboratory Programme as well as that reported in 
electronic and print media. The nature of the damage 
pattern imprinted on different vulnerable classes of 
buildings at some 80 sites enabled to map out intensity 
distribution in earthquake-affected region to a value 
above IV on the European Macroseismic Scale (EMS-
98). The isoseismal map provides a fair picture of the 
distribution of ground-shaking effects to distant places. 
This would serve as a useful guide in future earth-
quake hazard assessment in the region. The Kashmir 
valley was widely affected and the meizoseismal zone 
encompassing the township of Balakot and Muzzafra-
bad experienced a maximum intensity of XI on the 
EMS-98 scale. The use of this maximum intensity and 
the dimension of the area covered by isoseismal VI in 
the well-established intensity–focal depth and intensity–
moment relations respectively, allowed for estimating 
the focal depth and the magnitude. Since in the present 
approach, the map is prepared based on the damage 
scenario immediately after the main shock, it will be 
free from biases due the subsequent damages caused 
by aftershocks that advertently tend to contaminate 
the maps prepared by conventional field surveys.  

 

Keywords: Focal depth, Kashmir earthquake, intensity 

distribution, isoseismal map, magnitude. 

 

THE Mw 7.6 worst ever earthquake shook the Kashmir 

valley on 8 October 2005 at 03:52 UT (09:22 IST). The 

shallow focus earthquake (depth 10 km) with its epicentre 

(34.432°N, 73.537°E, USGS), ~124 km to the west of Srina-

gar, caused widespread destruction and casualties (>50,000) 

in the region. In the west, the event was widely felt in 

Pakistan and Afghanistan and in the east shaking of the 

earth was felt as far as Himachal, Punjab, Haryana, Uttaran-

chal, Delhi, Rajasthan, Gujarat and western Uttar Pradesh. 

Earlier also this region experienced a number of moderate 

and major earthquakes. Among those the most recent 

ones are the Northwest Kashmir earthquake of 2002 (M 

6.4) and Pattan earthquake of 1974 (Mw = 7.4)
1
. Previous 

destructive earthquakes in the Kashmir valley that occurred in 

1555 (magnitude not known), 1885 (Mw 7.5), 1842 (Mw  

7.5 Kinnuar) and the Kangra earthquake of 1905 (Mw 7.8) 

are reported at http://asc-india.org/events/051008_pak.htm.  


