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Summary

Indian monsoon rainfall data is shown to be decomposable

into six empirical time series, called intrinsic mode func-

tions. This helps one to identify the first empirical mode as

a nonlinear part and the remaining as the linear part of

the data. The nonlinear part is handled by artificial neural

network (ANN) techniques, whereas the linear part is ame-

nable for modeling through simple regression concepts. It is

found that the proposed model explains between 75 to 80%

of the interannual variability (IAV) of eight regional rainfall

series considered here. The model is efficient in statistical

forecasting of rainfall as verified on an independent subset

of the data series. It is demonstrated that the model is

capable of foreshadowing the drought of 2002, with the

help of only antecedent data. The statistical forecast of All

India rainfall for the year of 2004 is 80.34 cms with a stan-

dard deviation of 3.3 cms. This expected value is 94.25% of

the longterm climatic average.

1. Introduction

The summer monsoon also called the southwest
monsoon (SWM) delivers the major component
of annual rainfall in India. The sum of quantified

rainfall during June, July, August and September
is the seasonal monsoon rainfall on a yearly

basis. This time series on different spatial re-
gimes is among the most widely investigated

meteorological data in India. Efforts have been

made in the past to understand the connections
between SWM and other global phenomena such

as El Ni~nno (EN), southern oscillation (SO) and
sunspot cycle. In addition, there have been

studies investigating the rainfall data series to
characterize temporal variability on monthly,

seasonal and annual scales. Even though the
monsoon season in terms of wind direction, cloud

formation and other physical features has recurred
annually since ancient times, the amount of rain-
fall it brings varies considerably year to year. This

raises the question whether the quantum of rain-
fall for the season can be forecast keeping in view

the regularity with which the monsoon season
appears. In the past, this issue has been addressed

in two different ways. In the first approach, rain-
fall is thought to be the effect of other antecedent

meteorological parameters. Walker (1923) was
perhaps the first to study teleconnections between

Indian monsoon and meteorological parameters at
other parts of the earth. The models of Gowariker
et al (1989), Thapliyal (1990), and Sahai et al

(2003) belong to this category. Among these, the
model of Sahai et al (2003), which links global

SST data with Indian monsoon seasonal data ap-
pears to be the most successful one. In the second

approach, rainfall time series is supposed to carry
the imprint of all causes in itself. In a mechanical



system with memory, the response can be notion-

ally represented as a convolution between external
forces and the system impulse response or Green’s

function. Hence, even when the causes are not
known, with a sufficiently long data series, the

rainfall can be modeled as a generalized function
of the known past. A model capable of success-
fully replicating the past can be used to forecast

the rainfall a year ahead with a known error band.
The studies of Sahai et al (2000), Iyengar and

Raghukanth (2003) are examples of this ap-
proach. Apart from these, there are several studies

(Hastenrath and Grieschar, 1993) on the variabil-
ity of monsoon on annual, seasonal and other time

scales. Some of these elucidate how particular
dominant periods observed in the Fourier spec-
trum of the data may arise due to quasi-biennial

oscillation (Rao and Lakhole, 1978), tidal forc-
ing (Campbell et al, 1983), ENSO (Shukla and

Paolino, 1983), sunspot cycles (Bhalme and
Jadhav, 1984) and intraseasonal periodicities

(Cadet and Daniel, 1988; Hartmann and
Michelson, 1989). Narasimha and Kailas (2001)

have used wavelets to understand temporal vari-
ability of monsoon rainfall. Their analysis reveals

that the annually sampled seasonal data is charac-
terized by near periodic oscillations of 3, 5.8,
11.6, 20.8, 37 and 80 year, periods. The existence

of oscillatory trends very near the above periods
can be surmised from the power spectral density

function of the basic data series. However, trans-
lation of this knowledge to effectively forecast or

extrapolate data by one year has not been possible.
The present paper studies forecasting of Indian

rainfall data with the above points in the back-
ground. A new representation of the data series,
in terms of a finite number of empirical time series

is presented. These time series are simpler than the
original data for modeling and forecasting.

2. Empirical modes

Huang et al (1998) have presented a method for
decomposing time series data into a finite num-

ber of empirical modes called Intrinsic Mode
Functions (IMF), which can be shown to be un-
correlated among them, except for round off

errors. An IMF is a data derived function such
that, in its interval of definition the number of

zeros and extrema are either equal or differ at
most by one. Further, at any point, the mean

value of the local positive and negative envelopes

of the IMF would be zero. Each IMF so obtained
is a narrowband time series with an identifiable

central period around which the oscillations take
place. The amplitude and period of an IMF will

be slowly varying. This simple form also pro-
vides a physical basis, for relating monsoon rain-
fall with meteorological parameters that show

similar periods as a particular IMF. The present
paper studies eight sets of Indian rainfall time

series to decompose the observed data into their
basic IMF’s. It is demonstrated that in all the

cases the data exhibit six modes of temporal
variation. The last mode always represents the

climatic average, which remains almost constant.
The traditional method of investigating rainfall
data has depended on models of stationary ran-

dom processes with Gaussian properties. Appli-
cation of the corresponding statistical tests to

verify the auto-correlation or power spectral den-
sity functions of SWM data leads to the result

that signals, if any, in these data are very weak.
This is the main reason, why SWM data cannot

be modeled in terms of a linear time series.
On the other hand, the particular form of the

nonlinear model to be used is not so obvious. Pre-
viously (Iyengar and Raghukanth, 2003) it has
been demonstrated that a nonlinear model with

variable frequency harmonic terms can be effec-
tively used to explain about 50% of the IAV. This

would indicate that the basic data, if it is not a
white noise, should carry the decomposed IMF’s

as signals. For all the eight cases studied here,
following the work of Wu and Huang (2003), it

is found that the white noise test fails meaning
that the IMF’s are signals. The first IMF is a
high-frequency mode that is also strongly non–

Gaussian. It needs a nonlinear framework for
modeling and forecasting. The remaining IMF’s

are progressively slower and tend to become less
random. This property can be used to extend

them by one year using linear regression techni-
ques. This amounts to a new strategy for long

range forecasting of Indian monsoon rainfall.

3. Rainfall data

Large numbers of rainguage stations are opera-
tive in India to continuously monitor the daily,

weekly, monthly and seasonal rainfall all through
the year. From the station data, area rainfall



values are computed for various regions and
made available at the website www.tropmet.res.in

of Indian Institute of Tropical Meteorology
(IITM), Pune. Here, eight sets of such regional

SWM rainfall data, which is the sum of the
monthly values of June, July, August and Sep-

tember, are chosen for detailed study. The differ-
ent regions covered by the database, some of
which are overlapping, are listed in Table 1 and

shown in Fig. 1a, b. The different data series may
be correlated but taken individually the regions

are coherent within themselves. It has been cus-
tomary to compute an All India Rainfall (AIRF)

value as a weighted sum of rainfall in non-

overlapping regions. This is invariably cited as
an index of the monsoon performance at the

national level. Thus, AIRF series can be viewed
as an indicator of the agricultural economy of the

country. Some basic statistics of the data such as
the climatic normal (mR) and climatic deviation

about the normal (�R) are presented in Table 1. It
may be noted that monsoon rainfall is negatively
correlated among some of the contributing re-

gions, as a consequence of which, AIRF series
shows lesser variability in terms of (�R=mR) than

the other data series. Here all the eight time se-
ries are retained since they represent different

spatial regimes of the vast country.

Table 1. SWM rainfall data (1871–1990)

Region Area mR �R Skewness Kurtosis

(Sq. km) (cm) (cm)

All India 2,880,000 85.2424 8.4686 �0.5670 2.9574

Homogeneous 1,596,970 75.7212 11.8958 �0.4387 3.0699

Core monsoon 776,942 85.8222 14.7662 �0.4980 3.0586

WCIND 962,698 93.3198 12.5899 �0.4383 3.0351

CNEIN 573,006 100.2477 11.1060 �0.2082 4.4050

NEIND 267,444 141.9222 12.1318 0.1422 3.0917

NWIND 634,272 49.0082 13.2373 �0.2861 2.8866

Peninsular 442,632 65.9455 9.8273 0.3105 3.1164

WCIND: Western-Central India; CNEIN: Central-Northeast India; NEIND: Northeast India; NWIND: Northwest India

Fig. 1a. Meteorological subdivisions of India; b Five non-overlapping regions contributing to AIRF



4. Intrinsic mode functions

The approach of IMF decomposition to investi-

gate monsoon rainfall is new. With this in view,
the method of extraction of IMF’s is briefly

described below with reference to the first data
series of Table 1. Following Huang et al (1998)
the consecutive peaks and consecutive valleys of

the data series are joined by cubic splines (Fig. 2).
At every time step the average of the positive

(Eþ) and negative (E�) envelopes are found. This
is shown in Fig. 2 with a bold line. This average

m0(t) which is the bias of the data about the zero
level, is subtracted from the raw data to get

R3(t)¼R(t)�m(t). This new time series is
further processed as in the previous step to get
R2(t)¼R1(t)�m1(t). This process is repeated m

times till the sieved data Rm(t) is centered sym-
metrically such that with every zero only one

peak or valley occurs. Such an Rm(t) is the first
intrinsic mode denoted as IMF1. In Fig. 2,

IMF1 of the AIRF series is extracted after six

iterations. To extract the second IMF, the first
IMF is subtracted from the original data and

the process is repeated. On similar lines IMF3,
IMF4, . . . are hierarchically extracted until the

sieved data shows no oscillations or is an IMF
by itself. Thus, long-term climate trends, center-
line drifts, and long period nonstationary features

come out as the last IMF. For the time series of
Fig. 2, six IMF’s can be extracted. Interestingly,

all the eight regional rainfall data of Table 1 are
decomposed into six IMF’s. In Fig. 3a–h, the

IMF’s of the eight data are arranged in the order
they are extracted. It is observed that the last IMF

is invariably positive and is a mode slowly vary-
ing around the long-term average. This may be
thought of as the normal or climatic component

about which the IAV of the monsoon rainfall
appears. This IAV itself can be decomposed

into five dynamic modes each evolving around a

Fig. 2. Extraction of IMF1 from

AIRF data



specific frequency or period. In all the figures, the
variance of the basic data series and that of the

IMF’s found by time averaging is shown to indi-
cate the relative contribution of an IMF to the

total variability of the rainfall. It is easily ob-
served that all IMF’s exhibit slowly varying
amplitudes and frequencies. Hence, these are

narrow band processes with well-defined Hilbert
transforms. However, even without such a repre-

sentation the dominant period of oscillation can
be found by counting the zeros and the extrema

in an IMF. In Table 2, the central period found by
this simple method is listed for all the regional

IMF’s. The percentage of variance explained by
each IMF, or the contribution of each IMF to IAV

of the regional rainfall is also presented in Table 2.
It is observed that all the regions exhibit IMF1 to

be the predominant mode with an average period
of 2.7 years contributing to 50–70% of the inter-
annual variability. IMF2 is a mode with a domi-

nant period of 5–6 years. This is the second most
important mode in all the cases. These two

modes are most probably connected with the
quasi-biennial oscillation (QBO) and ENSO phe-

nomenon, which show similar quasi-periodic
structure around a period of 2–5 years. Similarly,

Fig. 3a. IMF’s of All India rain-

fall



IMF3 can be associated with the sunspot cycle of

about 11 years period. Demonstration of this
relation, in a physical sense, between IMF3 and

the sunspot data is presented in Fig. 4. In this
figure, IMF3 of AIRF, is compared with the annu-

al European sunspot index available at www.sidc.
oma.be. A case for linking SWM rainfall with

sunspot cycle had been previously made by
Bhalme and Jadhav (1984). However, physically
quantifiable oscillations around 11 years in the

rainfall data have been extracted and presented
here. It may be noted here, that the same year or

zero lag correlation between IMF3 and sun spot

data is not significant due to drifting of phases in

the time series. Nevertheless, the cross correla-
tion peaks at 13 years lag to 0.4, which is sta-

tistically significant. Thus, association between
the two data series is a distinct possibility. The

central period of IMF4 is about 20–24 years,
which can be related to tidal forcing. Previously,

Campbell et al (1983) have presented evidence
for the presence of this quasi-cycle in Indian
monsoon rainfall. The present analysis is able

to trace this influence also from the data in a
quantitative fashion. The fifth IMF shows an

elongated period of the order of 60 years. The

Fig. 3b. IMF’s of homogeneous

region rainfall



last component, which is the residue, as per
Huang et al (1998), is here taken as the slowly

varying climate mode. This way, IMF6 is here
identified as the deterministic long-term behav-

ior. It may be mentioned here that wavelet ana-
lysis of monsoon rainfall data by Narasimha and

Kailas (2001) indicated the presence of six quasi-
cycles (modes) at nearly the same average
periods obtained here. The present study has

been able to identify the time histories of the
embedded modes also in the form of various

IMF’s. The representation obtained for any of
the data series is of the type R(t)¼�IMFi(t).

The sum of the IMF’s leads to the original data,

as can be easily verified, in all cases. For exam-
ple, the error between the sum of the six IMF’s

and the AIRF data series has an average value of
10�16 with a standard deviation of 10�14.

5. IMF statistics

For understanding the statistical relation between
the IMF’s and the data, one has to construct the

correlation matrix of the time series. In Table 3,
the (6� 6) correlation matrix of the AIRF data

and the five variable IMF’s is shown. It is im-
mediately clear that correlation values between

the data and the IMF are statistically significant

Fig. 3c. IMF’s of core monsoon

region rainfall



and hence are physically meaningful. Further,

among themselves the IMF’s are statistically
uncorrelated or orthogonal. Thus, we can expect

the sum of the variances of the IMF’s to be nearly
equal to the total variance of the data. However,

due to sample size effects and round off errors
there can be small differences between the two-

variance figures. For example, the sum of the
variances of the IMF’s of AIRF adds up to
70.5, whereas the data variance is 71.7. Wu and

Huang (2003) have recently proposed an indirect
way of testing the importance of the IMF’s by

comparing them with the IMF’s of a known

white noise data series. In Fig. 5, this test is

shown graphically for the above data. For a strict
white noise, the variance of the IMF’s and their

corresponding central periods vary linearly on a
log–log plot. Hence, for the data to be declared

as pure noise, all the sample variances have to lie
within a band of confidence. It is seen, from the

results presented in Fig. 5, the five IMF’s do not
lie within the 99% confidence interval. Thus, the
null hypothesis that the original data has no sig-

nals is rejected. The above characteristic has
been verified to be true for the other seven sets

of data also. These considerations point towards

Fig. 3d. IMF’s of WCIND re-

gion rainfall



the possibility of statistical forecasting of SWM
rainfall incorporating the IAV signatures through

the IMF’s. The first IMF carries the higher
frequency end of the information and hence is

expected to be more random than others. One
way of describing uncertainty in rainfall is

through the probability density function of the
data. It is known that rainfall, as a random vari-

able is non–Gaussian. This is true of the data
studied here (Table 1) even though, being the
sum of several individual variables, the seasonal

data has a tendency towards being Gaussian.
However, when decomposed into IMF’s, a new

feature emerges clearly. It is the bimodality of
the IMF1, which is also the most important com-

ponent. To demonstrate this, the first IMF of
five non-overlapping regions (WCIND, CENIN,

NEIND, NWIND, PENIN) of Fig. 1b, are scaled
by their standard deviation and pooled to-

gether. The resulting relative frequency struc-
ture is shown in Fig. 6. It may be noted here

that, even without combining the samples, the
bimodal behavior of IMF1 is apparent from the
time histories of Fig. 3a–h. This behavior

indicates strong nonlinearity in the dynamics of
the process and rules out the possibility of a

Fig. 3e. IMF’s of CNEIN region

rainfall



linear time series model for IMF1. The remain-
ing IMF’s are unimodal and not strongly

non–Gaussian. This raises the hope that they
may be amenable for linear autoregressive

representation.

6. Forecasting strategy

There is great interest among the agriculture,

industrial and policy-making sectors in India to
know in advance how the monsoon in a particular

year behaves as far as rainfall is concerned. Thus,
considerable literature exists on the various strat-

egies adopted by the India Meteorology Depart-

ment (IMD) in producing a long range forecast
for the All India seasonal rainfall (Rajeevan

et al, 2000; Rajeevan, 2001). Forecasting may
be seen as extending the data series by one step.

This exercise, for simple functions with an ana-
lytic form can be easily carried out by Talyor’s
series expansion. However, rainfall data is highly

erratic and no simple function can be fitted to the
whole data series. Hence, the approaches taken

have been statistical whether explicitly stated
to be so or not. The decomposition of data into

IMF’s presents another approach for forecasting
Indian monsoon rainfall. It is clear that one can

attempt modeling and forecasting the IMF’s,

Fig. 3f. IMF’s of NEIND region

rainfall



which are simpler, instead of the original data.
The sum of the predicted values of IMF’s, leads
to a forecast for the rainfall. However, difficulties

arise in finding IMF’s at the end of a record. This
is because the envelop on both the sides at a point

are not defined without the subsequent data
point. Use of a mirror image of the past data

for the next value, as suggested by Huang et al
(1998) would not be acceptable in a forecasting

exercise. Thus, if the data Rj is given for j¼ 1,
2, . . . , n, IMF’s can be found only for
j¼ 2, . . . (n� 1). Hence, for forecasting the value

of Rnþ 1 one has to work without accurate values
of IMFin. This difficulty can be overcome by
recognizing that except for the first IMF, others

can be modeled through linear regression on their
own past values. In fact for purposes of forecast-

ing it is found easier to handle the data Rj as
consisting of a nonlinear part and a linear part.

The first IMF1j represents the nonlinear part,
whereas yj¼ (Rj� IMF1j), j¼ (2, 3, . . . , n� 1);

represents the linear part of the data. The station-
arity of this part has also been verified by the
standard run test on decadal variance values. For

Fig. 3g. IMF’s of NWIND re-

gion rainfall



yj associated with AIRF, with N¼ 13, there are

seven runs about the median value of the decadal
variance. For the remaining data, in the order

listed in Table 1, the runs are [6, 7, 8, 8, 5, 6, 8].

The null hypothesis that the variance remains
constant in time, implying stationarity, is

Fig. 3h. IMF’s of peninsular re-

gion rainfall

Table 2. Central period of the IMF’s in years and % variance contributed to IAV

Region IMF1 IMF2 IMF3 IMF4 IMF5

T IAV% T IAV% T IAV% T IAV% T IAV%

All India 2.67 66.2 5.45 14.3 12.00 11.2 30 2.2 60 4.0

Homogeneous 2.72 61.5 5.71 17.5 12.00 15.1 24 3.6 60 4.1

Core monsoon 2.79 62.7 6.00 14.9 10.90 9.9 24 5.5 60 8.1

WCIND 2.61 59.6 5.71 15.5 12.00 12.7 24 4.2 60 8.4

CNEIN 3.08 56.2 6.32 24.1 10.90 9.6 24 9.1 60 0.3

NEIND 3.08 51.3 6.00 20.9 10.90 15.1 30 6.6 40 5.3

NWIND 2.79 59.2 5.45 25.4 13.30 19.2 20 1.5 60 0.4

Peninsular 2.72 72.8 6.00 18.4 10.00 4.97 20 3.5 60 2.9



accepted since the tabulated runs at 5% signifi-
cance level are between 4 and 11. With this in
view, the representation for the linear part avoid-

ing yn, is chosen as

ynþ1 ¼ C1Rn þ C2yn�1 þ C3yn�2 þ C4yn�3

þ C5yn�4 þ C6: ð1Þ

It is found that in all the eight cases, this equation

provides an excellent fit for the linear part of

Fig. 4. Similarity between standardized IMF3 and sunspot

time series

Table 3. Correlation matrix of AIRF

Data IMF1 IMF2 IMF3 IMF4 IMF5

Data 1.0000 0.8019 0.4177 0.3502 0.1675 0.1910

IMF1 1.0000 0.0158 �0.0447 �0.0169 0.0099

IMF2 1.0000 0.0558 0.0368 �0.0675

IMF3 1.0000 0.0967 0.0492

IMF4 1.0000 �0.0728

IMF5 1.0000

Fig. 5. White noise test for AIRF. IMF, ex-

pected for white noise. 99% confidence bands

Fig. 6. Bimodal probability density function of IMF1

Table 4. Regression coefficients of Equation 1

Region C1 C2 C3 C4 C5 C6 �yð"Þ CC

All India 0.1053 1.1161 �1.8983 1.4354 �0.5281 64.5648 2.2458 0.9058

Homogeneous 0.1407 0.8528 �1.4464 1.2093 �0.5420 56.9314 3.5412 0.7802

Core Monsoon 0.1137 0.9231 �1.3782 1.1410 �0.4681 56.4207 3.9918 0.9003

WCIND 0.1199 1.2444 �2.0069 1.6592 �0.6767 61.2830 2.9735 0.9262

CNEIN 0.0801 1.3239 �2.1073 1.5395 �0.4399 60.8022 2.9904 0.9148

NEIND 0.0007 1.0650 �2.0051 1.6800 �0.6907 134.839 3.9708 0.8413

NWIND 0.1663 0.6081 �1.2352 1.1312 �0.6857 42.4480 3.4102 0.8351

Peninsular 0.0239 0.6536 �1.5749 1.3011 �0.6771 83.7672 2.7413 0.8965



the database. The regression coefficients are

found from the data series of 1871–1991, such
that IMF1 and yj are available for the period

1872 to 1990. The regression coefficients and
the resulting standard deviation of the error

�yð"Þ are presented in Table 4. In each case, the
correlation coefficient (CC) between the actual
data and fitted value as per the above equation

is also presented in the table. In all the cases,
the correlation is highly significant, indicating

the appropriateness of identifying yj as the linear
part of monsoon rainfall.

7. Artificial Neural Network (ANN)

model for IMF1

It has been pointed out that the first IMF, which

accounts for most of IAV of monsoon rainfall is
non–Gaussian and is perhaps the outcome of a

complex nonlinear process. It is not apparent
from the time series of IMF1 what type of

nonlinear model would be appropriate. In such
unstructured problems, it has been pointed out

by Eisner and Tsonis (1992) that ANN approach
can provide efficient working models. These

authors have showed that ANN works for mod-
eling and extending the chaotic trajectories of the
Lorenz equation. Hsieh and Tang (1998) have

highlighted the fact that ANN provides varia-
tional data assimilation models, which can be

viewed as extensions of linear statistical models.
Here, after several trials an ANN model with one

hidden layer as shown in Fig. 7, depending on
past five steps of data is chosen for IMF1. There

are totally 36 parameters to be found in this
model, which are found using the MATLAB
toolbox on ANN algorithms, with 1872–1990

as the training period. For verifying the use of

the model in forecasting, in any year n, the
IMF1 value is taken as the difference between

the observed Rn and yn of Eq. (1). With the help
of five antecedent IMF1 values, the ANN model

is capable of predicting IMF1 for the year nþ 1.
In Table 5, the standard deviation (�a) of the

error in hind casting, conducted on the training
period data, is shown along with the correlation
coefficient (CC) between the actual IMF1 and the

ANN results. It is observed that the ANN meth-
odology is quite versatile in capturing the em-

bedded nonlinear structure as evidenced by the
high correlation between the actual data and

simulated values. An advantage of this approach
is that the error in the model can also be char-

acterized statistically.

8. Forecasting

The successful modeling of IMF1 and yj can be

exploited to extend the data by one year, to make
a forecast of the next year rainfall value as a

random variable with a standard deviation much
less than the climatic deviation. This will have to

be done in two steps, following the procedure
described above, first for ynþ1 and then for

IMF1,nþ1. The sum of the two values produces
a forecast for Rnþ1, with a definable sample prob-
ability distribution. Here, the robustness of the

forecast strategy is investigated by considering
all the eight data sets for the period 1991–

2002, which was deliberately kept out of the
modeling exercise. The quality of modeling Rj

in the training period (1872–1990) and the effi-
ciency of one-step-ahead forecasting in the test-

ing period (1991–2002) are presented in Table 6.
This table indicates that uniformly, in all casesFig. 7. ANN architecture for modeling IMF1

Table 5. Statistics of ANN model for IMF. Training period

(1872–1990)

Region �að"Þ CC

All India 2.8545 0.9255

Homogeneous 4.8702 0.9237

Core monsoon 4.1812 0.9260

WCIND 3.2231 0.9010

CNEIN 3.7801 0.9112

NEIND 4.8502 0.8847

NWIND 5.0850 0.9413

Peninsular 4.0511 0.9012



Table 6. Performance of the modeling and forecasting strategy

Region Modeling period (1872–1990) Forecasting period (1991–2002)

�mð"Þ CCm PPm �fð"Þ CCf PPf

All India 3.29 0.89 0.83 3.04 0.91 0.82

Homogeneous 6.04 0.87 0.74 4.44 0.89 0.67

Core Monsoon 5.54 0.86 0.79 6.58 0.85 0.64

WCIND 4.09 0.95 0.87 5.83 0.86 0.65

CNEIN 4.78 0.90 0.81 4.74 0.90 0.74

NEIND 5.88 0.88 0.76 12.07 0.78 0.56

NWIND 5.61 0.91 0.82 4.48 0.92 0.87

Peninsular 4.05 0.91 0.82 4.83 0.89 0.80

Fig. 8. Comparison between

actual data and predictions;

— Actual data, Modeling

period, Testing period



the present strategy for forecasting SWM rainfall

one year ahead, works well within certain limits.
For three regions the modeling and forecasting

results are shown graphically also in Fig. 8.
The sample forecast is an expected value and

hence need not precisely match with the actual
observation. In Table 7a–c, detailed numerical
results on the independent forecasts are pre-

sented. The low rainfall value of 2002, which
lead to drought conditions in large parts of the

country, has been very well foreshadowed by the
present model. In Table 7a, the forecast for 2004

has been shown only for AIRF, since observed

data for other regions for year 2003 are not yet

available.

9. Discussion

A novel approach for investigating interannual
variability of monsoon rainfall of India has been

presented here. The empirical decomposition of
the time series data of eight different spatial

regimes, in terms of IMF’s brings out some inter-
esting features of SWM rainfall. The first is the
possibility of interpreting the rainfall in a given

year as the sum of six independent modes.

Table 7a. Independent test forecasting (NA: Not available)

Year All India Homogeneous Core monsoon

Actual

cms

Forecast

cms

Actual

cms

Forecast

cms

Actual

cms

Forecast

cms

1991 78.47 80.32 64.50 73.69 74.60 77.24

1992 78.47 81.53 73.36 76.43 81.82 100.87

1993 89.66 92.33 79.95 76.23 90.15 96.53

1994 93.82 91.43 91.74 87.34 103.82 103.73

1995 79.03 77.34 64.74 70.78 71.60 68.89

1996 85.24 87.23 73.61 78.74 83.49 76.83

1997 87.06 83.43 71.94 74.88 81.64 81.18

1998 85.12 80.34 74.67 78.96 86.13 81.46

1999 82.05 86.54 67.90 64.67 78.05 76.03

2000 77.33 74.56 63.30 69.93 67.82 70.68

2001 80.46 78.34 67.80 71.13 69.90 70.78

2002 66.88 67.47 56.23 62.56 66.19 67.44

2003 87.06 85.65 NA 67.83 NA 78.19

2004 NA 80.34 NA NA

Table 7b. Test forecasting with independent data

Year WCIND CNEIN NEIND

Actual

cms

Forecast

cms

Actual

cms

Forecast

cms

Actual

cms

Forecast

cms

1991 83.56 83.37 90.67 84.78 138.40 131.59

1992 83.39 98.68 83.84 82.73 113.72 131.03

1993 100.04 108.27 98.60 104.32 174.01 165.09

1994 106.44 105.94 111.35 115.34 121.74 143.99

1995 73.94 73.92 93.32 96.36 165.36 149.67

1996 83.30 85.04 96.83 103.12 130.23 143.69

1997 81.85 74.01 109.80 101.56 154.43 147.26

1998 90.17 89.11 96.43 94.38 132.96 139.93

1999 90.70 87.65 110.91 105.45 149.42 141.58

2000 81.56 81.19 96.96 98.78 133.22 144.71

2001 83.35 81.59 107.30 117.58 131.27 137.65

2002 74.08 77.25 NA 90.78 151.32 150.75

2003 NA 84.08 NA – NA 140.74



Secondly, from the strong similarity of the first

four IMF’s in different regions, it is conjectured
that these are associated with physical factors

such as QBO, ENSO, sunspot and tidal forcing.
Further, it emerges that the first IMF exhibits
bimodality, which is characteristic of a nonlinear

dynamical system. The contribution of this mode
is of the order of 60% to the total IAV of the

rainfall. The part of the data after removing
IMF1 is a stationary process represented in terms

of a linear model. Since it is not obvious what
type of nonlinear model has to be used for

IMF1, after several trials, an ANN model with five
input nodes and a single hidden layer with five
nodes has been found to be suitable. To verify

the robustness of the model proposed, three sta-
tistical parameters have been chosen. The first two

are the r.m.s error �mð"Þ and the correlation coef-
ficient CCm between the given data and the values

simulated out of the model. A third statistic called
performance parameter (Sahai et al, 2003)

PPm ¼ 1� �2
m=�

2
d, where, �2

m is the mean
square error and �2

d is the actual data variance,

has also been found. In a perfect model, �mð"Þ
will be zero and both CCm and PPm will tend
towards unity. Table 6 demonstrates that the effi-

ciency of the present model is excellent in all the
cases. For verifying the ability of the model to

independently forecast SWM rainfall one year
ahead, 1991–2002 has been used as the testing

period. The model parameters are held constant
all through the twelve years, which represents

conditions more stringent than necessary. This is

so since in a real forecasting exercise, the model
parameters can be updated, every year before giv-

ing a forecast. It is observed that even under this
less than ideal condition, the forecasts produced

by the model are very good. For a sample size of
N¼ 12, the correlation coefficient (CCf) in the test
period has to be at least 0.6 to be taken as signifi-

cant. It is found from Table 6 that the forecasting
skill is well beyond this threshold level, in all the

eight cases. In Fig. 9, all the twelve-year predic-
tions for the eight data series are combined to

demonstrate that the proposed strategy for fore-
casting is highly efficient. A relevant question in

this connection is the usefulness of the above
statistical parameters in understanding the error
of forecasting in a given year. With this in view,

for all the eight regions, the actual and predicted
values are compared in Table 7a–c, year by year.

An empirical forecast for Rn is by its very nature
statistical. Hence any forecast in Table 7 is to be

treated as a random variable with �mð"Þ as its
standard deviation. The probability distribution

function of this variable can also be found in
terms of the sample distribution of the model error

". Thus, when a forecast is given, it is only appro-
priate to interpret it in terms of a cumulative dis-
tribution function as shown in Fig. 10. This figure

presents the forecast of AIRF for the monsoon
season of the year 2004. In the same figure, the

climatic distribution of the data is also shown to
highlight the reduction in variance obtained by

the present forecast methodology. The drought of
2002 has been discussed previously by Gadgil

et al (2002). Their conclusion that the drought
was part of the ambient variability of the monsoon
is corroborated by the present investigation, since

the deficit has been foreshadowed in terms of only
the past data. It has been pointed out that the last

IMF is nearly the climatic average and the sum of
the six IMF’s gives back the actual rainfall. This

property points to the fact that whenever the total
rainfall is significantly below the climatic normal,

the sum of the other IMF’s would be negative.
Among the five variable IMF’s, it has been shown

that the first three contribute nearly 85% to the
variability. Hence, if these are simultaneously
negative, the chances of a drought are high. For

flood like conditions, the first three IMF’s are
likely to be strongly positive. This effect can be

observed in Table 8, wherein for droughts and

Table 7c. Test forecasting with independent data

Year NWIND Peninsular

Actual

cms

Forecast

cms

Actual

cms

Forecast

cms

1991 35.58 39.92 76.75 69.22

1992 58.17 58.64 68.74 72.41

1993 49.50 53.58 62.03 54.43

1994 69.37 63.33 61.85 64.36

1995 50.80 55.24 59.93 62.14

1996 58.89 53.46 85.07 80.94

1997 56.93 58.57 71.33 75.68

1998 51.14 49.12 79.15 77.34

1999 33.30 36.23 57.93 65.45

2000 35.61 40.45 73.59 72.69

2001 44.21 38.36 66.08 59.96

2002 29.17 23.18 47.16 45.95

2003 NA 42.45 NA 62.99



floods during 1901–2002, the actual All India
rainfall and IMF1, IMF2 and IMF3 are shown.

Here, droughts and floods are, respectively,

defined in terms of rainfall being less than
(mR� �R) or greater than (mRþ �R). The values

of the IMF’s shown in boldface refer to them

Fig. 10. Statistical forecast of AIRF for 2004

monsoon season. Expected value: mf¼
80.34 cms., Standard deviation: �f¼ 3.3 cms.

Climatic distribution (– – –); Forecast distri-

bution (——)

Fig. 9. Comparison between actual rainfall and

one year ahead predictions during testing period

(1991–2002). Correlation coefficient¼ 0.97



being outside their respective standard deviation
range. Out of the nineteen droughts, of Table 8a,

eighteen exhibit IMF1 to be negative. Among
these eighteen cases, in twelve years, IMF1 was

less than its negative � value. In 1986, the drought
was due to IMF2 and IMF3 being strongly nega-

tive. Similarly out of the thirteen flood years, nine
were due to IMF1 exceeding its positive � level.
These observations hint at the importance of

understanding the physics of the first few IMF’s
in a better fashion.

10. Conclusions

Interannual variability of Indian monsoon rain-

fall has been investigated in this paper from a
novel perspective. It is demonstrated that the sea-

sonal SWM rainfall time series sampled annually
can be decomposed into six statistically uncorre-
lated modes, the sum of which gives back the

original data. The sixth mode is easily associated
with the climatic variation over the whole period

of the data base. The remaining five empirical
modes are narrowband random processes, with

well defined central periods, connected with
other meteorological parameters. The first IMF

which accounts for the highest variability, is also
strongly non–Gaussian. It is shown that this can
be modeled successfully using ANN techniques.

The remaining part of the rainfall is amenable for
a linear autoregressive representation. With the

help of the above two representations, a metho-
dology has been developed to forecast rainfall,

incorporating only the interannual variability.
This clearly does not account for all the variabil-

ity present in the monsoon rainfall. However
the approach is general enough, in that it may

be possible to include interseasonal and intrasea-
sonal variabilities also along the lines presented
here. The forecast All India SWM rainfall

for year 2004 is an expected value of
mf¼ 80.34 cms, which is 94.25% of the longterm

normal. The standard deviation of the forecast
distribution is �f¼ �m¼ 3.3 cms which is 39%

of the climatic variation.
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