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A method is presented for obtaining, approximately, the response covariance and 
probability distribution of a non-linear oscillator under a Gaussian excitation. The method 
has similarities with the hierarchy closure and the equivalent Iinearization approaches, 
but is different. A Gaussianization technique is used to arrive at the output autocorrelation 
and the input-output cross-correlation. This along with an energy equivalence criterion 
is used to estimate the response distribution function. The method is applicable in both the 
transient and steady, state response analysis under either stationary or non-stationary 
excitations. Good comparison has been observed between the predicted and the exact 
steady state probability distribution of a Duffing oscillator under a white noise input. 

1. INTRODUCTION 

The methods available at present for the analysis of non-linear systems under stochastic 

excitation are the Fokker-Planck equation approach [1, 2], the perturbation method [3, 4], 

the equivalent linearization technique [5, 6] and the hierarchy closure approximation [7, 8]. 

While the first method is useful only with white noise inputs, the others are more general. 

However, whereas the Fokker-Planck equation leads to the exact steady state distribution, 

the other methods stop generally with the response autocorrelations. Although, theoretically 

the perturbation method leads to non-Gaussian correction terms, finding the distribution of 

even the first ofthese is almost impossible. A typical result one would like to know is the joint 

probability density function of the response and its derivative, which is necessary in level 

crossing, peak and fatigue studies. At present, this result is known only for the steady state 

of  systems under white noise inputs [1,2]. For results in the transient state, the recent work of 

Atkinson [9] on the eigenfunction expansion method of  solving the Fokker-Planck equation 

may be useful. For non-white inputs no general results on the level crossings or the peaks are 

available even for small non-linearities except a bound obtained by the author [10] using the 

worst input approach. 

In the present study a linearly damped oscillator with cubic non-linearity is considered for 

detailed investigation. The response mean and autocorrelation are considered first. Deter- 

ministic differential equations are derived for these moments in terms of the known input 

moments. Even though the method is applicable to a wider class of systems the equation 

analyzed here represents the difficulties involved in non-linear random vibrations and also 

illustrates specifically the present approach. In the spirit of  perturbation technique the method 

starts with that form of  the probability distribution, of  the input, response and response 

derivative, that one would obtainifthe system were linear.Thus, for a non-linear system under 

a Gaussian excitation the natural starting point would be a Gaussian distribution. To arrive 

at the non-Gaussian response distribution, an analogous linear system is defined which has 

the same energy, at any time, as the original system. The energy equivalence relation leads to 

an estimate of the non-Gaussian displacement-velocity joint density function. 
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2. THE NON-LINEAR SYSTEM 

The system considered for the analysis is described by the non-linear differential equation 

5/+ 2qto,t + to2x + ctx 3 = f ( t ) ,  (1) 

where q and co are the fraction of critical damping and natural frequency, respectively, when 

the non-linear term is absent, f ( t )  is a zero mean Gaussian process completely defined in 

terms &its autocorrelation function. Taking ensemble averages on both the sides of equation 

(1) yields 
d2<x> d<x) 

dt------- i -  + 2qco ~ + to'<x> + ct <x3> = <f(t)>. (2) 

This illustrates the major difficulty in dealing with non-linear equations, namely the involve- 

ment of higher order moments in lower order moment equations. To overcome this another 

equation for <x3> may be obtained, but this would lead to a hierarchy where still higher order 

moments are involved. It is precisely at this stage one invokes a closure assumption such as 

the cumulant discard approximation [7, 8]. Here, the troublesome higher order moments are 

handled directly by'starting with the form of the joint density functions, po(x,,f2; t,, t2) and 

po(X,, x2; h,  t2), which one would get if the non-linearity was not present. Thus, for equation 

(1), sincef(t) is a Gaussian process, 

[ 1 . exp 1 I x  2 2r~,.rx,f2 + , (3) 
p o ( x , , t 2 , q , t 2 ) =  2rra~,tr:2.V/i--r~.t 2(1 - r ~ : ) ( a z t  a~la:z  a}2J] 

where 

<x2(tt)> = a2t, <f2(t2)> = a.~2, 

<x(t,) f (t ,) >/a~1 tr :2 = r~: (h, t2). (4) 

Also, the response itself is Gaussian with a two-dimensional density function 

+ , (5)  
po(xl,x2,  q ,  t2) = 2ntr:, l tr~2V'l _ r~=, 2(1 - r2x) (a~, a~,, a=,2 trx2JJ 

where 
<x'(tz)> 2 = a~2, <x(tl)x(t~)>/a~, a~,2 = r ~ t l ,  t2). (6) 

Hence it follows that 

<x3(/)> = 0. (7) 

If  the system starts from rest, that is, 

x(0) = ~(0) = 0, (8) 

then equation (2) would give 

<x(t)> = 0. (9) 

2.1. TIlE CORRELATION FUNCTIONS 

To obtain the autocorrelation function Rxx(t, t,) = <x(t)x(h)>, equation (I) is multiplied 

throughout by x( t , )  and averaged. This yields 

/~=(t, q)  + 2qo~l~,~(t, q )  + to 2 Rx~(t, q )  + ct<x3(t)x(q)> = <x(q) f ( t )> = R~I(tl,  t), (10) 

where the dots denote differentiation with respect to t and t~ appears only as a parameter. But 

the right-hand side of this equation itself is an unknown. This difficulty is overcome by writing 

another equation for the input-output cross-correlation. By considering equation (1) with t, 
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as the independent variable, multiplying by f ( t )  throughout and averaging, a differential 

equation for Rxs(tt, t) can be obtained, as 

R"s(t t, t) + 2qmR],s(tx, t) + to 2 Rxf(tt ,  t) + rt ( xa ( t l ) f ( t ) )  = ( f ( t ~ ) f ( t ) )  = RII( t t ,  t), 

(tl) 

where the primes indicate differentiation with respect to q. This is an equation with tx as the 

independent variable and t as a parameter. Equation (I0) has been derived previously by 

Crandall [I 1] in a similar context. But the approach has not been explored in detail. 

Now, from the Gaussian initial approximations of equations (3) and (5) it follows that 

(xa( tx) f ( t ) )  = 3tr~(q) Rxs(tt, t), 

(xa(t) x(t l))  = 3tr2(t) R:,~(t, tl). (1 2) 

These reduce equations (10) and (1 I) to the forms 

R;s(t~, t) + 2qmR'I(q ,  t) + [602 + 3~ttrx2(t~)] R~s(t 1, t) = Rs l  (q,  t), (13) 

Ik,.~(t, tt) + 2qml~=(t, tl) + [to 2 + 3~ttr~(t)] R,=(t, tl) = Rxs(ta, t). (14) 

These look like coupled quasi-linear equations with time varying coefficients. The interesting 

feature is that the variance, 

a~(t) = R,~,(t, t), (15) 

is locked-hl as a time varying coefficient. The initial conditions are 

R~s(0 , t) = RxI(0, t) = O, (16) 

R~,:,(0, q)  = k:,~,(0, t,) = 0. (17) 

A rigorous analysis of  the above equations will not be attempted here. Although a closed 

form solution seems not possible in general, a numerical solution on a computer is quite 

feasible. A suitable simple function, aa~(t), is assumed for the output variance to start with. 

Then equation (13) is solved at various values of  t with tt as the independent variable. This 

determines the right-hand side of equation (14) which can again be solved sinfilarly to get the 

first approximation, ~R~(t, q), to the response autocorrelation function. This would lead to 

the second approximation, 2a~(t), for the output variance. This iterative process may be 

continued until a desired accuracy is attained. A plausible starting approximation would be 

the variance of the resulting linear system when cc = 0 in equation (I). However, herein, such a 

numerical work is not pursued; instead approximate solutions of equations (13) and (14) 

will be obtained for some specific random inputs. 

3. STATIONARY EXCITATION 

When the input is a stationary random process, in the presence of damping one would 

expect the existence of  a steady state for large t and tt when the response also tends to a 

stationary process. This would lead to a constant variance, a 2~, for the response. With this in 

view the first approximation could be taken as 

,a~(t)  = a?~, (18) 

where try, is the known linear steady state variance. Substituting this in equations (13) and (14) 

one gets 
t l; 

t R ~ ( q ,  t) = ~ Rss(Tt - t) e -~m~-'') sin 2a(q - ~l)drf,  (19) 

o 
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! t i  

if; i R ~ ( t ,  t l )  = ~.~ R.r1(zl  - Q e  -ea"'-'O sin 2a(tl - zl) e -eau-~ sin 2,(t - z)d~l d~, (20) 

O, 0 

2 2 = (0  2 + 3~o'2,, (21) 

= tl(0P., (22) 

2d = 2(1 - ~2 )1 /2 .  (23) 

Since the input is a stationary process equation (20) can be expressed in terms of the input 

spectral density as 

i R = ( t ,  t l )  = f ~s .d t2 ) l t t (~ ) l  2 [e m"- ' '~  - eTr 2a t + r sin 2d) cos I2tl + ~1 sin2e t sin f t l}  
- c o  

- e-r 2e t~ + ~1 sin 2e t,) cos f t  + r sin2et~ sin f t }  

+ e -r 2e t cos 2a tt + [(f2 + ~2 2)/22] sin 2e t sin 2e tt 

+ ~l sin )-d (t + t~)}] dO 424) 

where 

~ l  = ~ /4  I - -  ~2)112.  ( 2 5 )  

From this an improved estimate of the response variance, which incidentally is non-stationary, 

is given as 

2a~(t) = f fill(f2) I H(f)12 [1 + e2~;"(l + 2~1 sin).~ t cos 2e t) - 2 e-~at{(cos )-e t 

+ ~, sin 2e t)cos f t  + ~1 sin 2e t sin fit} + {[0 2 - 22(I - 2~2)]/22} sin2 22 t] dr2, 

(26) 

where qbj, I(O ), the input power spectral density function, is 

l; 
qSsJ'(f)  = "2-~ R I f i O  ) e -~t2~ dO (27) 

- c o  

and 

i n ( f ) l  = = 1/[(;2 _ f2 )2  + (2r  (28) 

If  the iterations were to be stopped at this stage, the approximate steady state variance would 

be 

~ =. f r  In(f)l  ~ dO. 429) 
- c o  

For example, if the input is a white noise with an autocorrelation 

R~1(t ,  t l )  = 16(t --  h ) ,  

then 

with 

tr] - -  1/4~2 a = ~1(1 + 3etr~), 

(30) 

(31) 

e = ~/(02 432) 

which compares with results obtained from other procedures [4]. It is obvious that further 

iterations can be carried out on a computer only. However, if one is interested only in the 

steady state variance something better could be done as follows. Suppose the response 
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reaches a stationary steady state; then the output variance gradually tends to a constant 

value. Thus a~(t) may be taken as a slowly varying function of t ime and equations (l 3) and (I 4) 

may be treated as constant coefficient equations with a~(t) and cr](4) replaced by tr 2. When 

this argument is accepted as plausible it follows that 
0O 

f 4,.(0)IH.(~)I ~ dO, (33) 
--o0 

where 

In,(x~) l  2 = l / [0 .~  - Q2)2 + (2~e) .  e 12)21, (34)  

2~ = to 2 + 3~cr1, (35) 

~e)-e  = r/o). ( 3 6 )  

This equation is more informative than equation (29) since it leads to a polynomial or a 

transcendental equation with a~ as the unknown. The roots would indicate the existence or 

otherwise of many values for a~ and a possible jump phenomenon. To illustrate this point 

three different stationary inputs will be considered. 

3.1. WHITE NOISE INPUT 

In this extreme case, in which the input bandwidth is infinite, equation (33) can be neatly 

simplified as 

a~ = I/4r ).~ = a ~ [ ( l  + 3ea~). (37) 

The only positive solution of  this equation is 

1 
a] = ~ [(1 + 12eah) l / z -  11. (38) 

This is somewhat different from and is hopefully better than equation (31). 

3.2. ZERO BANDWIDTH INPUT 

At the other extreme is an input which contains only a single frequency. One such excita- 

tion is 
f ( t )  = a sin o)c t + b cos o)~ t, (39) 

where a and b are independent Gaussian random variables with mean zero and variance a~,. 

The input autocorrelation is 

Rs1( t ,  4 )  = a~. cos o),(t -- 4). (40) 

The corresponding power spectral density is 

qS~,ICl2 ) = a][8(o)c - f2) + 8(o)~ + f2)]. (41) 

From equation (33) it follows that 

al  = a]l[().~ - o)~)~ + (2~e)., o)~)~l. (42)  

This easily may be recognized as a cubic equation in a~. The situation is very similar to the 

behaviour of the system under a deterministic sinusoidal excitation exhibiting the well 

known jump characteristics [12]. To study equation (42) it is expedient to treat it as a quadratic 

in (o)Jco) rather than to analyze it as a cubic in el.  Solving for (o)Jco), one gets 

(o)do)) = [(I + 3~a] - 2r/2) + {a2r/(o)" a~) - 4r/2(1 + 3ea~ - r/2)}a/z],/z. (43) 
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Figure 1. Jump phenomenon of the mean square response for a single frequency random input. 

In Figure 1, this has been plotted for e = 1, q = 0.02, and a.~[o) + = 1, (o)ffo)) being considered 

as a function of  a~. This curve illustrates the jump phenomenon of the mean square response 

spectacularly. 

3.3. NARROW BAND INPUT 

The existence of  the mean square jump characteristics in non-linear systems has been 

explored previously by Lyon et al. [13] to a limited extent. They observed that jumps are 

possible with narrow band excitations. The results of the previous case also indicate that this 

may be possible for very narrow bandwidth inputs. Also narrow band inputs are more 

realistic than the two types discussed previously. With these points in view a band limited 

white noise will be considered in some detail. 

The input spectral density is 

~'ss(~) = so, ,o, < I~1 < o~,, 

= 0, otherwise. (44) 

Hence [14] 
Ol 

~I = 2So f IH(Q)I ~ dO -- (~So/2~+ ~.~) [I(oJ2D. e, ~,) -- 1(o91/).~, ~.)], (45) 

where 

, ++,+++,] 
I01]).~,r = ~ tan- '  [1 ~ 2 1  + [r - log + O t / 2 , ) z - - 2 ( l  ~ - - ~ F i i ~  " 

(46) 
By taking 

and 
co, = (o)c --jAm), ~o2 = (o9c +jAm). (47) 

Aco = r/co = ~e2e ,  ( 4 8 )  
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equation (45) can be reduced to the form 

r _l/ 4jr + 62 _ :  e )  / . 
8j--~-~4 z2 [tan ~.(z2j--~12-- ~ ~-- 2~-i(-~-i ~ j2 r/2) j + (zZ_ ,12)1/z log 

: + (6 +j,D 2 + 2(z 2 - n ~ ) " 2 ( 6  + j ~ )  z ~ + (6  _ j ~ ) 2  _ 2 ( z  2 _ nz)tn (6 _j~)]]  = 
7-~ + ~  - 2 ~  - ~ + - - ~ j ' ~ )  ~ + ~ ~ ~ - j ~ / ) / J  1, (49) 

where 

a~ = 2So(OJ 2 - wl) , 6 = wdo~, z = (1 + 3~a~). (50) 

LO 

I 0  lj 

O01 

0001"  I t I I I 
o I 2 5 4 5 

wr 

Figure 2. Jump phenomenon of the mean square response for a narrow band input. 

This equation has to be solved for various values ofa~ with (codco) treated as the unknown, to 

construct the frequency response curves. In Figure 2, such a result is presented for e = 1, 

a~/o94 = 1 a n d j  = 1. It is observed that for any of  the values o f  (69c/~o) there could be at the 

most two values ofa~, unlike the situation in the previous case. Further questions of stability and 

the effect of the bandwidth are not taken up here. A conjecture based on the known results of  

the deterministic theory would be that the right branch of Figure 2 is unstable. It may be noted 

here that the jump phenomenon discussed refers only to the mean square values in the steady 

state. Associated with the mean square jumps there also would be observable jumps in the 

response samples. The experiments of  Lyon et aL [13] qualitatively verify this observation. 

Detailed investigations are needed to make more conclusive statements. 

4. PROBABILITY DISTRIBUTION OF THE RESPONSE 

The distribution of the response.of the non-linear system under consideration is going to be 

obviously non-Gaussian. At present no exact solutions are known for this except when the 

input is a white noise, that too only in the steady state. In what follows, an attempt has been 

made to arrive at the joint density function o f x  and .i', for any Gaussian input, in an heuristic 

manner. 

The previous analysis for the response autocorrelation hinged essentially on the assumption 
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that the response be approximately Gaussian, but with unknown parameters which are to be 

found from equations (13) and (14). Although the non-linearity inherent in the original 

system is reflected in these equations, nonetheless the autocorrelation one gets refers strictly 

to a hypothetical Gaussian response process, )7(0, and hence to a quasi-linear system with a 

time varying coefficient [092 + 3:wl(t)]. Incidentally, this observation indicates that there is 

some resemblance between the present method and the equivalent linearization technique. 

However, the error minimization essential to the latter has not been invoked at all here. Once 

the autocorrelation, R~(t ,  t~y, of the process, .~(t), is known the moments of the derivative 

process, ,~, can be found. This would lead directly to the joint density function, p(.~, ~; t), since 

this quantity is Gaussian. The hypothetical system leading to $'(t) can be described by the 

equation 

~. + 2tlo)s + [m 2 + 3:~a~z].~ = f ( t ) .  (51) 

If the original system had had non-linear damping, then the above equation would have had 

time varying coefficients with ,~ also. Since it is this equation that has been solved and not 

equation (I), it would be natural to ask in what sense (x,.~) and (.,7,~) compare. Instead of 

posing such a question on the response variable, herein, the two systems--the real non-linear 

and the hypothetical linear--may be brought nearer, in a different sense. It is clear that the 

nearness of the two systems hints at an equivalence criterion. Since the responses are obviously 

different one would look for an equivalence of the functions of the response variables rather 

than expect x and 2 to compare. One such criterion, which is reasonable, is the equivalence of 

the energies in the two systems at any time. The energy in the given non-linear system is 

E., = m .r ~ dx  + c i Yc dx + ; (kx  + ovnx3) dx  
o 0 

~2 r' k x  2 x 4 
= m --2 + c -J 5; 2 dt + - - 7  + ~ n  --.4 (52) 

0 

Similarly the energy in the hypothetical system is 

Eh, = m -~- + c f~2  dt + k(l + 3ea~) - ~ .  (53) 
0 

Here, m, c and k refer to the mass, dash pot constant and the coefficient of the linear part ofthe 

spring, respectively. Inspection of equations (52) and (53) suggests the simple memory-less 

transformation 

x 2 + 2 x+ = (1 + 3eO'~).~ 2, (54) 

= ~, (55) 

to establish the equivalence of the two energies. Now, since p(.~,~;t) is known, p(x, Yc;t) 

easily can be determined. In the present problem 

' [ 
p(~ ,} ;  t) = 2hal a2(l - r2) 1/2 exp 

where, 

a~ = (.~2(t)), a~ ---- <:~2(t)>, 

From equation (54), 

2(1 - r 2 )  o" 1 o '2  

r(t)  = <.~(t) ~(t)>/u I u2. 

.~ = +(x 2 + ~r*/2)u2/(l + 3ea~) uz 

(56) 

(57) 

(58) 
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id,~/dxl = (l + exa)/[(I + 3ea~)]'12 (l + ex212). (59) 

p(x, t) = (1 + ex2)/[2na~(l + ex212) (1 + 3eaf)] '/z exp [ - ( x  z + ax~12)/(2a~,)], (60) 

p(~?, t ) ' =  ( l ]2na2z) 1/2 e-'~2:2"~, (61) 

p(x, Yc;t)= Id~7/dxl [ { l [ (x2 + ex*/2) 2rYc(x" + ex4/2)"z Yc--~ ]}] 
2no, o2(1 - -  r2) uz exp 2(1 -- r 2) o12(1 + 3ea 2) al  0"2(1 + 3~a~)  t/2 + " 

(62) 

Since no assumpt ion  abou t  the input, other than normal i ty ,  has been made in arr iving at this 

result it is expected to be valid for  both  s tat ionary and non-s ta t ionary  excitations in either the 

t ransient  or  steady state regimes of  the response. Tha t  this op t imism is not unfounded may  be 

seen f rom the case of  a white noise input. The  predicted joint  density function in the steady 

state is 

p(x, ~-, oo)= [d'~/dx[ exp [ (x2+ex~[2) 
2ha l  a--"--~ - 231(1 + 3ea 2) ~ �9 (63) 

F r o m  equations (37) and  (55) it follows that  in the steady state 

a](l  + 3ea~) = a~, (64) 

a 2 = to z a2,. (65) 

With  these simplifications, equat ion (63) reduces to 

_ [ i  ] p(x,.~, 0o) = [d.~/dxl exp - ~ (~2[co2 + x 2 + ex4[2) , (66) 
2ntr132 2ah  

I 0  

0 9  

0 8  

0"/I 

0 6  

O.,c~ ~" T t I L I I I I f ~ I f I I ~ ? r I ? ] I I I I 

O 0 5  l0  15 2 0  2" 

l 

Figure 3. Steady state probability distribution function of x under white noise input. 
. . . . .  , exact. 

, -Estimate; 
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which is very near to the exact solution as obtained from the Fokker-PIanck equation [I]. 

The exact density function o f x  in the steady state is given by 

p(x) = Ce-(~2+'~/2)12~ (67) 

where C is a normalization constant. In Figure 3 the exact and the approximate steady state 

distribution fimctions, 
% 

F~z) = f p(x) dx, (68) 
- - e o  

are shown for three values ofe. Since the distribution is symmetric about the zero mean value 

only the right-half has been presented. It is observed that the comparison is good in all the 

cases. The maximum percentage errors for s = 0.1 and s = 1 are 1.54 and 5.78, respectively. 

Even for a non-linearity coefficient as large as s = 10 the maximum error is only 11.42~o. 

5. SUMMARY AND CONCLUSION 

A method which ieads to an approximate probabilistic description of non-linear elastic 

systems under Gaussian excitations has been presented. The method draws inspiration from 

the moment closure and the equivalent linearization techniques, but is substantially different 

from both in the details. The approach may be summarized briefly as follows. 

The response probability distribution is assumed to be Gaussian with unknown parameters 

to start with. The given differential equation is suitably averaged with this assumption to 

arrive at equations for the autocorrelation function. Invariably a set of coupled equations is 

obtained where the response variance is locked in as a time varying coefficient. The auto- 

correlation has to be obtained by an iteration procedure on a digital computer. From this 

the autocorrelations of the derivatives, if they exist, also can be obtained. Once the correlation 

matrix is known the joint density function of the response and its derivatives at the same time 

or at different times can be written since it also is going to be Gaussian. However, these 

densities refer only to a hypothetical linear system and at best are only approximations to the 

statistics of the given non-linear system. At this stage an equivalence in terms of  the total 

energy of the hypothetical and the real system is assumed. This gives a memory-less non- 

linear transformation for the response variables which eventually leads to a non-Gaussian 

density function which is better than the original Gaussian approximation. 

The damped Duffing equation with cubic non-linearity in the spring has been considered 

in some detail. The jump phenomenon associated with the stead~; state variance for 

stationary inputs has been investigated and some numerical results also are presented. A very 

general expression has been obtained for the joint density of  the displacement and velocity. 

In deriving this no assumptions have been made as to the stationarity or otherwise of  either 

the input or the output. Hence the expression is expected to be widely applicable. Other types 

of non-linearities in the spring and the case of  non-linear damping can be handled on similar 

lines. But, when the damping is non-linear, although the response correlation may be found 

and the equivalence relations established, the actual determination of the non-Gaussian joint 

distribution may be very difficult. However, the approximate one-dimensional density 

function of the response can be found without much difficulty. 

The estimated distribution is an asymptotic result definitely valid for small non-linearities. 

This follows since equation (62) leads to the exact linear density function as s ~ 0. This 

behaviour also is observed in Figure 3, where for small ~ the estimate compares excellently 

with the exact results. This figure also indicates that the present estimate errs on the conserva- 

tive side in estimating the probability of Ixl exceeding a safe operating level. Thus, it is 
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believed that the estimate would be of great help in further studies on level crossing and peak 

distribution. 
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