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A method is presented for obtaining, approximately, the response covariance and
probability distribution of a non-lincar oscillator under a Gaussian excitation. The method
has similarities with the hierarchy closure and the equivalent linearization approaches,
but is different. A Gaussianization technique is used to arrive at the output autocorrelation
and the input-output cross-correlation. This along with an energy equivalence criterion
is used to estimate the response distribution function. The method is applicable in both the
transient and steady. state response analysis under either stationary or non-stationary
excitations. Good comparison has been observed between the predicted and the exact
stecady state probability distribution of a Duffing oscillator under a white noise input,

I. INTRODUCTION

The methods available at present for the analysis of non-linear systems under stochastic
excitation are the Fokker-Planck equation approach [1, 2], the perturbation method [3, 4],
the equivalent linearization technique [5, 6] and the hierarchy closure approximation [7, 8).
While the first method is useful only with white noise inputs, the others are more general.
However, whereas the Fokker-Planck equation leads to the exact steady state distribution,
the other methods stop generally with the response autocorrelations. Although, theoretically
the perturbation method leads to non-Gaussian correction terms, finding the distribution of
even the first of these is almost impossible. A typical result one would like to know is the joint
probability density function of the response and its derivative, which is necessary in level
crossing, peak and fatigue studies. At present, this result is known only for the steady state
of systems under white noise inputs [1, 2]. For results in the transient state, the recent work of
Atkinson [9] on the eigenfunction expansion method of solving the Fokker-Planck equation
may be useful. For non-white inputs no general results on the level crossings or the peaks are
available even for small non-linearities except a bound obtained by the author [10} using the
worst input approach.

In the present study a linearly damped oscillator with cubic non-linearity is considered for
detailed investigation. The response mean and autocorrelation are considered first. Deter-
ministic differential equations are derived for these moments in terms of the known input
moments. Even though the method is applicable to-a wider class of systems the equation
analyzed here represents the difficulties involved in non-lincar random vibrations and also
illustrates specifically the present approach. In the spirit of perturbation technique the method
starts with that form of the probability distribution, of the input, response and response
derivative, that one would obtainif the system were linear. Thus, for a non-linear system under
a Gaussian excitation the natural starting point would be a Gaussian distribution. To arrive
at the non-Gaussian response distribution, an analogous linear system is defined which has
the same energy, at any time, as the original system. The energy equivalence relation leads to
an estimate of the non-Gaussian displacement-velocity joint density function.
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2. THE NON-LINEAR SYSTEM
The system considered for the analysis is described by the non-linear differential equation
X4+ 2pox + 0?x + ax® =f(¢), ¢))

where 5 and w are the fraction of critical damping and natural frequency, respectively, when
the non-linear term is absent. f(t) is a zero mean Gaussian process completely defined in
terms of its autocorrelation function. Taking ensemble averages on both the sides of equation
(1) yields

+ w¥x> + adx>) = (). ©))

d*xx> d<{xp
2nw
dr? +en ds

This illustrates the major difficulty in dealing with non-linear equations, namely the involve-
ment of higher order moments in lower order moment equations. To overcome this another
equation for {x*> may be obtained, but this would lead to a hierarchy where still higher order
moments are involved. It is precisely at this stage one invokes a closure assumption such as
the cumulant discard approximation [7, 8]. Here, the troublesome higher order moments are
handled directly by starting with the form of the joint density functions, po(x;,/3; t1,1,) and
po(X1, X231, 15), which one would get if the non-linearity was not present. Thus, for equation
(1), since f(z) is a Gaussian process,

1 : 1 x2 2rsxi s f7
X152, 11, 12) = exp | - —{— ————— 4+ 11, (3
Po(x1, 12 1; 2) M V] 2 —, P [ 201 —r,%,)[ail Ge1072 o, 3)

where

X)) =02, {SU)) =0k,
X f(0)D]051 652 = ryp (14, 12). 4

Also, the response itself is Gaussian with a two-dimensional density function

1 X 2raxix, | X
o) = eXp | — 57— " oos T 6
Po(X1, X2, 11, 12) 216,41 052V 1 72, p [ 2(1=r2) { " ®

‘7_:2‘; Ox10x2 Ox2
where
X)) =05, <x(1)X(12)>[01 6x2 = rxt1s 1) (6)
Hence it follows that
<@ =0. Q)
If the system starts from rest, that is,
x(0) = x(0) =0, ®
then equation (2) would give
x(t)y =0. 9

2.1. THE CORRELATION FUNCTIONS
To obtain the autocorrelation function R,,(t,1,) = {x(1)x(z,)), equation (1) is multiplied
throughout by x(¢,) and averaged. This yields
R.J:X(I’ tl) + 2,Iwax(t’ tl) + (02 R.xx(ta tl) + (Z<X3(I) x(’l)) = <X(f1)f(t)> = Rx!(tl, t)’ (IO)

where the dots denote differentiation with respect to ¢ and ¢; appears only as a parameter. But
the right-hand side of this equation itself is an unknown. This difficulty is overcome by writing
another equation for the input-output cross-correlation. By considering equation (1) with ¢,
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as the independent variable, multiplying by f(r) throughout and averaging, a differential
equation for R, ,(#,,1) can be obtained. as

RI(t1,1) + 210RL(11, 1) + 0 Reg(t1, 1) + 2 () L (00> = (LU SO)> = Ry st 1),
(11)
where the primes indicate differentiation with respect to #,. This is an equation with ¢, as the
independent variable and ¢ as a parameter. Equation (10) has been derived previously by
Crandall [11] in a similar context. But the approach has not been explored in detail.
Now, from the Gaussian initial approximations of equations (3) and (5) it follows that

) £ (1)) =302(1) Res (11, 1),

<x3(t) x(ty)) = 303(1) Rt 1) 12)

These reduce equations (10) and (11) to the forms
Ri(ty, 1) + 210R (11, 1) + [0? + 3a0i ()] Ref(t1, 1) = Ryp (1151), (13)
Rt n)+ 2nwR(t, 1)) + [w? + 3002(1)] Rex (1, 1,) = Ry s (11, 7). (14)

These look like coupled quasi-linear equations with time varying coefficients. The interesting
feature is that the variance,

o(t) = R(1,1), (15)

is locked-in as a time varying coefficient. The initial conditions are
' Ref(0,1) = R,(0,1) =0, (16)
Rxx(0,1,) = R:x(0,1,) = 0. an

A rigorous analysis of the above equations will not be attempted here. Although a closed
form solution seems not possible in general, 2 numerical solution on a computer is quite
feasible. A suitable simple function, ,62(¢), is assumed for the output variance to start with.
Then equation (13) is solved at various values of 7 with ¢, as the independent variable. This
determines the right-hand side of equation (14) which can again be solved similarly to get the
first approximation, ; R,,(t,1,), to the response autocorrelation function. This would lead to
the second approximation, ,62(¢), for the output variance. This iterative process may be
continued until a desired accuracy is attained. A plausible starting approximation would be
the variance of the resulting linear system when a = 0 in equation (1). However, herein, such a
numerical work is not pursued; instead approximate solutions of equations (13) and (14)
will be obtained for some specific random inputs.

3. STATIONARY EXCITATION

When the input is a stationary random process, in the presence of damping one would
expect the existence of a steady state for large ¢ and ¢, when the response also tends to a
stationary process. This would lead to a constant variance, 62, for the response. With this in
view the first approximation could be taken as

10(t) = of, (18)

where 62 is the known linear steady state variance. Substituting this in equations (13) and (14)

one gets
t

1
1Rap(ty, 1) = T '[R,,(r, —t)eMn—ndgin ) (1, — 1,)d7y, (19)
vd
0
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Tt n
1
Rt 1) =77 f f Ry /(ty —1) e300 sin A,(1, - 1,) €4~ sin 2,(t — 1) dr, d7, (20)
d
0.0

with
22 = @? + 3ac}, 2n
¢ = nof, (22)
Ao= M1 —EHV2, (23)

Since the input is a stationary process equation (20) can be expressed in terms of the input
spectral density as

R(,1)= f G (D) H(Q))? [e!20-1) — e748%{(cos At + &, sin A,t) cos Q1 + &, sin A, ¢sin ¢}

—w

— e~ {(cos A t, + £, sin A 1)) cos Qt + &, sin 24t sin Qt}
et eos ) tcos Aty + [(QF + 2 2)[23]sin 2 tsin gty

+ &y sinl, (¢ +1)}]dQ (24
where

& =E[(1 =& (25)

From thisanimproved estimate of the response variance, which incidentally is non-stationary,
is given as

202(1) = J. G,/ (Q)|H(Q))*[1 + e2**(1 + 2, sin 2,2 cos lat) —2e 3 {(cos 24t

+ &, 5in 241)cos Qt + &, sin A, 1sin Qt} + {[Q2 — 23(1 — 283)))73} sin? 23] dQ,

(26)
where ¢,,(€), the input power spectral density function, is
l oo
4@ = 5= | R@ea0 @)
n
and
|H(@)|* = 1[(2* — 2%)* + 2£2Q)*]. (28)

If the iterations were to be stopped at this stage, the approximate steady state variance would
be

2= [ ¢, |H@)|*de. 29)
For cxample, if the input is a white noise with an autocorrelation
Rn(’; ’1) = 15(’ - tl)’ (30)
then
o= I4E)3 = 6% [(1 + 3eaid), €2y
with
& = afw? (32)

which compares with results obtained from other procedures [4]. It is obvious that further
iterations can be carried out on a computer only. However, if one is interested only in the
steady state variance something better could be done as follows. Suppose the response
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reaches a stationary steady state; then the output variance gradually tends to a constant
value. Thus 62(¢) may be taken as a slowly varying function of time and equations (13) and (14)
may be treated as constant coefficient equations with ¢2(r) and ¢%(t,) replaced by 6. When
this argument is accepted as plausible it follows that

ot = [ ¢, | HQ)?d0, 33)
where -~
[H(D)]? = 1/[(22 — Q%) + (28, 2. 2)*], (34)
22 = w? + 3u0?, (35)
ele =no. (36)

This equation is morc informative than equation (29) since it leads to a polynomial or a
transcendental equation with o7 as the unknown. The roots would indicate the existence or
otherwise of many values for ¢2 and a possible jump phenomenon. To illustrate this point
three different stationary inputs will be considered.

3.1. WHITE NOISE INPUT

In this extreme case, in which the input bandwidth is infinite, equation (33) can be neatly
simplified as

o2 = I]48, 22 = o} /(1 + 3ea?). 37

The only positive solution of this equation is
1
oi= r [(1 4 12ea?)V? —1]. (38)
€

This is somewhat different from and is hopefully better than equation (31).

3.2. ZERO.BANDWIDTH INPUT
At the other extreme is an input which contains only a single frequency. One such excita-
tion is
f(t)=asinw t+ bcosw,t, (39)
where @ and b are independent Gaussian random variables with mean zero and variance o7.

The input autocorrelation is
Ry, (t,1,) = ctcosw(t —t,). (40)

The corresponding power spectral density is
$11(2) = o} [0(w. — Q) + 6(w. + Q))- (41)
From equation (33) it follows that
0% = a}[[(72 — 0)* + (2L 2. )], 42)

This easily may be recognized as a cubic equation in ¢2. The situation is very similar to the
behaviour of the system under a deterministic sinusoidal excitation exhibiting the well
known jump characteristics [12]. To study equation (42) it is expedient to treat it as a quadratic
in (w./w) rather than to analyze it as a cubic in 6. Solving for (w./w), one gets

(0 fw) = [(1 + 3e0? — 2n%) £ {6}/(w0* 63) — 4n*(1 + 3eai — n*)} /]2, (43)
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Figure 1. Jump phenomenon of the mean square response for a single frequency random input.

In Figure 1, this has been plotted for ¢ = 1, y = 0-02, and d%/0w* = 1, (w./w) being considered
as a function of ¢2. This curve illustrates the jump phenomenon of the mean square response
spectacularly.

3.3. NARROW BAND INPUT

The existence of the mean square jump characteristics in non-linear systems has been
explored previously by Lyon ef al. [13] to a limited extent. They observed that jumps are
possible with narrow band excitations. The results of the previous case also indicate that this
may be possible for very narrow bandwidth inputs. Also narrow band inputs are more
realistic than the two types discussed previously. With these points in view a band limited
white noise will be considered in some detail.

The input spectral density is

¢II(Q)= So, wl < IQl < wl,

=0, otherwise. 44)
Hence [14)
ai =25, f {H(Q)[>dQ2 = (1S6/28 . 22) (@22, Ee) — 1(01/2er €N, 43)
where -
L () s 1+ /2 + 201 = 82 /2) |
1l 8y = - tan™ [1 - (;:/;,.)2] R2nl = G o | 2 =) 7 Gl
(46)
By taking
w, = (wc - de); W, = (wc +]A(.0) (47)
and

do=nw=_E>72,, (48)
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equation (45) can be reduced to the form

(of[a?) -, 4jn*(2* + 8* — j*n?) n
(22—

lo
8jn? w* z* P48t =282+ pd)) (2 —nP)V? &

[22 + (@ +jn) + 222 — n) (8 +jn) 2+ (6 — jm)? - 22 — )2 —J"I)” 1 (49)
22+ (8 +jn)? — 2(22 — V(8 +jn) 22+ (8 —Jjm?* + 2(z* — )2 (5 — jiy) ’
where

67 =250, — ), = Jo, z=(1+ 3ec?). (50)
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Figure 2. Jump phenomenon of the mean square response for a narrow band input.

This equation has to be solved for various values of 62 with (w./w) treated as the unknown, to
construct the frequency response curves. In Figure 2, such a result is presented for e =1,
o}/w* =1 and j= 1. It is observed that for any of the values of (w./w) there could be at the
most two values of 62, unlike the situationin the previouscase. Further questions of stability and
the effect of the bandwidth are not taken up here. A conjecture based on the known results of
the deterministic theory would be that the right branch of Figure 2 is unstable. It may be noted
here that the jump phenomenon discussed refers only to the mean square values in the steady
state. Associated with the mean square jumps there also would be observable jumps in the
response samples. The experiments of Lyon et al. [13] qualitatively verify this observation.
Detailed investigations are needed to make more conclusive statements.

4. PROBABILITY DISTRIBUTION OF THE RESPONSE

The distribution of the response-of the non-linear system under consideration is going to be
obviously non-Gaussian. At present no exact solutions are known for this except when the
input is a white noise, that too only in the steady state. In what follows, an attempt has been
made to arrive at the joint density function of x and x, for any Gaussian input, in an heuristic
manner.

The previous analysis for the response autocorrelation hinged essentially on the assumption
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that the response be approximately Gaussian, but with unknown parameters which are to be
found from equations (13) and (14). Although the non-linearity inherent in the original
system is reflected in these equations, nonetheless the autocorrelation one gets refers strictly
to a hypothetical Gaussian response process, X(f), and hence to a quasi-linear system with a
time varying coefficient {w? + 3x63(¢)]. Incidentally, this observation indicates that there is
some resemblance between the present method and the equivalent linearization technique.
However, the error minimization essential to the latter has not been invoked at all here. Once
the autocorrelation, Ry;(¢,¢,), of the process, X(¢), is known the moments of the derivative
process, £, can be found. This would lead directly to the joint density function, p(%, £; t), since
this quantity is Gaussian. The hypothetical system leading to %(r) can be described by the
equation

24 2wk + [w? + 3xa?) %= f(2). 51)

If the original system had had non-linear damping, then the above equation would have had
time varying cocfficients with £ also. Since it is this equation that has been solved and not
cquation (1), it would be natural to ask in what sense (x, x) and (%,%) compare. Instcad of
posing such a question on the response variable, herein, the two systems—the real non-linear
and the hypothetical linear—may be brought nearer, in a different sense. It is clear that the
nearness of the two systems hints at an equivalence criterion. Since the responses are obviously
different one would look for an equivalence of the functions of the response variables rather
than expect x and ¥ to compare. One such criterion, which is reasonable, is the equivalence of
the energies in the two systems at any time. The energy in the given non-linear system is
X x

E,=m l. $dx + cj Xdx+ j(kx + amx¥)dx
o o

*2 4 kx? x*
=m— 2dt + — —_ 52
n12+ca"x + ) +am4 (52)
Similarly the energy in the hypothetical system is

= I3 <
xZ 2

X
— . £2 , 2y .
En=m = +c!x(h+kﬂ+3w02 (53)

Here, m, cand k refer to the mass, dash pot constant and the coefficient of the linear part of the
spring, respectively. Inspection of equations (52) and (53) suggests the simple memory-less
transformation

ﬁ+%ﬁ=0+k#ﬁﬂ (54)

x=% (55)

to establish the equivalence of the two energies. Now, since p(%,£;¢) is known, p(x,%;1)
easily can be determined. In the present problem

. 1 1 b5 B
P53 0= 2no,0,(1 — "2)”2 P [— 2(1-r?) [E - G,0; M é}] ’ )
where,
o} =<FH 1), o3 =<E», r(t)=LKX()%(t)/o; 0. (57
From equation (54),

®=2(x%+ ex*/2)V2)(1 + 3ec})"? (58)
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e |d5/dx] = (1 + &)/ [(1 + 3] (1 + &x*[2). (59)
T plx, 1) = (1 + ex?)/2noi(1 +ex?/2) (1 + 3eo])]*/? exp [-(x* + ex*[2)/ 2a{)),  (60)
p(x, t)=(1/2ngd) "2 e %712}, (61)
, |d%/dx] I [(R+ed2) 2+ 32
P ) = el =T [e"p{" ) [of(l T 360D 0,01 + 30D ?gm

(62)

Since no assumption about the input, other than normality, has been made in arriving at this
result it is expected to be valid for both stationary and non-stationary excitations in either the
transient or steady state regimes of the response. That this optimism is not unfounded may be
seen from the case of a white noise input. The predicted joint density function in the steady
state is

2031 + 3e0d) 208 ©3)

e, 1, 00) = 1S5 [ (rextf)) J

216,06,
From equations (37) and (55) it follows that in the steady state
o2(1 + 3eo}) = oy (64)
o = w?ac}. (65)
With these simplifications, equation (63) reduces to

|ds/dx]

2n0,0,

p(X,.X", CO) =

exp|— 2; (% w? + x2 + sx‘IZ)] , (66)

2
Is

09

08

Fel2)

07

LU B AN SR S D S RS St AENE S SEND BN p
~
~
~
N

ol 1y

~
~N
N\
TR VI SN U S SR S ST SN SR W N § U N S S

o5 SN S VD VA SN VS U VN S VN TN S SR T S TR SR WA S SN SR SN S
05 10 15 20 2
P4
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which is very near to the exact solution as obtained from the Fokker-Planck equation [1].
The exact density function of x in the steady state is given by

p(X) — Ce-(x2+:x‘/2)120,’” . (67)

where C is a normalization constant. In Figure 3 the exact and the approximate steady state
distribution functions,

F)= [ p) dx, (68)

bl -]

are shown for three values of e. Since the distribution is symmetric about the zero mean value
only the right-half has been presented. It is observed that the comparison is good in all the
cases. The maximum percentage errors for ¢ =0-1 and ¢ =1 are 1-54 and 5-78, respectively.
Even for a non-linearity coefficient as large as ¢ = 10 the maximum error is only 11-42 9.

5. SUMMARY AND CONCLUSION

A method which leads to an approximate probabilistic description of non-linear elastic
systems under Gaussian excitations has been presented. The method draws inspiration from
the moment closure and the equivalent linearization techniques, but is substantially different
from both in the details. The approach may be summarized briefly as follows.

The response probability distribution is assumed to be Gaussian with unknown parameters
to start with. The given differential equation is suitably averaged with this assumption to
arrive at equations for the autocorrelation function. Invariably a set of coupled equations is
obtained where the response variance is locked in as a time varying coefficient. The auto-
correlation has to be obtained by an iteration procedure on a digital computer. From this
the autocorrelations of the derivatives, if they exist, also can be obtained. Once the correlation
matrix is known the joint density function of the response and its derivatives at the same time
or at different times can be written since it also is going to be Gaussian. However, these
densities refer only to a hypothetical linear system and at best are only approximations to the
statistics of the given non-linear system. At this stage an equivalence in terms of the total
energy of the hypothetical and the real system is assumed. This gives a memory-less non-
linear transformation for the response variables which eventually leads to a non-Gaussian
density function which is better than the original Gaussian approximation.

The damped Duffing equation with cubic non-linearity in the spring has been considered
in some detail. The jump phenomenon associated with the steady state variance for
stationary inputs has been investigated and some numerical results also are presented. A very
general expression has been obtained for the joint density of the displacement and velocity.
In deriving this no assumptions have been made as to the stationarity or otherwise of either
the input or the output. Hence the expression is expected to be widely applicable. Other types
of non-linearities in the spring and the case of non-lincar damping can be handled on similar
lines. But, when the damping is non-linear, although the response correlation may be found
and the equivalence relations established, the actual determination of the non-Gaussian joint
distribution may be very difficult. However, the approximate one-dimensional density
function of the response can be found without much difficulty.

The estimated distribution is an asymptotic result definitely valid for small non-linearities.
This follows since equation (62) leads to the exact linear density function as € — 0. This
behaviour also is observed in Figure 3, where for small ¢ the estimate compares excellently
with the exact results. This figure also indicates that the present estimate errs on the conserva-
tive side in estimating the probability of |x| exceeding a safe operating level. Thus, it is
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believed that the estimate would be of great help in further studies on level crossing and peak

di

10.
11.
12.
13.
14.

stribution.

REFERENCES

. R. L. StrATONOVICH 1963 Topics in the Theory of Random Noise (Vol. I). New York: Gordon
and Breach, Science Publishers.

. T. K. CAUGHEY 1963 Journal of the Acoustical Society of America 35, 1683-1692. Derivation and
application of the Fokker-Planck equation to discrete non-linear dynamic systems subjected
to white random excitation.

. S. H. CRANDALL 1963 Journal of the Acoustical Society of America 35, 1700-1705. Perturbation
techniques for random vibration of non-linear systems,

. Y. K. LN 1967 Probabilistic Theory of Structural Dynamics. New York: McGraw-Hill Book
Company, Inc,

. R. C. BootoN, Jr 1954 IRE Transactions, Circuit Theory CT-1, 9-18. Non-linear control systems
with random inputs.

. T. K. CAUGHEY 1963 Journal of the Acoustical Society of America 35, 1706-1711. Equivalent
linearization techniques.

. R. H. KRAICHNAN 1962 Symposium on Applied Mathematics 13, 199-225. The closure problem of
turbulence theory. Providence, R.1.: American Mathematical Society.

. J. M. RICHARDSON 1964 Symposium on Applied Mathematics 16, 290-302. The application of
truncated hierarchy techniques in the solution of a stochastic differential equation. Providence,
R.I.: American Mathematical Society.

. J. D. ATKINSON 1973 Journal of Sound and Vibration 30, 153-172. Eigenfunction expansions for

randomly excited non-linear systems.

R. N. IYENGAR 1972 Journal of Sound and Vibration 25, 29-37. Worst inputs and a bound on the

highest peak statistics of a class of non-linear systems.

S. H. CranDALL 1963 in Random Vibration Vol. 2 (editor: S. H. Crandall), 85-102. Random

excitation of non-linear systems. Cambridge: M.I.T. Press.

N. MINORSKY 1962 Nonlinear Oscillations. Princeton, New Jersey: D. Van Nostrand Company

Inc.

R. H. LyoxN, M. HeckL and C. B. HAZELGROVE 1961 Journal of the Acoustical Society of America

33, 1404-11. Narrow band excitation of the hard spring oscillator.

S. H. CrRaNDALL and W. D. MARK 1963 Random Vibration in Mechanical Systems. New York:

Academic Press.



