ARTICLE

Calculation for 'chain-reduction' in the Triśatībhāṣa

Taro Tokutake ${ }^{1(D)}$

Received: 9 November 2022 / Accepted: 25 January 2023 / Published online: 29 March 2023
© Indian National Science Academy 2023

Abstract

The Triśatībhāsya is an anonymous commentary on Śrīdhara's Triśatī. 'Chain-reduction' (vallīsavarnana) is a rule for unifying quantities expressed in several units into the highest one, but the usage of the rule in the Trisatäbhāşa is slightly different. The present paper tries to explain, by comparison with the procedures illustrated in other arithmetic texts, why the commentator applies the 'chain-reduction' in an irregular way.

Keywords Chain-reduction (vallīsavarnana) \cdot Triśatī \cdot Triśatībhāṣya \cdot Pāṭīganitaṭīk $\cdot \operatorname{Siṃhatilaka~}$

Abbreviations
$\mathrm{A}_{1} \quad$ LD Institute, Ahmedabad, 1559.
BM Bakhshālı̄ Manuscript
GSK Ganitasārakaumud̄̄ of Ṭhakkura Pherū
GT Gaṇitatilaka of Śrīpati
$\mathrm{K}_{\mathrm{ED}} \quad$ Kāsí edition of the Triśatī
MS Mahāsiddhānta of Āryabhaṭa II
PG Pāṭ̄gaṇita of Śrīdhara
PGȚ Pāṭ̂̄gaṇitaṭīkā (anonymous comm.) on the PG
SGT Simphatilaka's comm. on the GT
SŚ Siddhāntaśekhara of Śrīpati
$\mathrm{Tr} \quad$ Triśatī (alias Triśatikā and Gaṇitasāra) of Śrīdhara
TrBh Triśatībhāṣya (anonymous comm.) on the Tr

1 Introduction

The Triśatībhāşya (hereafter TrBh) is an anonymous commentary on the Sanskrit arithmetic text Triśatī (hereafter Tr) by Srīdhara (ca. 800 CE). The TrBh is available only in a single complete manuscript (LD Institute, Ahmedabad, 1559: hereafter A_{1}) and is not contained in the edition published
at Kāśī (hereafer K_{ED}). ${ }^{1}$ In my recent study, I investigated the date and the place of the author of the TrBh through an analysis of the linguistic features, and concluded that he flourished in Western India some time between the twelfth and fifteenth centuries CE. ${ }^{2}$ The Tr presents arithmetic rules and examples briefly. On the other hand, the TrBh explains the computational procedures in detail.
'Chain-reduction' (vallīsavarṇana) is a rule for unifying quantities expressed in several units into the highest one, but the usage of the rule in the TrBh is slightly different. The present paper, by comparison with the procedures illustrated in other arithmetic texts, attempts to explain why the commentator applies the rule for 'chain-reduction' in an irregular way.

For that purpose, first, I will give a brief explanation of the rule for the 'chain-reduction.' Then, I will present the computational procedures in modern notation on the basis of the descriptions of the TrBh , the prose parts of the Tr , the Pātū̄ganitaṭīkā (hereafter PGṬ), and Siṃhatilaka's commentary (hereafter SGT) on the Gaṇitatilaka (hereafter GT) successively.

[^0][^1]
2 Rule for 'chain-reduction'

$\operatorname{Tr} 26 \mathrm{~cd}-27 \mathrm{ab}$ prescribes the rule for the 'chain-reduction' as follows: ${ }^{3}$

Tr 26cd-27ab:

प्राक्छेदांशौ गुणयेच्छेदेनाधःस्थितेन पूर्वांशो।
 धनमृणमधःस्थितांरां कुर्वीत सवर्णने वह्लयाः॥

prākchedāṃśau guṇayec
chedenādhaḥsthitena pūrvāṃśe/ ${ }^{4}$
dhanam ṛnam adhaḥsthitāṃ́am
kurvīta savarṇane vallyāh/ß
In the 'chain-reduction,' one should multiply the former (the upper) denominator and numerator by the denominator located below. On the former (the upper) numerator, one should make the numerator located below positive [or] negative. ${ }^{6}$

When conversion ratios of four units $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}$, and U_{4} are p_{1}, p_{2}, and p_{3} respectively, that is, $1 \mathrm{U}_{1}=p_{1} \mathrm{U}_{2}, 1$ $\mathrm{U}_{2}=p_{2} \mathrm{U}_{3}, 1 \mathrm{U}_{3}=p_{3} \mathrm{U}_{4}$, a quantity expressed in the four units can be converted to the highest unit by the following operation:

$$
\begin{aligned}
& a_{1} \mathrm{U}_{1}+a_{2} \mathrm{U}_{2}+a_{3} \mathrm{U}_{3}+a_{4} \mathrm{U}_{4} \\
& =\left(a_{1}+\frac{a_{2}}{p_{1}}+\frac{a_{3}}{p_{1} p_{2}}+\frac{a_{4}}{p_{1} p_{2} p_{3}}\right) \mathrm{U}_{1} \\
& =\left(\frac{a_{1} p_{1}+a_{2}}{p_{1}}+\frac{a_{3}}{p_{1} p_{2}}+\frac{a_{4}}{p_{1} p_{2} p_{3}}\right) \mathrm{U}_{1} \\
& =\left(\frac{\left(a_{1} p_{1}+a_{2}\right) p_{2}+a_{3}}{p_{1} p_{2}}+\frac{a_{4}}{p_{1} p_{2} p_{3}}\right) \mathrm{U}_{1} \\
& =\frac{\left\{\left(a_{1} p_{1}+a_{2}\right) p_{2}+a_{3}\right\} p_{3}+a_{4}}{p_{1} p_{2} p_{3}} \mathrm{U}_{1},
\end{aligned}
$$

where a_{1} is positive and $a_{i}(i>1)$ is positive or negative.
This calculation is carried out on calculating board in the following way. First, one arranges a_{i} and p_{i} vertically and places 1 under a_{1}. This is called 'chain' (vall $\bar{\imath}$). For four terms from the top of the chain, "one should multiply

[^2]the former (the upper) denominator and numerator by the denominator located below" and "on the former (the upper) numerator, one should make the numerator located below positive [or] negative," that is, one should perform addition or subtraction. The lower two of the four terms are then erased, although this step is not explicitly stated in the text. The same operation is repeated until a single fraction is obtained.

3 TrBh

The TrBh applies the rule for 'chain-reduction' at three places: on Tr E22, E33 and E71-72. I will represent the procedure intended at each place. For English translations of the text, see Appendix 1.

3.1 TrBh on Tr E22

Tr E22:

पश्च पुराणास्त्रिपणाः काकिण्येका वराटकेनोना।
 तत्पश्चमभागोना सवर्णिते किं फलं भवति॥

pañca purāṇās tripaṇāh
kākiṇy ekā varātakenonā/フ
tatpañcamabhāgonā
savarṇite kiṃ phalaṃ bhavati//8
There are five purāṇa-s, three paṇa-s, one kākin̄, decreased by one varātaka and one-fifth of that (one varāṭaka). When they are reduced to the same color, ${ }^{9}$ what is the result?

[^3]That is, 5 purāna-s +3 paṇa-s +1 kākiṇī -1 varātaka $-\frac{1}{5}$ varātaka are to be unified into the unit of purāna. ${ }^{10}$ The commentator first constructs a 'chain' from the given quantities and their conversion ratios: ${ }^{11}$

Then, he performs the calculation in the following four steps:
$\frac{5}{1}+\frac{3}{16}=\frac{5 \cdot 16+3 \cdot 1}{1 \cdot 16}=\frac{83}{16}$,
$\frac{83}{16}+\frac{1}{16 \cdot 4}=\frac{83 \cdot 4+1}{16 \cdot 4}=\frac{333}{64}$,
$\frac{333}{64}-\frac{1}{64 \cdot 20}=\frac{333 \cdot 20-1}{64 \cdot 20}=\frac{6659}{1280}$,
$\frac{6659}{1280}-\frac{1}{5}=\frac{6659 \cdot 5-1}{1280 \cdot 5}=\frac{33294}{6400}=\frac{16,647}{3200}$ purāṇa -s
In the first step, the commentator cites part of the stanza for the 'part-class' (bhāgajāti) prescribed in PG $37 .{ }^{12}$ It is noteworthy that in A_{1} (fol. 7 b) this stanza is regarded as the rule of the Tr , although it is not contained in $\mathrm{K}_{\mathrm{ED}},{ }^{13}$ and that the stanza is cited in SGT on GT $54 .{ }^{14}$ At the moment there is too little evidence to determine whether Simhatilaka (second half of the 13 th century CE), the author of the SGT,

[^4]| | $v a$ | $k \bar{a}$ | $p a$ | $p u$ |
| :--- | ---: | ---: | :---: | :---: |
| varāṭaka | 1 | | | |
| kākin̄i | $\mathbf{4 . 5}$ | 1 | | |
| paṇa | 80 | 4 | 1 | |
| purāṇa | 1280 | 64 | $\mathbf{1 6}$ | 1 |

${ }^{11}$ The negative sign, a dot (\cdot), is attached to subtractive/negative numbers in the 'chain.' Here and hereafter, I rotated the tall boxes through 90° to save space.
12 PG 37: अधरहरोर्ध्वांशावधश्चोर्ध्वहरेणाधरं <हरं> हन्यात्। मध्यांशाहराभ्यासं <विनिक्षिपेदुपिरमांरोषु>\| adharaharordhvāṃśavadhas' cordhvahareṇādharaṃ <haraṃ> hanyāt/ madhyāṃśaharābhyāsaṃ <vinikṣiped uparimāṃśeṣu>// "By the lower denominator multiply the upper numerator, (then) by the upper denominator multiply the lower denominator, and (then) add the product of the numerator and the denominator in the middle to the upper numerator." Translation by Shukla (1959, transl. p. 17). This rule is given not as 'addition of fractions,' but as 'part-class' in SŚ 13.12 and A_{1}. See Hayashi (2019, p. 339) and Tokutake (2021, pp. 155-158).
${ }^{13}$ See Tokutake (2021, pp. 77, 155-156).
14 See Petrocchi (2019, pp. 129, 335-336) and Hayashi (2019, p. 196).
referred to the text of the Tr including PG 37 or that of the PG; and whether the verse of PG 37 was contained in the original text of the Tr. The calculation in the first step is carried out on calculating board in the following manner.
(i) The two fractions are placed each below the other:

$$
\begin{gathered}
5 \\
1 \\
3 \\
16 \\
\hline
\end{gathered}
$$

(ii) The upper numerator (5) is multiplied by the lower denominator (16), and the lower denominator (16) is then multiplied by the upper denominator (1):

$5 \cdot 16$
1
3
$16 \cdot 1$

(iii) The product of the numerator (3) and the denominator (1) in the middle is added to the upper numerator (80):

$80+1 \cdot 3$
1
3
16

(iv) The numerator (3) and the denominator (1) in the middle are erased: ${ }^{15}$

After obtaining the answer $\frac{16647}{3200}$ purāna-s, the commentator inversely calculates the original numbers expressed in the lower units: ${ }^{16}$
$\frac{16647}{3200}=5 \frac{647}{3200}$ purāṇa-s,
$\frac{647 \cdot 16}{3200}=\frac{10352}{3200}=3 \frac{752}{3200}$ pana-s,
$\frac{752 \cdot 4}{3200}\left[=\frac{3008}{3200}\right.$ kākiṇi $]$,
$\frac{3008 \cdot 20}{3200}=\frac{60160}{3200}=18 \frac{2560}{3200}=18 \frac{4}{5}$ varātaka -s .
The calculation ends here, but of course,

[^5]\[

$$
\begin{aligned}
& {\left[18 \frac{4}{5}=\left(20-1-\frac{1}{5}\right)\right. \text { varātaka-s }} \\
& \left.\quad=1 \text { kākiṇi}-1 \text { varāṭaka }-\frac{1}{5} \text { varāṭaka. }\right]
\end{aligned}
$$
\]

The four steps after obtaining the answer, $\frac{16647}{3200}$ purāna-s, are probably meant to be a verification. Siṃhatilaka carries out a similar calculation in SGT on GT 63. I will discuss it in more details in Sect. 6.1.

3.2 TrBh on Tr E33

The following is an example for Rule of Three (trairāsika): ${ }^{17}$ Tr E33:

धान्याद्रोणः सारर्धः कुडवत्रितयं च लभ्यते ऽष्टाभिः।
तद्रोणयुक्तखार्याः किं मूल्यं कथ्यतामाशु।।
dhānyadroṇaḥ sārdhah
kuḍavatritayaṃ ca labhyate 'ṣtābhiḥ/18
tad droṇayuktakhāryāh
kiṃ mūlyam kathyatām āśu// ${ }^{19}$
[If] one and a half droṇa-s and three kudava-s of grain are obtained for eight [units of money], then, how much is the price of one $k h \bar{a} r \bar{l}$ increased by one drona? Say quickly.

That is,
$\left(1 \frac{1}{2}\right.$ droṇa-s +3 kuḍava-s $): 8=(1$ khār $\bar{i}+1$ droṇa $): x$.
The commentator converts the first term, $1 \frac{1}{2}$ drona-s +3 kuḍava-s, into kudava in the following two ways. First, he

[^6]simply calculates the numbers of kudava-s in the prastha, $\bar{a} d ̣ h a k a$, and droṇa successively. ${ }^{20}$

1 prastha $=4$ kudava -s ,
1 āḍhaka $=16$ kudava-s,
1 droṇa $=64$ kuḍava-s;
$64+64 \cdot \frac{1}{2}=64+32=96[k u d a v a-\mathrm{s}] ;$
$96+3=99[k u d a v a-\mathrm{s}]$
Secondly, he expresses $1 \frac{1}{2}$ drona-s successively in smaller and smaller units, ạ̣̄haka, prastha, and kudava.
$1 \frac{1}{2}=\frac{3}{2}[$ drona -s$]$,
$\left[\frac{3}{2} \cdot 4=\right] 3 \cdot 2=6[$ ādhaka-s],
$6 \cdot 4=24$ [prastha -s],
$24 \cdot 4=96[k u d a v a-s]$;
$96+3=99[k u d a v a-s]$.
That this calculation was carried out on calculating board by the 'chain-reduction' is suggested by the words 'increased by three located below' (adhasthitatrikasahite). This step occurs at the end of the following 'chain-reduction.'
$\left|\begin{array}{c}3 / 2 \\ 1 \\ 0 \\ 4 \\ 0 \\ 4 \\ 3 \\ 4\end{array}\right| \longrightarrow\left|\begin{array}{c}(3 / 2) \cdot 4+0 \\ 1 \cdot 4 \\ 0 \\ 4 \\ 3 \\ 4\end{array}\right| \longrightarrow\left|\begin{array}{c}6 \cdot 4+0 \\ 4 \cdot 4 \\ 3 \\ 4\end{array}\right|$
$\longrightarrow\left|\begin{array}{c}24 \cdot 4+3 \\ 16 \cdot 4\end{array}\right| \rightarrow\left|\begin{array}{l}99 \\ 64\end{array}\right|$
Hence, it follows that:

[^7]$1 \frac{1}{2} d r o n ̣ a-\mathrm{s}+3 k u d ̣ a v a-\mathrm{s}=99 k u d ̣ a v a-\mathrm{s}$.
Then, the commentator converts the third term of the Rule of Three, 1 khārī +1 droṇa, into kuḍava by means of the 'chain-reduction.'

\[

\longrightarrow\left|$$
\begin{array}{c}
16 \cdot 4+0 \\
16 \cdot 4
\end{array}
$$\right| \longrightarrow\left|$$
\begin{array}{l}
64 \\
64
\end{array}
$$\right|
\]

Thus, 1 drona $=64$ kudava-s. Only the first and last setting-downs are given in the text, and the first one is expressed as	1	0
1	4	$

1 khār $\bar{i}+1$ droṇa $=1024+64=1088$ kudava -s
The 'chain-reduction' is originally an operation for unifying quantities expressed in multiple units into the highest one, but here, the rule is applied to unify the quantities into the lowest one. Finally, the commentator carries out the Rule of Three as follows:
$99: 8=1088: x$,
$x=8 \cdot 1088 \div 99=8704 \cdot \frac{1}{99}=\frac{8704}{99}=87 \frac{91}{99} r \bar{u} p a-\mathrm{s}$.
The reason why the commentator unifies the values into the lowest unit is to simplify the calculation of the Rule of Three by reducing all the three quantities into integers without fractions.

3.3 TrBh on Tr E71-72

The author of the TrBh again applies the 'chain-reduction' to the problem of Tr E71-72, where several monetary quantities are unified into the highest unit. Since it is a regular usage just as prescribed in $\operatorname{Tr} 26 \mathrm{~cd}-27 \mathrm{ab}$, I do not discuss it in this paper.

4 Prose parts of the $\mathbf{T r}$

This section deals with prose parts of the Tr which is contained in K_{ED}, but not in A_{1}. Each of those parts follows a stanza of the Tr .

4.1 Tr E22p

Tr E22p:
 $\frac{\text { १६६४७ }}{\text { ३२०० }} \$ लब्धं पुराणाः ५। पणाः ३। काकिणी ०। वराटकाः 9 ८। वराटकभागाश्च $\frac{8}{4}$ । इति वल्लीसवर्णनम्॥
nyāsah̆/l
jātaṃ $\left|\frac{16647}{3200}\right|$ labdhaṃ purānāḥ 5/ paṇạh 3/ kākiṇı̄
0/ varātakāh 18/ varā-ṭakabhāgāś ca $\frac{4}{5}$ / iti vallīsavarṇanam//

Reduced to the same color, the result is $\left.\frac{16647}{3200} \right\rvert\,$.
What is obtained is 5 purānas, 3 paṇa-s, 0 k $\bar{a} k i n \bar{n}, 18$ varātaka-s, and $\frac{4}{5}$ parts of varātaka. Thus is the 'chain-reduction.'
After the answer $\frac{16640}{3200}$, the original values which are given in Tr E22 are enumerated here (see Sect. 3.1). It is most probable that the author of the TrBh , referring to this prose part without citing the text, conducted a verification.

4.2 Tr E33p

Tr E33p:

आद्यन्तयोः कुडवैर्न्यासः॥ | 9ρ | $\frac{9}{9}$ | $\frac{90 \ll}{9}$ |
| :--- | :--- | :--- |
| 9 | | |

लब्धानि रूपाणि ८७ भागाश्च $\frac{\rho 9}{\rho \rho}$
ādyantayoh kuḍavair nyāsaḥ//
labdhāni rūpāņi 87 bhāgāś ca $\frac{91}{99} / /$

Setting-down with kudava-s of the first and last [terms]: | $\frac{99}{1}$ | $\underline{8}$ | $\frac{1088}{1}$ | . What is obtained is 87 |
| :---: | :---: | :---: | :---: | $r \bar{u} p a-s$ and $\frac{91}{99}$ parts.

The above values, especially the three quantities in the unit of kudava, could also have influenced the author of the TrBh into carrying out the 'chain-reduction' for the sake of unifying the quantities into the lowest unit, as we have seen in TrBh on Tr E33 (see Sect. 3.2), although he does not mention this prose part of the Tr .

5 PGT

In 1959, an incomplete treatise of Śsīdhara was published under the title of Pātı̄̆ganita (hereafter PG). This title was given by Shukla, the editor of the text, according to the catalogue listing the extant and unique manuscript (Raghunātha Temple Library, Jammu, 3074). The manuscript ends with the twenty-third verse of the 'procedure of plane figure' (ksetravyavahāra) and contains an anonymous commentary, the PGTT. Shukla edited the PG with the PGTT and translated only the PG into English. In his edition one can find many verses common to the Tr.

In this section, I will present the computational procedures of the 'chain-reduction' given in the PGTT. For English translations of the text, see Appendix 2.

5.1 PGṬ on PG E22

PG E22:
पश्च पुराणास्त्रिपणं काकिण्येका वराटकैकोना।
तत्पज्चमभागोना समासतः किं धनं भवति॥
pañca purānās tripaṇaṃ
kākiṇy ekā varātakaikonā/
tatpañcamabhāgonā
samāsataḥ kiṃ dhanaṃ bhavati//

There are five purāṇa-s, three paṇa-s, one kākin̄ , decreased by one varätaka and one-fifth of that (one varātaka). What is [their] value in total?

The above stanza is almost the same as Tr E 22 . The commentator first mentions the conversion ratios of the monetary units defined in PG 9 ($=\mathrm{Tr} \mathrm{Pbh} 4$), and then, gives only the 'chain' and the answer $5 \frac{647}{3200}$ purāṇa-s. The calculation could be the same as that of TrBh on Tr E22, though no procedure is described in the PGTT. The commentator does not perform the verification and seems not to be influenced by the values listed in Tr E22p. This means that the author of the PGTT either did not possess or ignored manuscript(s) of the Tr including Tr E22p.

5.2 PGT on PG E27

PG E27:

धान्यद्रोणः सार्द्धः कुडवत्रितयं च लभ्यते ऽष्टाभिः। खार्येका द्रोणयुता तत्कियता कथय यदि वेत्सि॥

dhānyadroṇaḥ sārddhaḥ
 kuḍavatritayaṃ ca labhyate 'ștābhiḥ/

khāry ekā droṇayutā
tat kiyatā kathaya yadi vetsi//
One and a half droṇa-s and three kuḍava-s of grain are obtained for eight [units of money]. In that case, say for how much one khārī increased by one droṇa [will be obtained], if you know?

The above stanza is almost the same as Tr E 33 . The commentator unifies the first and third terms for Rule of Three, ($1 \frac{1}{2}$ droṇa-s $+3 k u \underset{a}{2} a v a$-s) and ($1 k h \bar{a} r \bar{i}+1$ drona $)$, into droṇa. As for the third term, because 1 khār $\bar{\imath}=16$ droṇa-s,

1 khār $\bar{i}+1$ droṇa $=16+1=17$ droṇa-s.
After that, the commentator illustrates two types of 'chains' for the first term:

| 1 |
| ---: | :--- | ---: |
| 1 |\quad| 1 |
| ---: |
| 8 |
| 16 |\quad or \quad| 1 |
| ---: |
| 3 |\quad| 2 |
| ---: |
| 4 |\quad| 3 |
| ---: |

The left-hand 'chain' is constructed with $\frac{1}{2}$ droṇa $=8$ prastha-s and the right-hand one with 1 droṇa $=64$ kudava-s by keeping $\frac{1}{2}$ drona. Applying the rule for the 'chain-reduction' to the left, the procedure can be reconstructed as follows:
$\left[\frac{1}{1}+\frac{8}{16}=\frac{1 \cdot 16+8}{1 \cdot 16}=\frac{24}{16} ;\right.$
$\left[\frac{24 \cdot 4+3}{16 \cdot 4}=\right] \frac{99}{64}[$ droṇa -s$]$.
With regard to the right-hand 'chain,' the commentator first carries out 'other's part addition' (parabhāgānubandha), ${ }^{21}$ and then, applies the rule for the 'chain-reduction':
$\left[1 \frac{1}{2}=\frac{1 \cdot 2+1}{2}=\frac{3}{2} ;\right]$
$\left[\frac{3 / 2}{1}+\frac{3}{64}=\frac{(3 / 2) \cdot 64+3}{1 \cdot 64}=\right] \frac{99}{64}[$ droṇa -s$]$.
Hence, it follows that:
$1 \frac{1}{2}$ droṇa-s +3 kuḍava $-\mathrm{s}=\frac{99}{64}$ droṇa -s.

[^8]The calculations of the 'other's part addition' and the 'chain-reduction' are here collectively called 'calculation in the two principles' (tantradvayakriyā). Finally, the commentator carries out the Rule of Three as follows:
$\frac{99}{64}: 8=17: x$,
$x=8 \cdot 17 \div \frac{99}{64}=136 \cdot \frac{64}{99}\left[=\frac{8704}{99}\right]=87 \frac{91}{99}$.
It is clear from the above that the usage of the 'chainreduction' in the PGTT is in accordance with the rule prescribed in PG $41(=\operatorname{Tr} 26 \mathrm{~cd}-27 \mathrm{ab}) .{ }^{22}$

6 SGT

The GT is a Sanskrit arithmetic text written by Śrīpati (11th century CE). The text has been handed down to us together with the SGT in an incomplete manuscript. Simhatilaka was a Śvetāmbara Mūrtipūjaka monk affiliated to the Kharataragaccha, one of the Jaina monastic orders in early medieval Gujarat and Rajasthan. ${ }^{23}$ It is notable that he was quite familiar with the Tr (and also the PG) because $\operatorname{Tr} \mathrm{Pbh} 4,11$, $15,24,31$, and PG 37 are cited or mentioned in the SGT. ${ }^{24}$ The GT and SGT have been fully studied and translated into English by Petrocchi (2019) and into Japanese by Hayashi (2019). This section is based on both of these studies.

6.1 SGT on GT 63

GT 63:

द्रम्मद्वयं पश्च पणास्तथैका
काकिण्यहो मित्र कपर्दिकोना।
तदंह्रिणा चापि सवर्णयित्वा
व्यावर्ण्यतां द्राग्यदि बोबुधीषि।

drammadvayaṃ pañca paṇās tathaikā

kākiny aho mitra kapardikonā/
tadaṃhriṇā cāpi savarṇayitvā
vyāvarṇyatāṃ drāg yadi bobudhīṣi//

O friend, if you wish to learn [mathematics], having performed their simplification, calculate quickly two drammas, also five paṇas and one kakiṇī minus one kapardik \bar{a}, and [minus] its one-fourth too. ${ }^{25}$

[^9]That is, 2 dramma-s +5 pana-s $+\left(1\right.$ kākiṇ̄ $-1 \frac{1}{4}$ kapardik $\bar{a}-\mathrm{s}$) are to be unified to the unit of dramma. ${ }^{26}$ This example is of the same type as Tr E22. Simhatilaka first constructs a 'chain' from the given quantities and their conversion rates. ${ }^{27}$

Then, he performs the calculation in the following steps: ${ }^{28}$
$\frac{2}{1}+\frac{5}{16}=\frac{2 \cdot 16+5}{1 \cdot 16}=\frac{37}{16}$,
$\frac{37}{16}+\frac{1}{16 \cdot 4}=\frac{37 \cdot 4+1}{16 \cdot 4}=\frac{149}{64}$,
$\frac{149}{64}-\frac{1}{64 \cdot 20}=\frac{149 \cdot 20-1}{64 \cdot 20}=\frac{2979}{1280}$,
$\frac{2979}{1280}-\frac{1}{1280 \cdot 4}=\frac{2979 \cdot 4-1}{1280 \cdot 4}$
$=\frac{11915}{5120}=\frac{2383}{1024}$ dramma -s.
This is the answer, but Simphatilaka continues to calculate and obtains the original values expressed in the lower units:
$\frac{2383}{1024}=2 \frac{335}{1024}$ dramma -s,
$\frac{335 \cdot 16}{1024}=\frac{5360}{1024}=5 \frac{240}{1024}$ paṇa-s,
$\frac{240 \cdot 4}{1024}=\frac{960}{1024}=0 \frac{960}{1024}$ kākiṇi,
$\frac{960 \cdot 20}{1024}=\frac{19200}{1024}=18 \frac{768}{1024}$ kapardaka-s,
$\frac{768}{1024} \div \frac{1}{4}=\frac{768 \cdot 4}{1024 \cdot 1}=\frac{3072}{1024}=3, \quad \frac{768}{1024}=\frac{3}{4}$.
The calculation ends here, but of course,

[^10]\[

$$
\begin{aligned}
& {\left[18 \frac{3}{4}=\left(20-1 \frac{1}{4}\right)\right. \text { kapardaka-s }} \\
& \left.\quad=1 \text { kākiṇi}-1 \frac{1}{4} \text { kapardaka-s. }\right]
\end{aligned}
$$
\]

The procedure after the answer is a verification just as in TrBh on Tr E22 (see Sect. 3.1). It is most likely that manuscript(s) of the Tr containing Tr E22p was available to Simhatilaka and that he conducted the verification in accordance with the description of it.

7 Concluding remarks

The reason why the author of the TrBh applies the 'chainreduction' to Tr E22 and E33 in an irregular manner can be explained in the following ways.

As for the Tr E22, the commentator first performs the calculation in a regular way, but after that, he inversely finds the original values given in the example. From the mathematical perspective, the latter half of the procedure is clearly a verification. The same type of verification can be found in SGT on GT 63 but not in PGȚ on PG E22 (=Tr E22). Moreover, the values obtained through the verification in the TrBh are set out in Tr E22p too. Therefore, it is most probable that the author of the TrBh and also Simhatilaka were able to access the manuscript(s) of the Tr including $\operatorname{Tr} \mathrm{E} 22 \mathrm{p}$.

As for the Tr E33, the author of the TrBh applies the 'chainreduction' in order to unify the quantities into the lowest unit. The mathematical reason for it is that he attempts to reduce all the three quantities into integers without fractions for the sake of easy calculation with Rule of Three. On the other hand, in PGȚ on PG E27 ($=$ Tr E33) the commentator unifies the given values into the highest unit by means of the 'chain-reduction.' It is likely that the prose part of Tr E33 was available to the author of the TrBh, but unavailable to that of the PGTT.

The relationship between the texts can be illustrated in Fig. 1. The vertical line at left-hand side denotes the common era (CE), and each text is arranged accordingly. The PGȚ and PG 37 are surrounded by a dashed line, because the date of the commentator is unknown and it is not certain whether the stanza of PG 37 was contained in the original text of the Tr. The box of the TrBh corresponds to the estimated date of its author, that is, some time between the 12th and 15 th centuries CE. The arrows \rightarrow indicate the text(s) to which the author of each commentary explicitly referred, and the dashed arrows \rightarrow text(s) to which each author may or may not have referred. At present there is too little evidence to determine whether the text of the Tr including PG 37 or that of the PG was accessible to Simphatilaka.

The author of the TrBh neither mentions nor quotes the prose parts of the Tr , but they are repeated in the TrBh in his own words. Otherwise, it might be that the prose parts

Fig. 1 Relationship between the texts
were originally cited in the TrBh , but the scribe of the A_{1} or someone else omitted them.

Appendix 1: Text and translation of the TrBh

The text edited here of the TrBh is based on A_{1}. The word(s) cited in the TrBh from the Tr is printed in bold. I remove or add daṇ̣a-s (/) in A_{1} for the ease of reading. Phonological irregularities have been left in this edition just as they are in the manuscript.

Notations

ac Ante correcturam, i.e., the reading before the correction by the scribe
em. Emendation (I do not distinguish it from 'correction' and 'conjecture')
pc Post correcturam, i.e., the reading after the correction by the scribe
〈A〉 A is supplied by the editor
' A ' A is quotation
(A) A is reference of quoted passage

- Truncation (of letters) in long Sanskrit words

TrBh on Tr E22 (A_{1} fols. 9b-10a)

37d) इति कृते जातं	$८ ३$
$9 ६$	$

एकं प्रक्षिपेत्। प्रक्षिप्ते जातं \begin{tabular}{|l|l|}
३३३

६४

$|$ । ततो विंशत्या छेदांशौौ गुणयेत्। अंरोभ्यः एकं पातयेत्। ऊर्द्धस्थानात्पातिते जातं

\& $\xi ६ ५ \rho$

$9 २ ८ ०$
\end{tabular}$|$ । ततः पंचकेन छेदांशौ गुणयेत्। अंरोभ्यः एककं च पातयेत्। पातिते जातं

 हृते लब्धं पुराणाः पंच ५। ततः रोषे षोडशाभिर्हते लभ्यंते पणाः ३। रोषे चतुष्केण हते ततो विंहात्या हते लभ्यंते वराटकाः $9<।$ रोषे षड्भि: रातैश्चत्वारिंशादधिकैरपवर्त्तिते भागाः $\left|\begin{array}{l}8 \\ y\end{array}\right|$ । एवं वल्लीसवर्णनं समाप्तं। छ॥

 gunayet $\left.\right|^{31}$ pūrvạ̣̄se ekamp praksipet ${ }^{32}$ praksipte jātam $\left[\left.\begin{array}{c}333 \\ 64\end{array} \right\rvert\,\right.$ / tato viṃ́atyā chedāṃ́au gunayet ${ }^{\beta 3}$ a ậ́ebhyah ekamp pātayet β^{34} ürdvasthānāt pātite jātaṃ $\left|\begin{array}{c|c}6659 \\ 1280\end{array}\right| / 35$ tatah paṃcakena chedạ̣̄́śau gunayet/ amśebhyah ekakam ca pātayet ${ }^{\beta 6}$ pātite jātam | 33294 |
| ---: | ---: |
| 6400 |$|$ I tatah chedā̀mśau dalayet ${ }^{\beta 7}$ dalite jātạ̣ $\left|\begin{array}{c}16647 \\ 3200\end{array}\right|$ / chedena hrte labdham purānāh paṃca $5^{\beta 8}$ tatah śeṣe ṣodaśabhir hate labhyaṃte panāh $3 /$ śesse catuṣkena hate tato viṃśatyā hate labhyaṃte varātakāh $18{ }^{\beta 9}{ }^{9}$ śeṣe saḍbhih śataiśs catvārimśsad adhikair apavarttite bhāgāh $\left|\begin{array}{l}4 \\ 5\end{array}\right|{ }^{40}$ evam vallīsavarṇanaṃ samāptaṃ// cha//

[^11]When [the operation] "one should add" (PG 37d) is carried out, the result is exactly $\left|\begin{array}{c}83 \\ 16\end{array}\right|$. One should multiply [the former (the upper)] denominator and numerator by four. One should add one to the former (the upper) numerator. When [one] is added [to it], the result is $\left|\begin{array}{c}333 \\ 64\end{array}\right|$. Then, one should multiply [the former (the upper)] denominator and numerator by twenty. One should subtract one from the [upper] numerator. When [one] is subtracted from the above place, the result is $\left|\begin{array}{c}6659 \\ 1280\end{array}\right|$. Next, one should multiply [the former (the upper)] denominator and numerator by five and subtract one from the [upper] numerator. When [one is] subtracted [from them], the result is | 33294 |
| :---: | :---: |
| 6400 | . After that, one should halve the denominator and the numerator. When [they are] halved, the result is $\left.\begin{array}{c}16647 \\ 3200\end{array}\right]$

When [the numerator is] divided by the denominator, the quotient is five, i.e., 5 purāna-s. Then, when the remainder is multiplied by sixteen, 3 pana-s are obtained. When the remainder is multiplied by four and further multiplied by twenty, 18 varātaka-s are obtained. When the remainder is reduced by six hundred increased by forty, the parts are $\left|\begin{array}{l}4 \\ 5\end{array}\right|$. Thus, [the topic of] the 'chain-reduction' is completed.

TrBh on Tr E33 (A fols. 11a-11b)

द्रोणौः कुडवे कृते न्यासः। द्रोणस्य कुडवकरणार्थ युक्तिः प्रस्थे कुडव \& आढके कुडव $9 ६$ द्रोणे कुडव ६४। तदर्द्धभागे ३२। उभयं ९६ त्रिभिर्योगे ९९। अथवा अन्या युक्तिः सवर्ण्णने जातं $\left|\begin{array}{l}३ \\ २\end{array}\right|$ त्रिकद्विकयोरन्योन्यघाते जातं ६ चतुर्गुणे २४ पुनश्चतुर्गुणे ९६ अधस्थितत्रिकसहिते ९९। तद्वा वह्लीसवण्णने कुडवानयनं। द्रोण 9 । आढकस्थाने आढकचतुष्टये<न> द्रोणः स्यादिति चतुष्कदर्शानं ४। प्रस्थस्थाने ० प्रस्थचतुष्टयेनाढकः स्यादिति चतुष्कदर्शानं $8 ।$ कुडवचतुष्टयेन प्रस्थं स्यात् ४। एकत्रस्थापनं \begin{tabular}{|l|l|l|l|l|l|}
9 \& \circ \& गुणने \& $६ 8$ \& एते द्रोणकुडवाः ६४। खार्या $9 \circ 28 । ~ उ भ य ं ~$

9 \& 8 \& \&

\hline

 जातं १०८८। अंतिमानयनं। अथ स्थापनं। ९९। ८। १०८८। तदंत्यगुणं फलं ८ गुणिते ८७०४ आदिमेन छेदांशाविपर्यासेन गुणिता く७०४ $\|$ भागे हृते लब्धानि रूपाणि ८७ रूपभागा:

$\rho 9$

$\rho \rho$
\end{tabular}$| ॥$

dronaih kuḍave krte nyāsah ${ }^{41}$ dronasya kudavakaranārtham yuktih prasthe kudava 4 ädhake kudava 16 drone kuḍava 641^{42} tadarddhabhäge 32/ ubhayam 96 tribhir yoge 99/

[^12]athavā anyā yuktih savarṇṇane jātaṃ | 3 |
| :--- | :--- | :--- |
| 2 |$|$ trikadvikayor anyonyaghāte jātaṃ 6 caturguṇe 24 punaś caturguṇe 96 adhasthitatrikasahite 99/43 tadvā vallīsavarṇnane kuḍavānayanaṃ ${ }^{44}$ droṇa 1/ ạdhakasthāne ạ̄hakacatuṣtaye $\left\langle\right.$ na $>$ droṇah syād iti catuṣkadarśanaṃ $4^{\text {5 }}$ prasthasthāne 0 prasthacatusṭayenāḍhakah syād iti catuṣkadarśanaṃ $4{ }^{46}$ kuḍavacatuṣtayena prasthaṃ syāt 4/ ekatrasthāpanaṃ $\left|\begin{array}{l|l}1 & 0 \\ 1 & 4\end{array}\right|$ guṇane $\left|\begin{array}{l}64 \\ 64\end{array}\right|$ ete droṇakuḍavāh 64/ ${ }^{47}$ khāryā $1024 /^{48}$ ubhayaṃ jātaṃ 1088/ aṃtimānayanaṃ/49 atha sthāpanaṃ/ 99/ 8/ 1088/ tadaṃtyaguṇam phalaṃ 8 guṇite 8704 àdimena chedāmśaviparyāsena gunitā $\left.\begin{gathered}8704 \\ 99\end{gathered} \right\rvert\, /^{50}$ bhāge hṛte

labdhāni rūpāni 87 rūpabhāgāh $\left|\begin{array}{c}91 \\ 99\end{array}\right|$ /.

When the kuḍava is produced by the drona-s, setting-down is [as follows]. The principle (yukti) for the sake of converting the drona into the kuḍava is: 4 kuḍava-s for one prastha, 16 kuḍava-s for one ādhaka, 64 kuḍava-s for one droṇa. For a half part of them, there is 32 . Both [of 64 and 32 added together] are 96 . Increased by three, [the result is] 99 . Alternatively, there is the other principle. Reduced to the same color, the result is $\left|\begin{array}{l}3 \\ 2\end{array}\right|$. When three and two are multiplied mutually, the result is 6 . Multiplied by four, [the result is] 24. Further multiplied by four, [the result is] 96. Increased by three located below (adhasthita), ${ }^{51}$ [the result is] 99. Similarly (tadvat), ${ }^{52}$ in the 'chain-reduction,' [one] calculates the kudava. 1 droṇa is [at the top of the 'chain']. Since, in the place of $\bar{a} d h a k a$, one droṇa should be made up of four $\bar{a} d h a k a$-s, four, i.e., 4 is shown. [The numerator is] 0 in the place of prastha. Because one a $\ddot{d h a k a}$ should be made up of four prastha-s, four, i.e., 4 is shown. One prastha should be

${ }^{51}$ adhasthita- for adhahsthita-.
52 According to the dictionary of Monier Williams, tadv $\bar{a}=$ tadvat .

made up of four kudava-s. 4 [is shown]. Put [the digits] in one place, $\left.\begin{array}{|l|l|}1 & 0 \\ 1 & 4 \\ \hline\end{array}\right]$. [Performing] the multiplication, [the result is] | 64 |
| :---: |
| 64 |. .These are 64 kudava-s [contained] in one $d r o n ̣ a$. [The kuḍava-s contained] in one khārı̄ are 1024. Both [of 64 and 1024 added together] are 1088. [Thus is] the calculation of the last [term of a Rule of Three]. Now, settingdown is $99,8,1088$. That (the 'fruit' of the 'standard') multiplied by the last [quantity]. The 'fruit' [of the 'standard'] is 8 . Multiplied [by the last quantity, the result is] 8704. Multiplied by the first [quantity] through interchanging the denominator and the numerator, [the result is] $\left.\begin{gathered}8704 \\ 99\end{gathered} \right\rvert\,$. When [the numerator is] divided [by the denominator], what is obtained is 87 units [and] $\left|\begin{array}{c}91 \\ 99\end{array}\right|$ parts of unity.

Appendix 2: Text and translation of the PGT

The text of the PGT is based on the following edition and manuscript:
L_{ED} : Lucknow edition by K. S. Shukla, 1959
J_{1} : Raghunātha Temple Library, Jammu, 3074

PGȚ on PG E22 ($\mathrm{L}_{\text {ED }}$ p. 35, line 28-p. 36, line 11)

अत्र पुराणानां रूपच्छेदनतास्वातन्त्र्यात्पणादीनां चावयवविरोषत्वे संज्ञाविरोषत्वाच्छेदलाभः। यतः पुराणषोडराभागः पणः, पणचतुर्भागः काकिणी, काकिणीविंरातिभागो वराटकः, अतस्तैरेव
 ५, पुराणभागाः: $\begin{aligned} & \text { ६४००। } \\ & \text { ।भागापवाहजातिः समाप्ता वल्ली च। }\end{aligned}$
atra purānānāṃ rūpacchedanatāsvātantryāt paṇādīnāṇ cāvayavaviśeṣatve saṃjñāviśeṣatvāc chedalābhaḥ/ yataḥ purāṇaṣợaśabhāgaḥ paṇaḥ, paṇacaturbhāgaḥ kākiṇī, kākiṇīviṃśatibhāgo varāṭakaḥ, atas tair eva

labdhaṃ purānāh 5, purānabhāgāh $\begin{gathered}640 \text { /bhāgāpavāhajātih } \\ 3200\end{gathered}$ samāptā vallī cal

In this [example], the purāna-s are independent because they possess unity as the denominator, and the pana-s and so on have particular designations as particular parts [of the preceding units]. For that reason, they acquire the denominators. This is because one paṇa is made up of one-sixteenth of one purāṇa, one kākiṇ̄ one-fourth of one paṇa, and one varātaka one-twentieth of one kākiṇī. Therefore, by means of those [conversion ratios], the setting-down (sthāpana) of the unity and the denominators is [as follows]:

What is obtained is 5 purāṇa-s [and] 647 parts of one purāna. [The topics of] 'part-subtraction class' and 'chain' are completed.

PGȚ on PG E27 ($\mathrm{L}_{\text {Ed }}$ p. 39, lines 4-21)

धान्यस्य द्रोणः अर्द्धेन प्रस्थाष्टकेन सहितस्तथा कुडवैस्त्रिभिर्युक्तः अष्टाभिर्यैः कैश्चिद्देशानियतैर्व्यावहारिकै रूपैश्चेह्लभ्यते तदा एका खारी द्रोणयुता कियता लभ्यते।
dhānyasya droṇah arddhena prasthāstakena sahitas tathā kuḍavais tribhir yuktaḥ asṭäbhir yaiḥ kaiścid deśaniyatair vyāvahārikai rūpaiś cel labhyate tadā ekā khārī droṇayutā kiyatā labhyate/

If one droṇa of grain, increased by a half, that is, by eight prastha-s, and increased by three kuḍava-s, are obtained for eight [units of money], that is, for [eight of] certain practical (vyāvahārika) units limited to the region(s), then, for how much one $\boldsymbol{k} \boldsymbol{r} \bar{a} r \bar{r}$ increased by one droṇa [will] be obtained?

अत्र धान्यद्रोणो यथोक्तप्रस्थकुडवान्वितो ज्ञातमूल्यत्वात्प्रमाणराशिः। तत्र प्रमाणेच्छाराइयोः सवर्णमुपादीयते। द्रोणानां खारी कार्या, तत्खार्य्यश्च द्रोणाः <वा> कार्याः। द्रोणस्य प्रस्थादिसानुबन्ध त्वात्प्रतिपत्तिगौरवं स्यात्। खारी तु षोडरागुणा द्रोणाः तावन्त एव, एकद्रोणाधिकाः सप्तदरा, द्रोणस्य यदि रूपार्द्धेन योगं कृत्वा कुडवयोगः क्रियते तदा कुडवा चतुःषष्टिच्छेदाः कार्याः, तावत्कुडवैर्द्रोण इति। अथ द्रोणस्य T र्द्धेन परभागानुबन्ध: कु डवै: वल्ली इति तन्त्रद्वयक्रियायामायासस्तदा द्रोणो रूपच्छिन्न उपरि, तदधः प्रस्थाष्टकं षोडराच्छिन्नं तदधस्त्रयः कुडवा प्रस्थव्यवस्थया चतुर्भक्ताः स्थाप्याः।

9		9
9		
く		9
9 ¢	यद्वा	२
३		३
8		६४

उभयत्रापि प्रमाणराशिः सवर्णि<ते> इदं भवति $९ ९$ मध्यमराशिः स्वरूपस्थ एव ८, अन्त्यरारिः १७। प्रमाणरारोर्हरत्वाच्छेदांशाविपर्यासे डनन्तरं प्रभागकर्मणि लब्धं ८७ भागाः: ९९।
atra dhānyadroṇo yathoktaprasthakuḍavānvito jñātamūlyatvāt pramāṇarāśiḥ/ tatra pramānecchārāśyoh savarṇam upādīyate/ droṇānāṃ khārī kāryā, tatkhāryyaś ca droṇāh <vā> kāryāh/ droṇasya prasthādisānubandhatvāt pratipattigauravaṃ syāt/ khārī tu ṣoḍaśaguṇā droṇāh tāvanta eva, ekadroṇādhikāḥ saptadaśa, droṇasya yadi rūpārddhena yogaṃ krtvā kuḍavayogah kriyate tadā kuḍavā catuḥ̣aṣticchedāh kāryāh, tāvatkuḍavair droṇa iti ${ }^{53}$ atha
droṇasyārddhena parabhāgānubandhaḥ kuḍavaiḥ vallı̄ iti tantradvayakriyāyām āyāsas tad̄a droṇo rūpacchinna upari, tadadhaḥ prasthāṣtakaṃ ṣodaśacchinnaṃ tadadhas trayah kuḍavā prasthavyavasthayā caturbhaktāh sthāpyāḥ/ ${ }^{54}$

1		
1		1
8		
16	$y a d v \bar{a}$	1
3		2
4		3
64		

ubhayatrāpi pramāṇarāśih savarṇi<te> idaṃ bhavati 99 madhyamarāśiḥ svarūpastha eva 8, antyarāśị̣ 17/ pramānarāśer haratvāc chedāmśaviparyāse 'nantaraṃ prabhāgakarmaṇi labdhaṃ 87 bhāgāh ${ }_{99}^{91 \text { /. }}$

In this [example], one drona of grain increased by the aforementioned prastha-s and kudava-s is the 'standard' quantity, because its price is already known. In that case, the same color for the 'standard' and the 'requisite' quantities is taken. ${ }^{55}$ The $d r o n ̣ a$-s are to be [converted into] khār \bar{l}, or the $k h \bar{a} r \bar{l}-\mathrm{s}$ are to be [converted into] drona-s. [However, since] the droṇa [of the 'standard' quantity] is accompanied by the prastha and so on, it would be difficult to carry out [the conversion of them into $k h a \bar{a} \bar{\imath}]$. On the other hand, one $k h \bar{a} r \bar{\imath}$ [of the 'requisite' quantity] is just as much as one droṇa multiplied by sixteen. Adding one droṇa to it, seventeen [droṇa-s are obtained, and so, let the units of the 'standard' quantity be unified into droṇa]. If one droṇa is increased by half of the unit and [three] kuḍava-s are added [to it], then, kuḍava-s possessing sixtyfour as the denominator are to be produced. [To be precise], one droṇa is made up of such number of kuḍava-s. Next, 'other's part addition' is by means of a half drona, [and] 'chain' is by means of kuḍava-s. Thus, [one makes] an effort at calculation in the two principles (tantradvayakriy \bar{a}). Then, one drona divided by unity is at the top. Eight prastha-s divided by sixteen are below that. Three kudava-s divided by four are to be placed below them in accordance with the settled rule of prastha (prasthavyavasthā):

1		1
1		
8	or	1
16		2
3		3
4		64

[^13]There is the 'standard' quantity on both sides. Reduced to the same color, this is produced $\frac{99}{64}$. The middle quantity is indeed in its own unit (svarūpastha), i.e., 8. The last quantity is 17 . Since the 'standard' quantity is the divisor, the denominator and the numerator are interchanged, and after that, the calculation for 'multi-part' [is carried out]. What is obtained is 87 [and] ${ }_{99}^{91}$ parts.

Acknowledgements I wish to express my sincere gratitude to Prof. Takao Hayashi (Doshisha University) for his helpful comments and suggestions, though any mistakes are my own.

Funding This work was supported by JSPS KAKENHI Grant Number JP21J23080.

References

References: Primary sources

Ganitasārakaumudī: The Moonlight of the Essence of Mathematics by Thakkura Pherū, edited with Introduction, Translation, and Mathematical Commentary by SaKHYa. New Delhi: Manohar, (2009).
Ganitatilaka by Śrīpati with the Commentary of Siṃhatilaka Sūri, edited with Introduction and Appendices by H. R. Kāpadīā. Gaekwad's Oriental Series 78. Baroda: Oriental Institute, (1937). The new verse numbering provided by Hayashi (2013).
Mahāsiddhānta (A Treatise on Astronomy) of Āryabhaṭa, edited by Sudhakara Dvivedi. The Vrajajivan Prachya Granathamala 81. Delhi: Chaukhamba Sanskrit Pratishthan, (1995) (reprint of the 1910 edition, Benares: Braj Bhushan Das \& Co.).
Manuscript of the PG with an anonymous commentary, the Pāṭ̂̄ganitaṭīkā: Raghunātha Temple Library, Jammu, 3074.
Manuscript of the Tr with an anonymous commentary, the Triśatībhāsya: LD Institute, Ahmedabad, (1559).
Siddhāntaśekhara of Śrīpati: A Sanskrit Astronomical Work of the 11th Century, edited with Makkibhaṭta's Gaṇitabhūṣanan and the editor's vivaraṇa by Babuāji Miśra. 2 parts. Calcutta: University of Calcutta, (1932/47).

The Bakhshālī Manuscript. An Ancient Indian Mathematical Treatise, edited by Takao Hayashi. Groningen Oriental Studies 11. Groningen: Egbert Forsten, (1995).
The Patiganita of Sridharacarya with an Ancient Sanskrit Commentary, edited with Introduction, English Translation and Notes by Kripa Shankar Shukla. Lucknow: Lucknow University, (1959).
Triśatiká by Śrídharácárya, edited by Sudhákara Dvivedí. Kásí: Pandit Jagannátha Śarmá Mehtá, (1899).

References: Secondary sources

Hayashi, T. (2013). Authenticity of the Verses in the Printed Edition of the Gaṇitatilaka. Gaṇita Bhāratī, 35(1-2), 55-74.
Hayashi, T. (2019). Indo Sanjutsu Kenkyuu Gaṇitatilaka + Sị̣hatilakachuu Zenyaku to Chuu (A Study of Arithmetic in India: Annotated Japanese Translations of Śrīpati's Gaṇitatilaka and Siṃhatilaka' Commentary with an Introduction and Appendices). Kouseisha Kouseikaku.
Monier-Williams, M. (1979). A Sanskrit-English Dictionary. Delhi: Motilal Banarsidass Publishers. First published. Clarendon Press, 1899.

Petrocchi, A. (2019). The Gaṇitatilaka and its Commentary: Two medieval Sanskrit mathematical texts. Routledge.
Tokutake, T. (2021). Indo Sanjutsusho Triśatī: Choshamisho no Chūshaku Triśatībhāṣya to tomoni (Indian Arithmetic Book Triśatī: With the Anonymous Commentary Triśatībhāṣya), Master's thesis, Kyoto University.
Tokutake, T. (2022a). Study on an Example in the Triśatī, an Indian Arithmetic Book. Historia Scientiarum, 31(2), 172-185.
Tokutake, T. (2022b). Triśatībhāṣya no Chosha no Zaisho to Nendai ni kansuru Ichi Kosatsu: Sanjutsu Hyogen to Gengoteki Tokucho no Bunseki wo tsūjite (Place and Date of the Author of the Triśatībhāṣya: An Analysis of the Arithmetic Expressions and Linguistic Features). Journal of Indian and Buddhist Studies, 70(2), 5-8.
Tokutake, T. (2022c). "Indo Sanjutsusho ni okeru Heiho to Heihoukon no Arugorizumu: Triśatībhāṣya 10, 12-13" (Algorithms for Square and Square root in Indian Arithmetic Books: Triśatībhāṣya 10, 12-13). RIMS Kokyuroku Bessatsu, B89, 127-138.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Taro Tokutake
 indo.taro.234@gmail.com
 1 Graduate School of Letters, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto-shi, Kyoto, Japan

[^1]: ${ }^{1}$ Kāśī is a historical name of the present-day Varanasi. In the present paper, verse numbers of the Tr follow K_{ED}, and I utilize the numbering system as follows: 1) Pbhn is assigned to definitions [of number words and weights and measures] (paribhāạā), 2) n to rules, 3) En to examples, and 4) n p to the prose commentary that occurs immediately after the n-th verse.
 ${ }^{2}$ See Tokutake (2022b)

[^2]: ${ }^{3}$ Hereafter, a brief explanation of a word in translation is marked with parentheses (), and additions to the translation with square brackets []. As for notation in apparatuses, see Appendix 1.
 ${ }^{4}$ prākche ${ }^{\circ}$] K_{ED}, prākache ${ }^{\circ} \mathrm{A}_{1}$; ${ }^{\circ}$ yec chedenādhaḥsthi ${ }^{\circ}$] K_{ED}, ${ }^{\circ}$ yet/ chedenādhasthi ${ }^{\circ} \mathrm{A}_{1}$
 5 ṛnam adhaḥsthi ${ }^{\circ}$] K_{ED}, ūṇam adhasthi ${ }^{\circ} \mathrm{A}_{1}$; kurvīta] K_{ED}, kuvvāta A_{1}; vallyāḥ] K_{ED}, valyaḥ A_{1}
 ${ }^{6}$ Cf. BM Q6; PG 41; MS 15.18; GT 62; GSK 2.12.

[^3]: ${ }^{7}$ tripanạāh kā $\left.{ }^{\circ}\right] K_{E D}$, tripuṇak $\bar{a}^{\circ} \mathrm{A}_{1}$; ${ }^{\circ}$ ṭakenonā $] \mathrm{K}_{\mathrm{ED}}$, ${ }^{\circ}$ ṭakenyenā A_{1}
 ${ }^{8}$ savarṇite] A_{1}, samāsataḥ $K_{E D}$
 9 'Reduction to the same colour' (savarnana) means the reduction of a 'composite' fraction to a 'simple' fraction.

[^4]: ${ }^{10} \mathrm{Tr} \operatorname{Pbh} 4$: षोडरापणः पुराणः पणो भवेत्काकिणीचतुष्केण। पच्चाहतैच्चतुर्भिर्वर्राटकैः काकिणी चैका॥ ṣọdaśapaṇah purānaḥ paṇo bhavet kākiṇīcatuṣkeṇal pañcāhataiś caturbhir varāṭakaiḥ kākiṇı̄ caikā//* (* ${ }^{\circ}$ kaiḥ] K_{ED}, ${ }^{\circ} \mathrm{kai} \mathrm{A}_{1}$; caikā] A_{1}, hy ekā K_{ED}) "One
 purāṇa is made up of sixteen paṇa-s, one paṇa of four kākiṇi-s, and one $k a \bar{k} k i ̣ ̄ \bar{\imath}$ of four varātaka-s multiplied by five."

[^5]: ${ }^{15}$ This step is not mentioned in PG 37.
 ${ }^{16}$ In the following text, I mark procedures that is not mentioned in the original texts with square brackets [].

[^6]: ${ }^{17} \operatorname{Tr}$ 29: आद्यन्तयोस्त्रिराशावभिन्नजाती प्रमाणमिच्छा च। फलमन्यजाति मध्ये तदन्त्यगुणमादिना विभजेत्॥ $\overline{\text { ädyantayos trirāśāv abhinnajātī pramānam }}$ icchā ca/* phalam anyajāti madhye tadantyagunam ādinā vibhajet//** (* ādyanta ${ }^{\circ}$] K_{ED}, āvyaṃta ${ }^{\circ} \mathrm{A}_{1}$; $\left.{ }^{\circ}{ }^{\mathrm{ja}} \mathrm{t} \mathbf{t} \overline{1}\right] \mathrm{A}_{1},{ }^{\circ} \mathrm{j}$ āti K_{ED}; ca] K_{ED}, vā $\mathrm{A}_{1} * * \bar{a}$ āinā] em., ādimena K_{ED}, mārdinā A_{1}; vibhajet] $\mathrm{A}_{1}^{p c}$, bhajet K_{ED}, vibhajetam $\mathrm{A}_{1}^{a c}$) "Among the three quantities, the 'standard' and the 'requisite' in the first and the last [positions respectively] are of the same denomination, [and] the 'fruit' [of the 'standard'] in the middle [position] is of a different denomination. By the first (the 'standard'), one should divide that (the 'fruit' of the 'standard') multiplied by the last (the 'requisite')." That is, if $a: b=c: x$, then $x=b \cdot c \div a$. The three quantities-the 'standard' (a), the 'fruit' of the 'standard' (b), and the 'requisite' (c)-are arranged horizontally:

 $$
 \begin{array}{|l|l|l|}
 \hline a & b & c \\
 \hline
 \end{array}
 $$

 where a and c should be of the same denomination.
 ${ }^{18}$ sārdhah] K_{ED}, sorddhah A_{1}; ${ }^{\circ}$ tritayaṃ ca] K_{ED}, ${ }^{\circ}$ ttita/ yaṃ va A_{1}; 'sțtå $\left.{ }^{\circ}\right] K_{E D}$, ṣta ${ }^{-0} A_{1}$
 $19{ }^{\circ}$ khāryāḥ] K K ${ }^{\text {ED }}$, ${ }^{\circ}$ ṣāṃryāḥ A_{1}

[^7]: ${ }^{20} \mathrm{Tr}$ Pbh6: खार्येका षोडशभिर्द्रोणैश्चतुराढको भवेद्रोणः। प्रस्थैश्चतुर्भिराढक एकप्रस्थश्चतुःकुडवः॥ khāry ekā ṣoḍaśabhir dronaiśs caturädhako bhaved dronaḥ/* prasthaiśs caturbhir ạ̣haka ekaprasthaś catuhkuḍavah//** (* bhaved] K_{ED}, bhave $\mathrm{A}_{1} * *$ ekapra ${ }^{\circ}$] A_{1}, ekaḥ pra ${ }^{\circ} \mathrm{K}_{\mathrm{ED}}$; catuḥku ${ }^{\circ}$] K_{ED}, catuku ${ }^{\circ} \mathrm{A}_{1}$) "One khār $\bar{\imath}$ should be made up of sixteen drona-s, one droṇa of four ädhaka-s, one a ạhaka of four prastha-s, and one prastha of four kudava-s."

 | | $k u$ | pra | \bar{a} | dro | khā |
 | :--- | ---: | ---: | ---: | ---: | ---: |
 | kudava | 1 | | | | |
 | prastha | $\mathbf{4}$ | 1 | | | |
 | ādhaka | 16 | 4 | 1 | | |
 | drona | 64 | 16 | 4 | 1 | |
 | khār $\bar{\imath}$ | 1024 | 256 | 64 | $\mathbf{1 6}$ | 1 |

[^8]: ${ }^{21}$ The rule for 'other's part addition' is: $n+\frac{b}{a}=\frac{n a+b}{a}$. This is in contrast to 'one's own part addition' (svabhäāannubandha), that is, $\frac{b_{1}}{a_{1}}\left(1+\frac{b_{2}}{a_{2}}\right)=\frac{b_{1}\left(a_{2}+b_{2}\right)}{a_{1} a_{2}}$.

[^9]: 22 In PGT on PG E55-56 (p. 58, lines 1-11 in Shukla's edition), the rule of the 'chain-reduction' is applied to unify two time units, māsa (month) and dina (day), into the higher one, that is, māsa.
 ${ }^{23}$ See Petrocchi (2019, pp. 12-16) and Hayashi (2019, pp. 16-19).
 ${ }^{24}$ See Petrocchi (2019, p. 417) and Hayashi (2019, pp. 24-26).
 ${ }^{25}$ Translation by Petrocchi (2019, p. 153).

[^10]: ${ }^{26}$ GT 4: स्यात्काकिणी पच्चगुणैश्चतुर्भिर्वराटकैः २० काकिणिकाचतुष्कम्। पणं भणन्ति व्यवहारतज्ञा द्रम्मश्च तैः षोडशाभिः प्रसिद्धः॥ syāt kākiṇ̄̄ pañcaguṇaiś caturbhir varāṭakaiḥ 20 kākiṇikācatuṣkam/ paṇaṃ bhaṇanti vyavahāratajjñā drammaś ca taih ṣoḍaśabhiḥ prasiddhaḥ// "There is one $k \bar{a} k i n ̣ \bar{\imath}$ in five times four cowry-shells, 20. Those who are familiar with this practice say that one paṇa is [equal to] four $k a \overline{k i n ̣ i s s, ~ a n d ~ o n e ~ d r a m m a ~ i s ~ k n o w n ~ t o ~ b e ~ i n ~ s i x t e e n ~ o f ~ t h e s e ~[p a n ̣ a s] . " ~}$ Translation by Petrocchi (2019, p. 49).

 | | $v a$ | $k \bar{a}$ | $p a$ | $d r a$ |
 | :--- | ---: | ---: | ---: | ---: |
 | varāṭaka | 1 | | | |
 | kākin̄ | $\mathbf{5 . 4}$ | 1 | | |
 | paṇa | 80 | $\mathbf{4}$ | 1 | |
 | dramma | 1280 | 64 | $\mathbf{1 6}$ | 1 |

 ${ }^{27}$ The negative sign, a circle (o), is attached to subtractive/negative numbers in the following 'chain.'
 ${ }^{28}$ The following procedures are based on Hayashi (2019, p. 218).

[^11]: ${ }^{29} A_{1}$ contains the full version of this stanza, though $K_{E D}$ does not have it.

 ${ }^{29} A_{1}$ contains the full version of this stanza, though $K_{E D}$ does not
 have it.

[^12]: $\overline{41}{ }^{\circ}$ ḍave kṛte] em., ${ }^{\circ}$ ḍavah kṛteh A_{1}
 42 prasthe] em., prasthi A_{1}

[^13]: ${ }^{53}$ droṇasya] J_{1}, doṇasya L_{ED}; catuḥṣasṭicche ${ }^{\circ}$] em., <dviguṇa>dvātriṃśacche ${ }^{\circ} \mathrm{L}_{\mathrm{ED}}$, dvātriṃśacche ${ }^{\circ} \mathrm{J}_{1}$
 ${ }^{54}$ tadadhaḥ pra${ }^{\circ}$] em., tadaṃ́ah pra ${ }^{\circ} \mathrm{L}_{\mathrm{ED}} \mathrm{J}_{1}$
 ${ }^{55}$ That is to say, "units of the 'standard' and the 'requisite' quantities are unified into the same one."

