CHAPTER 6 UDAYĀSTĀDHIKĀRAH

 (Rising and Setting of Planets)

 (Rising and Setting of Planets)}

Ślokas 1 and 2: The desired (given) ahargaṇa is added with $1 / 10^{\text {th }}$ of the gatābda (elapsed years from the epoch i.e. from śaka 1005) and reduced by 105. (The result is) divided by 300. (If) the remainder (is) 15 (then) Jupiter (Guru) has risen. (The remainder) greater than 384 (indicates that) Jupiter is set.

The rising measure (udayamāna) of the rāśi, in which the true Ravi lies, is multiplied by 12 and divided by 60 to get in days (etc.) The balance, as in tithi, is added or subtracted. The udayamāna (of the true Ravi's rāsí) is reduced by 300 ; the remainder multiplied by 15 and divided by the udayamāna (giving) days (etc.) is added to the rising time of Guru (to get the corrected rising time).
(i) Obtain the elapsed years (gatābda) from the epochal year (Śaka 1105). Find the ahargana (from the epoch of this text) for the iṣtadina (given day). Add $1 / 10^{\text {th }}$ of the gatābda and substract 105 from the result. Divide the difference by 399. When the remainder (r) is 15 , it gives the rising of Guru. If the remainder is greater than 384, it means Guru has set.
(ii) Depending on the position of the sāyana Ravi in the earlier (less than
15°) or the latter part (between and) the ghattiphalas are prescribed for the two halves of the different rāśis as shown in Table 6.1.

The ghațīphalams are positive for the six rāśis from Makara (i.e in IV and I quadrants) and negative for the six rāśis from Karkaṭaka (i.e. in II and III quadrants).

Table 6.1 Ghaṭīphalam of sāyana Sun's rāśis.

Rāsíi	First half $g \underline{h}$	Second half $g \underline{h}$
Karkataka	3	6
Makara	3	6
Siṃha	8	10
Kumbha	8	10
Kanyā	11	11
Mīna	11	11
Tulā	11	10
Meṣa	11	10
Vrṣcika	8	6
Vrṣabha	8	6
Dhanus	3	0
Mithuna	3	0

The ghattīphalam of the first or the second half of the rāsi occupied by the sāyana Ravi at the iṣtakāla is multiplied by 12 and divided by 60. The resultant will be in days etc. Now this is added to or substracted from the remainder r obtained in step (i) above according as the ghațīphalam is positive or negative.
(iii) Add 2 rāśis for udaya and 3 rāśis for the asta to (sāyana) Ravi. Multiply the ghațīphalam of the resulting rāśi and divide by 60 . This is substracted from or added to the result of (ii), according to the sign of the ghațīphalam. The result will be in days etc. This is substracted from 15 for the udaya and from 384 for the asta. This gives the days etc. from the istetadina for the rising or setting of Guru.

In the case of asta (setting), in step (iv), the udayamāna of the rāśi to be considered is that of sāyana Ravi + .
(iv) Take the difference, rāśimāna of the sāyana Ravi's rāśi minus 300. This difference is multiplied by 15 and divided by the rāśimāna. The result is in days etc., which should by added to or substracted from (as the case may be) the result of step (iii).

Example : Śā.śa year 1543 Aṣāḍha krṣṇa 4, Tuesday, corresponding to June 8, 1621 (G).
(i) Ahargaṇa (from the epoch of this text) is 160074. Sāyana Ravi $=$

The elapsed years from the epoch $($ gatābdas $)=1543-1105=438$ years.

Consider $[\quad+--\quad] / 399$.

Ignoring the integer quotient we have the remainder $r=13 \mid 48$ days which is less than 15 . Hence the udaya is yet to occur (gamya).
(ii) Now, the sāyana Ravi $=1{ }^{R} 29^{\circ}$ is in the second half of Vrṣabha. From Table 6.1, the Ravi ghațiphalam $=6$ and it is additive.

Now,

$$
x-=\frac{x}{}=
$$

This is now added to $=$. We get
(iii) Since we are considering the udaya (rising) of Guru, we have

Sāyana Ravi $+2^{R}=1^{R} 29^{\circ}+2^{R}=3^{R} 29^{\circ}$
lying in the latter half of Karkataka whose ghattiphalam is 6 and substractive. Multiplying by 30, we get 180 and dividing by 60 we get 3
days. This is substracted from the result of (ii) and we get $-\quad=12$ days.
(iv) We have

Rāśimāna of Vṛ̣̣abha $-300=256-300=-44$ vig.
We have

$$
(-44) \times 15 / 256=-2^{d} 34^{g h} 41^{v i g}
$$

Now, $12^{d}-2^{d} 34^{g h} 41^{\text {vig }}=9^{d} 25^{g h} 19^{\text {vig }}$.

For the udaya of Guru, substracting the above result from 15^{d}, we get

$$
=5^{d} 34^{g h} 41^{v i g}
$$

After so many days from the given date, Guru will be rising.
Ślokas 3 and 4: The (ahar)gaṇa reduced by 115 and added with $1 / 16^{\text {th }}$ of the (gata)abda is divided by 584. For the remainders 36 and 287 (respectively) Śukra rises and sets in the west. For the remainders 297 and 548 (Śukra) rises and sets (respectively) in the east.

The udayamāna of (the rāśis of sāyana) Ravi reduced by 300, multiplied by $35,5,5$ and 36 - respectively for rising and setting in the west and in the east - and divided by the udayamāna (of sāyana Ravi's rāśi).This (value) is added to or subtracted from the remainder (śesa) for rising or setting. If 300 can not be subtracted (aśodhya) from the udayamāna, then the addition and subtraction of the value (obtained from the difference between 300 and udayamāna) with the remainder is reversed.

The risings and settings of Śukra are explained.
(a) Obtain the elapsed years (gatābda) from the epochal year Sā.sā 1105 and the ahargaṇa for the given date: Substract 115 from the ahargana
and to this add $1 / 16^{\text {th }}$ of the gatābda. Divide the resulting sum by 584 . Ignoring the integer quotient, consider the remainder r. (i) If the remainder r is 36 , Śukra rises in the west; (ii) if r is 287 , the he sets in the west; (iii) if r is 297 , Sukra rises in the east; and (iv) if r is 548 , then Śukra sets in the east.
(b) Consider the sāyana Ravi and the udayamāna of the rāśi occupied by him. Take the difference, (udayamāna - 300). Divide this difference by the udayamāna and multiply respectively by $35,5,5$ and 36 for rising in the west, setting in the west, rising in the east and setting in the east. This is added to or substracted from r respectively for rising or setting [If udayamāna <300, then the numeral value is substracted from or added to r respectively for rising or setting].

Example: For the same iștadina (given in the earlier example), ahargaṇa is 160074. Gatābda $=438$.
(a)
$-\quad+-] /$
gives the remainder, $r=554 \mid 22$
(ignoring the integer quotient 273).
Since $r>548$, Sukra has already set in the east by (iv) above.
(b) Sāyana Ravi is i.e., in Vrṣabha 2nd half. The udayamāna of Vrụbha is 255 vig.
Now, $\frac{(255-300)}{255} \times 36=-\frac{6}{21}$
(number 36 is the multiplier for Śskra's settting in the east).
Combining this result with r obtained in step (a), we get

$$
-(-\mid)=|+|=| .
$$

Since Śukra has already set in the east, substracting the corresponding number 548 [see (a) (iv)] we get

$$
560 \mid 43-548=12^{d} 43^{g h} .
$$

Śloka 5 : (When the second) síghrakendras are (respectively) $163^{\circ}, 145^{\circ}$, $125^{\circ}, 167^{\circ}$ and 113°, the planets starting with Kuja attain retrogression. These (values) subtracted from 360° are the points of non-regression (direct motion).

The śighrakendras for the retrograde motion (vakragati) etc., are given. The five planets Kuja, Budha, Guru, Sukra and Śani become retrograde (vakrī) and then direct (mārgī or avakrī) when their second śíghraphalas attain the values listed in Table 6.2. These are called stationary points.

Table 6.2 Stationary points of planets

Planets	Śighrakendrāmśas for	
	retrograde motion	direct motion
Kuja		
Budha		
Guru		
Śukra		
Śani		

Note: (i) The stationary points (for retrograde to direct motion) given in the last column are obtained by subtracting the corresponding entries of the middle column from
(ii) The stationary point for the vakragati of Śukra viz., is almost the same as the corresponding modern value for retrogression.

Śloka 6 : Kuja rises in the east for (śīghrakendra) 28^{0}, Guru for 14° and Śani for 17°. (Each of them) sets in the west for (śīghrakendras) obtained by reducing its rising degrees (udayāmśa) from 360°.

The śighrakendras for the (heliacal) rising and setting of Kuja etc., are given (in Table 6.3).

Table 6.3 Śīghrakendras for rising and setting of Kuja etc.

Planet	Śīghrakendrāmśas for	
	rising in the east	setting in the west
Kuja		
Guru		
Śani		

Note that the above three planets which have their mean daily motion less than that of the Sun always rise (heliacally) in the east and set in the west.

Śloka 7: (For śíghrakendra) 50° and 24° (respectively) Budha and Śukra rise in the west, and for 155° and 177° respectively (they) set in the west. (For śīghrakedra) 205° and 183° respectively Budha and Śukra rise in the east, and for 310° and 336° (respectively) they set in the east.

The śighrakendras for the (heliacal) risings and settings in the east and west for Budha and Śukra are given (in Table 6.4).

Table 6.4 Śighrakendras for risings and settings of Budha and Śsukra

Planet	Śİghrakendrāmśas for			
	rising in the west	setting in the west	rising in the east	setting in the east
Budha Sukra				

Note : The corresponding entries in the 2 nd and 5 th as also in the 3rd and 4th columns add up to

Example : Mean Ravi $=11^{R} 7^{\circ} 56^{\prime} 14^{\prime \prime}$, Manda corrected Guru $=10^{R} 23^{\circ} 56^{\prime} 14^{\prime \prime} . \quad$ Śīghrakendra $=\quad$ 。. Bhuja jyā $=29^{\prime}$, koṭijyā $=116^{\prime}$, S'́íghrakarṇa $=42 \mid 21$, Śíghraphalam $=2^{\circ} 13^{\prime} 52^{\prime \prime}$, Śíghra corrected Guru =
\therefore 2nd śīghrakendra $=$ Mean Ravi - Cor.Guru $=$ $=11^{\circ} 46^{\prime} 8^{\prime \prime}$. This is less than , prescribed for Guru to rise in the east. Since Ravi is greater than cor. Guru, the rising of Guru in the east will take place when their difference is (i.e.after about 2 days).

Śloka 8 : The (current) śīghrakendra (of a planet) in degrees reduced by the prescribed degrees for direct, retrograde (motion), setting and rising, reduced to kalās, divided by the daily rate of motion (in kalās) of the śighrakendra gives the days of the completed or the balance (period) for direct motion etc.

Determining the days etc. for retrograde motion etc. is explained.
For determining the days etc. of retrograde motion, consider the difference between the śighrakendra for vakragati and the current śighrakendra of the planet. Divide this by the rate of daily motion of the śighrakendra (i.e. the difference between the daily motions of the Sun and the planet). The result gives the days etc. of the commencement of the vakragati (retrogression).
Similar procedure is followed for finding the days etc. for direct motion (mārga or avakra gati), rising (udaya) and setting (asta) of a planet.

Example (1) : Kuja's śīghrakendra $S K=\quad=202^{\circ} 33^{\prime} 47^{\prime \prime}$.
(True) śighrakendra gati $=\quad$. The prescribed śīghrakendra for the
direct motion of Kuja is 197°. The difference between Kuja's $S K$ and
. Now Kuja has passed the
commencement of direct motion by $5^{\circ} 33^{\prime} 47^{\prime \prime}=333^{\prime} 47^{\prime \prime}$. Dividing this by the daily rate of motion of the śighrakendra (i.e.), we get

This means that Kuja has been in direct motion for $10^{d} 43^{g h} 36^{\text {vig }}$ since its commencement (after changing from the retrograde motion).
Example (2) : We have Budha's śīghrakendra, $S K=2^{R} 3^{\circ} 8^{\prime} 43^{\prime \prime}=63^{\circ} 8^{\prime} 43^{\prime \prime}$. The prescribed śighrakendra of Budha for rising in the west is 50°.

The difference between Budha's $S K$ and $\quad=S K-50^{\circ}=63^{\circ} 8^{\prime} 43^{\prime \prime}-50^{\circ}$

Dividing this by the daily motion of Budha's śighrakendra (i.e.,
we get

This means that Budha has risen in the west earlier to the given day and time.

Śloka 9 : The kālāmśas of the moon etc. for direct motion are 12, 17, 13, 11, 09 and 15 and (these) reduced by 1 are (the kālāmśas) for the retrograde motion of Kuja etc. The pātas (nodes) of Kuja etc are in rāśis 11, 11, 9, 10, 8 (followed by) degrees 8, 9, 8, 0 and 17. These (pātas) are corrected with the respective siighraphalas with signs reversed.

The kālāmśas and pātas of the bodies are given in the following table (Table 6.5).

Table 6.5 Kālāmśas and Pātas of bodies

Body	Kālāmśas for		Pātas
	direct motion	retrograde motion	
Candra	12	-	-
Kuja	17	16	$11^{R} 8^{\circ}=338^{\circ}$
Budha	13	12	$11^{R} 9^{\circ}=339^{\circ}$
Guru	11	10	$9^{R} 8^{\circ}=278^{\circ}$
Sukra	09	08	$10^{R} 0^{\circ}=300^{\circ}$
Śani	15	14	$8^{R} 17^{\circ}=257^{\circ}$

The above pātas of the planets (Table 6.5) are combined with the śighraphalas of the respective planets to get their corrected pāta (spasṭapāta). (i) If the śīghraphala is positive consider pāta minus śighraphala and (ii) if the śīghraphala is negative then take pāta plus śighraphala to get the spaṣta (corrected) pāta. The pāta of Budha and Sukra are corrected with the mandaphalas of the respective planets.

Note : The kālāmśa of a planet is the angle (in degrees) from the Sun within which the planet heliacally rises or sets.

Śloka 10 : The (mean) latitudes (ksepakas) of Kuja etc. are (respectively) 110, 152, 76, 136 and 130 minutes of arc (liptikās). The Rsine (dorjyā) of the true planet (śīghrocca in the case of Budha and Śukra) added with its (manda corrected) node (pāta) is multiplied by its (mean) latitude (ksepa) and divided by the śīghrakarṇa (to get the true latitude in kalās). (This result) divide by 3 is the latitude (of the body) in angulas etc.

Obtaining the śaras (latitudes) of the five star-planets, Kuja etc is explained.
(1) The mean viksepas (or śaras) of Kuja, Budha, Guru, Śsukra and Śani are respectively $110,152,76,136$ and 130 (in kalās)
(2) (i) In the case of Kuja, Guru and Śani consider the true planet and add its corrected pāta to it. In the case of Budha and Śukra add pāta to their respective śighroccas.
(ii) Consider the bhuja jyā of the sapātagraha [i.e., planet + pāta, obtained in step 2(i)]. Multiply this bhuja jyā by its mean śara and divide by its śighrakarṇa. The result gives the śara of the concerned planet in kalās. Dividing this śara in kalās by 3, we get the same in angulas.
The sara is north or south according as the (planet + pātas) is less or greater than 180°.
Example: On a certain day, we have
True Budha , daily rate of motion of Budha śighrocca $=103^{\prime} 28^{\prime \prime}$.

Śíghrakendra $=2^{R} 3^{\circ} 28^{\prime} 43^{\prime \prime}$, daily motion of śighrakendra $=180^{\prime} 24^{\prime \prime}$
Śīghrakarṇa $=145 \mid 15$ angulas, Pāta of Budha $=11^{R} 9^{\circ} 0^{\prime} 0^{\prime \prime}$
Since the mandaphala is to combined to the pāta we have
Manda corrected spasṭa pāta $=11^{R} 9^{\circ} 15^{\prime} 7^{\prime \prime}$.
Now, the corrected pāta has to be combined to the sīghrocca of Budha.
\therefore Sapātagraha $=$ Śighrocca of Budha + Budha's corrected pātā

$$
=\quad=02^{R} 14^{\circ} 12^{\prime} 23^{\prime \prime}
$$

Bhujajyā of sapātagraha $=115^{\prime} 6^{\prime \prime}$
Now,
Śara of Budha =

$$
=\frac{115 \mid 6 \times 152}{145 \mid 15}=120^{\prime} 27^{\prime \prime}
$$

Dividing by 3 , we get

$$
\text { Śara }=\quad=40 \mid 9 \text { angulas } .
$$

Śloka 11, 12 and 13 : (In the case of rising and setting) in the east and in the west subtract and add three räsis $\left(90^{\circ}\right)$ from and to the planet (respectively) and (find) declination (krānti) of this. Combine the krānti with the latitude to get nata. (This nata) subtracted from 90° is unnata in degrees. Obtain the jyās (R sines) of nata and unnata separately.

Multiply the jyā of natāmśa by śara and multiply (this product) by 3. Dividing (this) by the jyā of unnatāmśa; (result) obtained (is in) kalās. The obtained kalās are added to or subtracted from (the longitude of) the planet according as the latitude (śara) and the natāmśa have the same or the opposite directions.

For (rising or setting in) the west (the positive and subtractive) signs are reversed. Between the planet (with drkkarma applied) and (the true) sun, the lesser one is imagined as the sun and the other as ascendant (lagna). The difference in gha-īs (antaragha-ikās of the udayamānas of rāśis lying between the two bodies) for (rising and setting in the east), and adding 6 räśis for the west, multiplied by 6 is the desired time in degrees (iṣ-akālāmśa). If this (iṣ-akāla) is greater than the prescribed kālāmśa, then the planet's rising is (already) over and if it is lesser, then the rising of the planet is yet to take place. The reverse is the case for setting.

The difference between the iṣ-akāla and the (prescribed) kālāmśa (both in kalās) is multiplied by 300 and divided by the udayamāna (in vigha-is) of the rāsi of (the sāyana planet imagined as) the sun. In the case of (rising or setting in) the west, the division is by the udayamāna of the seventh (rāśi i.e. the imagined sāyana Ravi +6 rāśis).

These ksetra kalās divided by the difference in speeds (of the planet and the sun), in kalās, and by the sum for retrograde planet gives the days lapsed or to go for the rising or setting (of the planet).

Obtaining dṛkkarma correction and udaya (rising) and asta (setting) for the planets is explained.

(a) To find drkkarma :

(i) On a given day, consider the true position of the planet. Depending on the śighrakendra of the planet, if it is the case of rising and setting in the east, subtract 3 rāśis from the planet and if it is the case of rising and setting in the west, add 3 rāsis to it.
(ii) Consider the declination (krānti) δ of the above (i.e., planet 3 rāśis). Find natāṃśa given by () where is the latitude (akṣāmśa) of the $\times \quad$ place. Compute, unnatāméa $=\quad$ natāméa.
(iii) Find the jyā of the natāṃśa and unnatāmśa.

Now,

> Dṛkkarma =

This is combined with the true position of the planet whose rising and setting timings are required.
The sign (additive or substractive) of the dṛkkarma is decided as follows:
(i) In the case of rising and setting in the east, if the natāmśa and śara have the same direction, then the drkkarma is additive and if these are in opposite directions then it is subtractive.
(ii) In the case of rising or setting in the west, the signs opposite to the above are considered.

(b) Rising and setting of planets :

(i) Consider the true Sun and the drkkarma corrected planet. The lesser one between the two is treated as Ravi and the other one as lagna. Find the antaraghaṭikās (i.e. the difference in time unit by considering the udayamāna) of the Sun and the Lagna for rising and setting in the east.

For rising and setting in the west, add 6 rāśis (180°) to the above body which is considered as the Sun and then find the antaraghatikā̄s.
(ii) The antaraghaṭikās (in ghațīs) when multiplied by 6 we get the iṣṭakālāmśa (in degrees). If this is greater than the prescribed kālāmśa (Table 6.5), then the planet has already risen. If it is less than the prescribed kālāmśa, then the planet is yet to rise.
(iii) The difference between the iṣṭakālāmśa and the prescribed kālāmśa is multiplied by 300 and divided by the udayamāna (in vighattīs) of the rāśi of the sāyana position of the body considered as the Sun. In the case of rising or setting in the west, consider the udayamāna of the seventh rāśi (of the considered sāyana Ravi) i.e, of sāyana position $+6^{\mathrm{R}}$.

This result is divided by the difference between the daily motions of the planet and the actual Sun. This gives time interval for the rising and setting in days etc.

In the case of a planet which is retrograde, the sum instead of difference of their daily motions is considered as the divisor.

Example : We shall consider the case of rising of Budha in the west. We have (Nirayaṇa) Budha +3 rāśis $=$

Adding ayanāmśa $18^{\circ} 14^{\prime}$, we get
Sāyana Budha $+\quad=5^{R} 5^{\circ} 41^{\prime} 06^{\prime \prime}$.
Krānti (declination) for $5^{R} 5^{\circ} 41^{\prime} 06^{\prime \prime}=9^{\circ} 32^{\prime} 56^{\prime \prime}$ North
(as given by Sumatiharṣa).

Since the natāṃ́a and śara are in opposite directions and we are considering the rising of the planet in the west, the drkkarma is additive.

Therefore, adding the dṛkkarma to the true nirayaṇa Budha we get

$$
1^{R} 17^{\circ} 27^{\prime} 06^{\prime \prime}+32^{\prime} 24^{\prime \prime}=1^{R} 17^{\circ} 59^{\prime} 30^{\prime \prime}
$$

Thus, the dṛkkarma corrected (nirayana) true Budha $=1^{R} 17^{\circ} 59^{\prime} 30^{\prime \prime}$. The true Sun $=1^{R} 3^{\circ} 6^{\prime} 12^{\prime \prime}$. Since between the two the Sun is less than Budha, we treat Sun's position as itself and Budha's position as of the lagna. Since we are considering the rising of Budha in the west, the bhogyakāla of the (sāyana Sun $+6^{R}$) is 98 vig. The bhuktakāla of the thus considered sāyana lagna (i.e. Budha) is 71 vig. The sum of these two is 169 vig. i.e. $2^{\text {gh }} 49^{\text {vig }}$. Multiplying this by 6 , we get ${ }^{\circ} \quad$. This is isṭtakālāmśa. Since the isṭtakālāṃśa is greater than the prescribed kālāmśa for Budha viz. , the rising of the planet in the west has already taken place; we shall find by how many days etc. earlier this took place. The difference between the iṣtakālāmśas and the prescribed kālāmśas is $\quad=3^{\circ} 54^{\prime}=\quad$ Multiplying this by 300, we get
70200. The seventh rāśi from the Sun (i.e. Sun) is in Vṛ̣ccika whose udayamāna is 343 vig. The difference in the daily motions of Ravi and

Budha is $\quad=46 \mid 10$. Now, we have $\frac{70200}{343 \times 46 \mid 10}=$ $4^{d} 25^{g h} 58^{v i g}$.
These days etc. prior to the given day give Vaiśakha krṣ̣̣a aṣtami.
Śloka 14 : If the east visible planet is greater or the west visible planet is less than the Sun, (then) the days obtained from the sum of the is-a and the (prescribed) kālāmśas are (respectively) of the elapsed (gata) and the yet-to-occur (esya).

If in the case of rising in the east, the planet's position is greater than that of the Sun, and in the case of rising in the west if the planet is less than the Sun, the gata (elaspsed) and the gamya (to be covered) days etc. get reversed i.e., these become respectively gamya and gata.

Śloka 15 : The shadow of the gnomon (aksabhā or palabhā in añgulas) multiplied by eight is added to and subtracted from 98° and 78° respectively for the appearance (rising) and disappearance (setting) of Canopus (Agastya, born out of the pot) when the sun is equal to those (positions in longitude).

Now, the rising and setting of the Agastya (Canopus) star is explained.

Multiply the akṣabhā (palabhā) of the place in angulas by 8 and add 98°. When the Sun comes to this position, the Agastya star rises.

Similarly, multiply the akṣabhā by 8 and substract this from . When the Sun reaches this position, Agastya sets.

Example : The palabhā of the given place is angulas. Multiplying
by 8 , we get ${ }^{\circ}$ ' and adding , we get
$=\quad \circ \quad,=$
. When the Sun comes to this position Agastya rises. Substracting 44° from , we get $=$ so that when the Sun reaches that point, Agastya sets.

To find the days etc. elapsed or to be covered for the rising or setting of Agastya, the following procedure is adopted :

Find the differences between the position of the Sun at the sunrise on the given day and the positions obtained above for the rising and setting of Agastya. Convert them into kalās and divide by the daily motion of the Sun in kalās. The results give days etc. elapsed since or to be covered for the rising or setting of Agastya.

The rising and setting of the Moon

The method of finding the rising and setting of the Moon is demonstrated in the following example.
Example (1) : Śaka 1517 Phālguṇa śukla 10 (daśamī), Thursday. This day corresponds to February 29, 1596 A.D. (G). The ahargaṇa (from the epoch) is $1,50,843$.
Mean nirayaṇa Sun at the sunset $=10^{R} 21^{\circ} 02^{\prime} 11^{\prime \prime}$
Mean nirayana Moon at the sunset $=11^{R} 6^{\circ} 19^{\prime} 43^{\prime \prime}$
Mandocca of the Moon $=1^{R} 3^{\circ} 42^{\prime} 36^{\prime \prime}$
Pāta of the Moon $=0^{R} 2^{\circ} 55^{\prime} 38^{\prime \prime}$
Ayanāṃśa $=17^{\circ} 52^{\prime} 55^{\prime \prime}$
True nirayaṇa Sun $=$
Sun's true daily motion $=60^{\prime} 08^{\prime \prime}$
True nirayaṇa Moon =

Moon's true daily motion $=735^{\prime} 04^{\prime \prime}$
Cara $=-\quad$ (for the Sun)
Cara corrected True nirayaṇa Sun $=$
Cara corrected True nirayaṇa Moon $=11^{R} 09^{\circ} 18^{\prime} 59^{\prime \prime}$
[The Cara correction for the Moon $=\frac{-35^{\prime \prime} \times 735^{\prime} 04^{\prime \prime}}{60}=\quad=-7^{\prime} 08^{\prime \prime}$]
Cor. Pāta $=0^{R} 2^{\circ} 55^{\prime} 38^{\prime \prime}$
Śara $=28 \mid 52$ añg $($ South $)$
Since we are considering the rising in the west, we have
Cara cor. nirayana Moon $+3^{R}=2^{R} 09^{\circ} 18^{\prime} 59^{\prime \prime}$.
Declination of (Moon $+3^{R}$), $\delta=$
(North)
Akṣāmśa $=$ (North)
Natāmśa, $=\quad$ (South)

Dṛkkarma =

Dṛkkarma corrected Moon $=11^{R} 9^{\circ} 17^{\prime} 52^{\prime \prime}$
Dṛkkarma corrected sāyana Moon $+6^{R}$

$$
\begin{equation*}
=11^{R} 27^{\circ} 10^{\prime} 47^{\prime \prime}+6^{R}= \tag{1}
\end{equation*}
$$

Cara cor. sāyana Ravi $+6^{R}=5^{R} 10^{\circ} 51^{\prime} 13^{\prime \prime}$

Between (1) and (2) since the lesser value is in (2), it is treated as the Sun and the value in (1) as the lagna. Both are in Kanyā rāśi.

The difference $=5^{R} 27^{\circ} 10^{\prime} 47^{\prime \prime}-5^{R} 10^{\circ} 51^{\prime} 13^{\prime \prime}$

$$
=\circ \quad " \text { in Kanyā. }
$$

The udayamāna of Kanyā for the given place is 333 vig. Therefore, for , we get
Iștakāla = =

Multiplying, this by 6 we get
Iṣṭlakālāmśa $=18^{\circ}$.
The prescribed kālāmśa (Table 6.5) for the Moon is . Since the iṣtakālāmśa is greater than the prescribed kālāmśa, the Moon has already risen in the west.
The difference between the iṣṭakālāmśa and the prescribed kālāmśa

$$
=\quad=\quad=\quad .
$$

The udayamāna of (sāyana Ravi) i.e. of Kanyā is 333 vig.
Moon's daily motion - Sun's daily motion =

We have, =

This means that Moon has risen in the west $28^{g h} 49^{\text {vig }}$ prior to the sunset.

Example (2) : We now consider an example for the setting of the Moon in the east.

Śaka 1523, Jyeṣtha kṛ̣̣̣a 30 (amāvāsyā), Thursday. Ahargaṇa $=152762$.
At the sunrise, we have
True nirayaṇa Sun $=1^{R} 21^{\circ} 54^{\prime} 59^{\prime \prime}$
True nirayaṇa Moon $=1^{R} 21^{\circ} 29^{\prime} 46^{\prime \prime}$

$$
\text { Ayanāṃśa }=17^{\circ} 58^{\prime} 10^{\prime \prime}
$$

Cara $=$
Cara corrected nirayaṇa Sun $=1^{R} 21^{\circ} 53^{\prime} 15^{\prime \prime}$
Cara corrected nirayaṇa Moon $=1^{R} 21^{\circ} 04^{\prime} 58^{\prime \prime}$
Pāta $=3^{R} 13^{\circ} 33^{\prime} 27^{\prime \prime}$
Śara $=51 \mid 49$ añgulas.
Since we are considering the setting of the Moon in the east, substracting 3^{R} from the Moon, we get

Vitribha Candra $=\quad$ and its
Declination $($ krānti $)=12^{\circ} 53^{\prime} 10^{\prime \prime}($ South $)$
Natāṃśa $=$
Dṛkkarma =
Drkkarma cor. Moon $=1^{R} 20^{\circ} 30^{\prime} 13^{\prime \prime}$
As obtained earlier,

$$
\text { Ișṭakālāṃśa }=11^{\circ} 18^{\prime}
$$

This is less than the prescribed kālāṃśa of the Moon viz. . Since we are considering the setting in the east, it is already over.

The difference between the two $=$
Cara cor. sāyana Ravi $=\quad=2^{R} 09^{\circ} 53^{\prime} 09^{\prime \prime}$ i.e. in Mithuna.

The udayamāna of Mithuna $=305$ vig.
Moon's daily motion - Sun's daily motion $=801^{\prime} 58^{\prime \prime}$
We have

This means that the Moon has set $3^{g h} 05^{\text {vig }}$ before the sunrise of the given amāvāsyā day i.e., on the night of Carturthī with $3^{g h} 05^{\text {vig }}$ before sunrise.

Daily rising and setting of planets

The planets' daily rising in the east and setting in the west is explained. The udayalagna of the planet rising in the east and the astalagna of the planet setting in the west are to be determined.
Example : We shall find the timings of the moonrise in the east and the Moon's setting in the west.
Śā.śa. 1517 Māgha krṣṇa 4 (Caturthī) Saturday
Gatābda $=1517-1105=412$, ahargaṇa $=1,50,831$
corresponding to February 17, 1596 (G). We have

At the sunset
Mean Sun $=10^{R} 9^{\circ} 12^{\prime} 36^{\prime \prime}$
Mean Moon $=5^{R} 28^{\circ} 12^{\prime} 45^{\prime \prime}$
Mandocca of the Moon $=1^{R} 2^{\circ} 22^{\prime} 15^{\prime \prime}$
Moon's pāta $=0^{R} 1^{\circ} 27^{\prime} 26^{\prime \prime}$
Ayanāṃśa $=17^{\circ} 52^{\prime} 52^{\prime \prime}$
Carapala $=57$
Cara corrected Sun =
Cara corrected Moon $=5^{R} 26^{\circ} 50^{\prime} 54^{\prime \prime}$
Sun's true daily motion $=60^{\prime} 28^{\prime \prime}$
Moon's true daily motion =
Pāta's daily motion =

Śara of the Moon $=\quad$ ang. North
Now, for finding the moonrise in the east, we have
Vitribha Candra $=2^{R} 26^{\circ} 50^{\prime} 54^{\prime \prime}$
Krānti (declination) of the above, $\delta=\quad$ (North)
Akṣāmśa (latitude of the place), $=\quad$ (North)
Natāṃśa, $=\quad$ (South)
Drkkarmaphala $=$
Dṛkkarma corrected Moon $=5^{R} 26^{\circ} 50^{\prime} 41^{\prime \prime}$
This is the udaya lagna of the Moon.
The Cara corrected Sun at the sunrise $=10^{R} 10^{\circ} 53^{\prime} 53^{\prime \prime}$
This is the udaya lagna of the Sun.
Adding 6^{R} to the udayalagna, we get
Astalagna $($ of the Sun $)=$
Now, Moon's udayalagna - (Sun's) astalagna

$$
=5^{R} 26^{\circ} 50^{\prime} 41^{\prime \prime}-4^{R} 10^{\circ} 53^{\prime} 53^{\prime}=45^{\circ} 56^{\prime} 48^{\prime \prime}
$$

The bhogya kālā of astalagna i.e. of Simha rāśi $=$
vig.
The bhuktakāla of the Moon's udayalagna
i.e. of Kanyā rāśi $=\quad=298$ vig.

Their sum $=(218.4+298)$ vig. $=516.4$ vig $=\quad g \underline{h}$.
This means that the Moon rises in the east $8^{g h} 36^{v i g}$ after the sunset on the given day.

CHAPTER 7
 ŚRṄGONNATIU
 (Elevation of Moon's Cusp)

Ślokas 1 and 2($1^{\text {st }}$ half) : The difference between (the algebraic sum of) the moon's declination in arc-minutes (kalās) corrected with its latitude (śara in kalās) and the (declination) of six rāsis added to the (sāyana) sun is multiplied by Rsine of the longitude of moon reduced by (that of) the moon and (multiplied) by the latitude (in degrees) and divided by 120. (This result is added to or subtracted from the first mentioned difference of krāntis to get the all-corrected krānti of the moon).

The bhuja of (longitude of) the moon reduced by (that of) the sun, in räsis etc. multiplied by 5 (and the same considered as degrees etc).The division (by this result) of the earlier obtained all-corrected declination of the moon, (both reduced to kalās), is the valanam in angulas.
(i) Find the krānti (declination) and the śara (latitude) of the Moon at the sunset.
(ii) Take the algebraic sum of the krānti and the śara obtained in (i).

This gives the śara corrected krānti.
(iii) Find the krānti of
(iv) Find the diference between the two krāntis obtained in (ii) and (iii).
(v) Find the bhjua jyā of (Moon - Sun). Multiply this bhuja jyā by the akṣāmśa (latitude) of the place and divide by 120 .

This is added to or subtracted from (as the case may be) the result of (iv). This value gives the finally corrected (sarva samskāra samskrta) krānti of the Moon. (vi) Finding the valanam : Find the bhuja of (Moon - Sun); multiply this by 5 . This result, in rāśis etc. is taken as amśas (degrees) etc. Convert all these values into vikalās (seconds of arc).

The finally corrected krānti (also in vikalās) obtained in (v) is divided by the above result in vikalās to get the valanam is angulas. The direction of the valanam is the same as that of the finally corrected krānti.

Example : Śā.Śa. 1517 Phālguṇa śukla (pratipat), Thursday.
At the sunset, we have
Nirayana true Moon $=11^{R} 9^{\circ} 18^{\prime} 59^{\prime \prime}$, Ayanāṃ́a $=\quad \circ \quad "$

Sāyana true Moon

Krānti of the Moon $=67^{\prime} 36^{\prime \prime}($ South $)$, Śara $=86^{\prime} 16^{\prime \prime}$ (South)
Śara cor. Krānti $=$ krānti + śara $=153^{\prime} 52^{\prime \prime}($ South $)$

Krānti of $+\quad=\quad$ " (North)
Algbraic sum of krāntis of (1) and (2) is

$$
\begin{equation*}
456^{\prime} 15^{\prime \prime}-153^{\prime} 52^{\prime \prime}=302^{\prime} 23^{\prime \prime}=5^{\circ} 02^{\prime} 23^{\prime \prime} \text { (North) } \tag{3}
\end{equation*}
$$

(Moon - Ravi)

Bhuja jyā $\left(16^{\circ} 20^{\prime} 41^{\prime \prime}\right)=33^{\prime} 41^{\prime \prime}$

Akṣāṃśa (latitude) of the place
(North)

Subtracting (4) from (3), we get

$$
5^{\circ} 02^{\prime} 23^{\prime \prime}-6^{\circ} 54^{\prime} 04^{\prime \prime}=-1^{\circ} 51^{\prime} 41^{\prime \prime}=\quad \text { (South) }
$$

Thus, Moon's finally corrected krānti

Bhuja of (Moon - Sun)
Multiplying the bhuja by 5 , we get

Treating the above value in rāsis etc. as in degrees etc., we have

$$
2^{\circ} 21^{\prime} 43^{\prime \prime}=8503^{\prime \prime}
$$

The finally corrected krānti [(from (5)]
\therefore Valanam angulas

Ślokas 2 ($2^{\text {nd }}$ half) and 3 ($1^{\text {st }}$ half) : The ko-i of the (longitude of) moon reduced by (that of) the sun divided by 15 is the divisor (hāra). The quantity obtained by dividing 36 by this (divisor) is kept in two places and (then) reduced by or added with the divisor (hāra) and halved are respectively vibhā (or sita, illuminated) and svabhā (or asita, unilluminated).

Now, the sita and asita measures (of illumination and darkness) of Moon are explained.

Find the koṭi (i.e. the complement of the bhuja) of (Moon - Sun). Divide the koṭi by 15 ; the quotient is called the hāra. Then we have

Vibhā $=-\left[{ }^{\circ}-\quad\right]$

Svabhā $=-\left[{ }^{\circ}+\square\right.$

Example : We have, in the above example, Bhuja of (Moon - Sun) $=16^{\circ} 20^{\prime} 41^{\prime \prime}$

Koṭi of $($ Moon - Sun $)=\quad-\quad, \quad "=$ Hāra $=\quad=$

Dividing by the above value we have $\left.\frac{36^{\circ}}{4 \mid 53}=7 \right\rvert\, 20$

Vibhā $=\quad$ angulas

Svabhā $\left.=\frac{7|20+4| 54}{2}=\frac{12 \mid 14}{2}=6 \right\rvert\, 07$ añgulas
Ślokas 3 ($2^{\text {nd }}$ half) and 4 : Drawing a circle (representing the moon) with diameter of six angulas, the valanam is marked on it (based on its
direction). The (measure in angulas of) the valanam is marked in eastern direction for the bright fortnight (śukla paksa) and in the west for the dark fortnight (krṣna paksa). From the point (representing) the end of the valanam cut off the measure of the illuminated part (vibhā) towards the centre (of the circle). With the (point representing) the end of the vibhā draw circle with (the measure of) the un-illuminated part (svabhā) as diameter. This result is the shape of the fractured moon (in the shape of horns). [The horn-shape is in the direction opposite to the valanam].

On the even level ground draw a circle of diameter 6 angulas. This is considered as representing the Moon. Mark the east, west, north and south directions. Then the valanam measure (obtained earlier) is marked as per its direction. This is done on the eastern side in the case of the śukla pakṣa (bright fortnight and on the western side in the krṣṇa pakṣa (dark fortnight). Starting from the end point of the valanam, spreading a thread towards the centre of the circle, cut off the length corresponding to the vibhā (illuminated) measure. Taking this point as the centre, draw a circle whose diameter is equal to the svabhā (unilluminated) measure. This yields "fractured" Moon in the shape of the "horns". The śrniga (horn) shape is in the direction opposite to that of the valanam.

Example 1 : Śsā.Śa. 1539 Āśvina (Āśvayuja) śukla 6 (Ṣaṣṭī), Friday.
Gatābda $=1539-1105-434$, Ahargaṇa 1,58,733
corresponding to Octber 6, 1617 (G).
At the instant of sunset we have
Cara corrected true Sun $=5^{R} 25^{\circ} 17^{\prime} 17^{\prime \prime}$

Cara corrcted true Moon $=8^{R} 12^{\circ} 03^{\prime} 00^{\prime \prime}$

Sun's true daily motion $=59^{\prime} 21^{\prime \prime}$
Moon's true daily motion $=774^{\prime} 05^{\prime \prime}$

Ayanāṃ́sa $=18^{\circ} 14^{\prime} 31^{\prime \prime}$

Krānti (declination) of Moon
(South)

Akṣabhā of Yodhapurī $=5 \mid 5$ angulas

Śara of the Moon $=197^{\prime} 57^{\prime \prime}($ South $)$
Śara corrected krānti $=1437^{\prime} 11^{\prime \prime}+197^{\prime} 57^{\prime \prime}=1635^{\prime} 08^{\prime \prime}$ (South)

Krānti of sāyana $+\quad=\quad$ " (North)
The algebraic sum of the above two krāntis

$$
\begin{array}{lll}
=-\quad, \quad, \quad "=- \\
& \\
= & & \tag{1}\\
& \text { (South) } & \\
\text { (South) }
\end{array}
$$

Bhuja jyā of (Moon - Sun) $=$

Latitude, Akṣāṃśa (of Yodhapurī)

Bhuja jyā $\quad=0$, "(North)

Subtracting (2) from (1), we get

$$
\begin{equation*}
=- \tag{S}
\end{equation*}
$$

This is the finally corrected krānti of the Moon.

Bhuja of (Moon - Sun) $=2^{R} 17^{\circ} 16^{\prime} 43^{\prime \prime}$
Multiplying the above result by 5 , we get

$$
2^{R} 17^{\circ} 16^{\prime} 43^{\prime \prime} \times 5=12^{R} 26^{\circ} 23^{\prime} 35^{\prime \prime}
$$

Considering this as degrees, we have $12^{\circ} 26^{\prime} 23^{\prime \prime}=44783^{\prime \prime}$

$$
\text { Valanam } \quad=3 \mid 47 \text { anggulas }[\text { from }(3) \text { and }(4)] .
$$

We have
Bhuja of (Moon - Sun) $=2^{R} 17^{\circ} 16^{\prime} 43^{\prime \prime}$

\therefore Hāra $=$

We have

Vibhā
$=21|38| 56$ añgulas.
We consider the following example for the last quarter of a lunar month.
Example 2 : Śā.Śa. 1539 Kārtika Krṣ̣̣a 13 (trayodaśí), Friday.
Ayanāṃśa $=18^{\circ} 14^{\prime} 34^{\prime \prime} \quad$ Ahargaṇa $=1,58,754$
corresponding to October 27, 1617 (G).
At the time of sunrise, we have
True Sun

True Moon $=5^{R} 18^{\circ} 34^{\prime} 30^{\prime \prime}$

True daily motion of the Sun $=61^{\prime} 28^{\prime \prime}$
True daily motion of the Moon $=722^{\prime} 20^{\prime \prime}$

Pāta of the Moon $=2^{R} 1^{\circ} 12^{\prime} 0^{\prime \prime}$

True daily motion of the pāta $=3^{\prime} 11^{\prime \prime}$
Declination (krānti) of the Moon = \quad " (South)
Sara of the Moon $=\quad, \quad "($ South $)$
\therefore Śara corrected krānti=

Krānti of $=\quad, \quad$ (North)
The algebraic sum of the above two Krāntis,
Cor. Krānti $=\quad$ " $=7^{\circ} 24^{\prime} 57^{\prime \prime}$ (North)

Bhuja jyā of (Moon - Sun)
Akṣāmśa $=24^{\circ} 35^{\prime} 09^{\prime \prime}$

Now,
(North)

Subtracting (1) from (2), we get

$$
\begin{equation*}
11^{\circ} 48^{\prime} 41^{\prime \prime}-7^{\circ} 24^{\prime} 57^{\prime \prime}=4^{\circ} 23^{\prime} 44^{\prime \prime}=\quad \text { (North) } \tag{3}
\end{equation*}
$$

This is the finally corrected krānti of the Moon.
Bhuja of (Moon - Sun)

Koṭi
Bhuja
Considering this as in degrees, we have $4^{\circ} 23^{\prime} 50^{\prime \prime}$
\therefore valanam [from (3) and (4)]

$$
=0^{\circ} 59^{\prime}(\text { South })
$$

Hāra $=\quad=\frac{61^{\circ} 13^{\prime} 54^{\prime \prime}}{15}=$

Now, $\square^{\circ}=\bar{T}=1 \mid$
\therefore Vibhā $=\quad-\quad-\quad|\quad \approx 2| 22$ añg.

Svabhā $=-[|| |]=\xlongequal{\mid} \approx 6 \mid 27$ añg.

Note : In Examples 1 and 2 above the two days considered are in the same lunar month (with a difference of 21 days in their ahargana). The commentator gives the first one as in the \bar{A} śvina bright half and the second as in the Kārtika dark half.

CHAPTER 8

GRAHAYUTI

(Planetary Conjunctions)

Ślokas 1 and 2 (Ist half) : (The mean diameters in arc-minutes, kalās, of Kuja etc. namely) 5, 6, 7, 9 and 5 kept separately. (The related mean diameter) is multiplied by the difference between the radius (120) and the śìghra karṇa (śīghra hypotenuse) and divided by 3 times parākhya (of the concerned planet). The result is subtracted from or added to the separately kept mean diameter according as the śīghra karṇa is greater or less than the radius (120) and divided by 3 (to get) the diameter in angulas.

The mean diameters of the five tārāgrahas in yojanas and kalās are as given in Table 8.1 below.

Table 8.1 Diameters of planets

Planet	Kuja	Budha	Guru	Śukra	Śani
Diameter kalās	5	6	7	9	5
Diameter yojanas	1885	279	16649	1110	2955

To get the true diameter (bimba) of a planet, multiply the mean diameter in kalās (given in Table 8.1) by the difference between trijyā (120) and the śïghra karṇa and divide by 3 times the parākhya (given in Chapter 2, Śloka 2).

This result is added to or subtracted from the mean diameter (in kalās) according as the síghra karna is less than or greater than the trijyā (120).

That is, if the mean diameter is denoted by $M D$, the śighrakarna by $S K$, parākhya by P, then the true diameter TD is given by
$T D=M D+\frac{(120-S K)}{3 \times P \square} \times M D$ kalās.

Dividing the above value by 3 , we get $T D$ in angulas.
Example 1 : For Guru, $M D=7$ kalās, kalās, parākhya $=23$.
$\therefore T D=7-\frac{(15 \mid 9) \times 7}{3 \times 23}$ kalās $=5 \mid 29$ kalās. Dividing by $3, T D=1 \mid 49$ angulas.

Example 2 : For Śukra, $M D=9$ kalās, $S K=89 \mid 23$, parākhya $=87$.
$\left.\therefore T D=9+\frac{(120-89 \mid 23) \times 9}{3 \times 87}=10 \right\rvert\, 3$ kalās.

Dividing by $3, T D=3 \mid 21$ angulas.
Ślokas 2 ($2^{\text {nd }}$ half) and 3 : The difference in the (longitudes of the conjuncting) planets in arc minutes (kalās) divided by the difference in their daily motions (faster motion minus the slower) if they move in the same direction, or by the sum (of the daily motions) if one of them is retrograde, is the (number of) days elapsed since conjunction. The conjunction is past (gata) or yet to occur (esya) according as the (longitude of) the slower planet is less (than that of the faster one) or the other way.

Determination of the instant of conjunction (grahayuti) of two planets is explained.
(i) Find the difference between the positions of the two planets (in kalās).
(ii) Divide the result of (i) by the difference between the true daily motions of the two planets (in kalās) if the planets are both in direct motion or both retrograde.

On the otherhand, if one planet is direct and the other is retrograde then the result of (i) is divided by the sum of the true daily motions of the two planets.

The result of (ii) is in days etc. While taking the difference, the true daily motion of the slow moving planet is subtracted from that of the fast moving one.

If the position of the slow moving planet is less than that of the fast moving planet, then the conjunction is past (gata) by days etc. obtained above. On the otherhand, if the position of the fast moving planet is less than that of the slow moving one, then their conjunction is due (gamya) by the days etc. obtained earlier.

Example : Śsā. Śa. 1541 Vaiśākha kṛ̣ṇa 14, Sunday. Ahargaṇa $=1,59,288$ corresponding to April 14, 1619 (G).

Note: Sumatiharsa's date is not correct. The given conjunction falls on May 12, 1619(G), Sunday. The correct KK ahargana is 159316.

True Guru $=\quad \circ \quad "$ and True Śsukra $=11^{R} 16^{\circ} 51^{\prime} 26^{\prime \prime}$ at the sunrise.

Guru's true daily motion $=11^{\prime} 31^{\prime \prime}$
Sukra's true daily motion $=60^{\prime} 57^{\prime \prime}$.
Since the slow moving Guru's position is less than that of the fast moving Sukra, their conjunction (yuti) was recently over (gata).

The instant of conjunction
$=\frac{\left(11^{R} 16^{\circ} 51^{\prime} 26^{\prime \prime}-11^{R} 16^{\circ} 39^{\prime} 07^{\prime \prime}\right)}{\left(60^{\prime} 57^{\prime \prime}-11^{\prime} 31^{\prime \prime}\right)}=\frac{12^{\prime} 19^{\prime \prime}}{49^{\prime} 26^{\prime \prime}}$ day $=0^{d} 14^{\mathrm{gh}} 56^{\mathrm{vig}}$

This means that the conjunction of Guru (Jupiter) and Sukra (Venus) took place about $14^{g h} 56^{\text {vig }}\left(5^{h} 58^{m} 24^{s}\right)$ before the sunrise of the given day.

Ślokas 4, 5 and 6 : From the motion for the days (etc.) for (or since) the conjunction thus obtained they (the two planets) become equal (in longitudes). The latitudes (of the two bodies) are to be worked out. Here, (in the case of the) moon's latitude (it) has to be corrected with its nati. If the (two) latitudes (śaras) have the same or different directions, respectively their difference or sum is considered. If the difference in latitudes (as explained above) is less than the sum of the semidiameters (of the two bodies) then the "bheda" conjunction occurs. All operations starting with (the effect of the) parallax are carried out as in solar eclipse. The slower moving body is considered as the sun and the faster one as the moon (if both have direct motion). If one of them is retrograde (vakrī) then that (body) is considered as the sun whether it is slower or faster. If both are retrograde, then the faster one is taken as the sun. If the (common longitude of either) planet (in conjunction) in the night is less than the ascendant (lagna) and greater than the descendant (i.e. lagna $+180^{\circ}$) the conjunction is visible. [If the longitude of the planets lies between the ascendant and the descendant, the conjunction is not visible].

Determination of details related to the conjunction of two planets is explained.

In the case of conjunction of two planets its instant and their equal longitudes are first obtained.

Śara : Find the sum of the planet and its pāta. Obtain the bhuja jyā of this sum. Multiply the bhuja jyā by the vikṣepa (mean śara) and divide by śighra karṇa. Dividing by 3, we get the śara in angulas (see Śloka 10, Chapter 6, Udayāstādhikāra).

The sara is north or south according as the (planet + pāta) is less than or greater than 180°.
(a) If the two planets have their saras in opposite directions, then the two planets are in the respective directions of saras.
(b) If both the planets have their śaras north, then the planet with greater sara is considered as in the north relative to that of the lesser sara considered to be in south.
(c) If both the planets have their saras south, then the one with less śara is considered to be in the north relative to the other.

If both planets have the same direction then take the difference of their śaras. If in opposite directions, then consider their sum. This gives spasṭa sara. The result when divided by 24 gives us the value of hastas.

If both planets have direct motion, then the one with slower motion is considered as the Sun and the other as the Moon.

If one of the planets is retrograde (vakrī) then it is treated as the Sun, irrespective of its motion being faster or slower, and the other planet as the Moon.

If both planets are retrograde, then the faster one is taken as the Sun and the other as the Moon.

The planet thus considered as the Sun is taken as the chādya (eclipsed)and the other planet (considered as the Moon) is taken as the chādaka (eclipser) as in the case of a solar eclipse.

Treating the yutikāla (instant of conjunction) as the darśānta (end of the newmoon day), find the lambana, nati, sthiti, sparśakāla and mokṣa kāla as in the case of the solar eclipse.

Example : From the examples considered under Ślokas 2 and 3, we have obtained, the instant of conjunction (before the sunrise of the given day). For this instant of conjunction, we have

True Guru $=11^{R} 16^{\circ} 36^{\prime} 15^{\prime \prime}$

```
True Śsukra =
Pāta of Guru \(=9^{R} 8^{\circ} 0^{\prime} 0^{\prime \prime}\)
Corrected pāta of Guru = Pāta - śighraphala
```

Sapāta Guru = Guru + cor. pāta
Bhujajyā of Sapāta Guru $=116^{\prime} 23^{\prime \prime}$
Vikṣepa (i.e., Mean Śara) $=\quad($ South $)$
Síghrakarṇa $=$
Śara of Guru =
(South)

Dividing by 3 ,
Śara of Guru $=\quad$ angulas $($ South $)$

Pāta of Śsukra $=10^{R} 0^{\circ} 0^{\prime} 0^{\prime \prime}$

Mandaphala of Śsukra $=+1^{\circ} 31^{\prime} 11^{\prime \prime}$.

Corrected pāta of Śukra $=$ Pāta + mandaphala $=$
\therefore Sapāta Śukra $=$ Śīghrocca of Śukra + cor. pāta

Vikṣepa (i.e., mean śara) $=$
Śīghrakarṇa $=$

Śara of Śukra

Dividing by 3 , we get
Śara of Śukra $=23 \mid 03$ añgulas $($ South $)$
Now, since both Guru and Śukra have their saras in the same direction (south), the lesser (śara) of the two is of Guru. Therefore, Guru is considered as in the north relative to Sukra.

Here, both Guru and Śukra have direct motion. The slower moving Guru is treated as the Sun and the faster Śukra as the Moon for determining "lambana, nati etc as in the solar eclipse.

At the instant of conjunction , we have

True sāyana Guru $=0^{R} 4^{\circ} 52^{\prime} 25^{\prime \prime}($ Ayanāmśa $=$
Sāyana lagna $=9^{R} 26^{\circ} 21^{\prime} 39^{\prime \prime}$
(Sāyana) vitribha lagna $=6^{R} 26^{\circ} 21^{\prime} 39^{\prime \prime}$.
(sāyana) Guru - (sāyana) vitribha lagna
$=\quad \circ$, "

Bhuja of the above difference $=6^{R}-5^{R} 8^{\circ} 30^{\prime} 46^{\prime \prime}=21^{\circ} 29^{\prime \prime} 14^{\prime \prime}$.

We have madhya lambanam $=2 \mid 10 \mathrm{gh}$.

Spașta lambanam $=1 \mid 52 \mathrm{gh}$.

Now, both (sāyana) Guru and Śsukra, having the positions $0^{R} 4^{\circ} 52^{\prime} 25^{\prime \prime}$ (Meṣa) are greater than the sāyana lagna (Makara) i.e. $9^{R} 26^{\circ} 21^{\prime} 39^{\prime \prime}$ (Makara) and less than the sāyana asta lagna (i.e. $3^{R} 26^{\circ} 21^{\prime} 39^{\prime \prime}$). Therefore, the yuti (conjunction) is not visible at the given place. However, the bheda yoga is there. We have

Manaikyārdha $=-($ dia. of Guru + dia. of Śukra $)$
$=-|\quad|=\mid$ angulas

Since both śaras have the same direction (south), taking their difference, we get the corrected śara. We have
nati $=0 \mid 31$ angulas $($ South $)$

Nati corrected śara of Śukra $==23|03+0| 31=23 \mid 34$ ang (South)
Difference between the śara of Guru and the nati corrected Śukra

$$
\begin{equation*}
=23|34-21| 48=1 \mid 46 \text { anggulas } \tag{2}
\end{equation*}
$$

Since mānaikyārdha > Difference in śaras from (1) and (2), there is the bheda yoga. But this yuti is not visible at the given place.

Example : Śā. Śa. 1541 Phālguṇa śuddha trayodaśī, Monday.
Gatābda $=1541-1105=436$ years, Ahargaṇa $=$
This corresponds to March 16, 1620 A.D. (G).

Mean Guru $=\quad$, Mean Ravi $=$

Śukra śighrocca $=$

Cara corrected true Sun $=11^{R} 08^{\circ} 14^{\prime} 19^{\prime \prime}$
True motion of the Sun $=59^{\prime} 41^{\prime \prime}$

True Guru $\quad, ~ T r u e ~ S ́ s u k r a ~=0^{R} 1^{\circ} 57^{\prime} 57^{\prime \prime}$
Guru's true daily motion $=13^{\prime} 27^{\prime \prime}$, Śsukra's true daily motion $=73^{\prime} 04^{\prime \prime}$.
As explained earlier, the conjunction of Guru and Śukra took place $0^{d} 38^{\text {gh }} 14^{\text {vig }}$ earlier i.e. on Phālguṇa śuddha dvādaśí, Sunday, $21^{g h} 46^{v i g}=(\quad-\quad)$ from sunrise on that day. This is the mean time of conjunction.

At $21^{g h} 46^{\text {vig }}$ on Sunday, we have

True Sun $=11^{R} 7^{\circ} 36^{\prime} 18^{\prime \prime}$, True Guru $=0^{R} 1^{\circ} 10^{\prime} 58^{\prime \prime}$

True Śsukra $=0^{R} 1^{\circ} 10^{\prime} 55^{\prime \prime}$
Śara of Guru $=20 \mid 56$ aṅgulas, Śara of Śukra $=11 \mid 34$ añgulas
Diameter of Guru $=1 \mid 38$ anggulas, Diameter of Śsukra $=2 \mid 18$ angulas

Sāyana vitribha lagna $=1^{R} 12^{\circ} 56^{\prime} 41^{\prime \prime}$

Unnatāmśa of the above $=81|26| 52$

Jyā of unnatāṃśa $=118 \mid 17$ kalās

S150 KARANAKUTŪHALAM OF BHĀSKARĀCĀRYA II

Between Guru and Śsukra, the one which is treated as the Sun has its sāyana position : (Considered) sāyana Śun $=0^{R} 19^{\circ} 27^{\prime} 48^{\prime \prime}$ (i.e. true sāyana Guru)

Vitribha lagna - (considered) sāyana Sun
=

Mean lambana $($ from the khaṇ̣as $)=$

Since the nata is western and the vitribha lagna is greater, the spasta yuti time is given by the sum of the mean yuti time and the lambana.
i.e. Spașṭa yuti $=21^{g h} 46^{v i g}+2^{g h} 02^{v i g}=23^{g h} 48^{v i g}$.

