True Lakṣa-Scale Numeration System of the Vālmīiki-Rāmāyana**

The decimal place-value system of numerals is India's remarkable scientific gift to the world. Using base ten and a fully developed concept of positional principle (along with zero), the Indian system is capable of representing large (integers) as well as small (decimal fractions) numbers and is used all over the civilized world. In India ten has been the base for counting since ancient Vedic times and several lists (both short and large) of decuple terms are avaialble for practical enumeration even upto 10^{96} (see Ganita Bhārati Vol. 23, 2001, pp. 83-90).

For specifying large numbers, some non-decimal scales of numeration were also used. The lakṣa-scale numeration-system of the VālmikiRāmāyana (the $\bar{a} d i-k \bar{a} v y a)$ is one such scheme. Starting with kotic $\left(=10^{7}\right)$ or a crore, it extends to mahauga $\left(=10^{60}\right)$. The Sanskrit text defining the system is simple and straight-forward. However, a few modern scholars have created a sort of confusion about the system by committing error of omission or interpretation. The purpose of the present note is to point out those errors and give the true form of the system by mentioning the text, its translation and a table in modern form for easy understanding.

The Gia Press edition of the Vālmiki-Rāmāyana (Gorakhpur, 1960) describes the laksa-scale in twelve Sanskrit lines (see Vol. II, p. 1124) which can be transliterated as follows:
(L1) Śatạ̣ sáatasahasrāṇạ̣ koṭimāhur-maniṣiṇaḥ.
(L2) Śatạ̣ kotisahasrāṇạ̣ śankur-ityabhidhī yate.
(L3) Śatạ̣ sán kusahasrāṇām mahaśañkuriti smrtah.
(L4) Mahāśañkusahasrāṇạ̣̄ sáatạ̣ verndamihocyate.
(L5) Śataṃvrndasahasrān̄ạ̣̄mahāvṛndamiti smrtam.
(L6) Mahāvṛnda-sahasrāṇạ̣̄ sataṃ padmamihocyate.
(L7) Śataṃ padma-sahasrāṇāṃ mahāpadmamiti smrtam.
(L8) Mahāpadma-sahasrāṇāṃ sáatạ̣ kharvamihocyate.
(L9) Śataì kharvasahsrāṇạ̣̄mahākharvamiti smrtam.

[^0](L10) Mahākharva-sahasrāṇām samudramabhidhiyate.
(L11) Śatạ̣ samudrasāhasramogha ityabhidhìyate.
(L12) Śatamogha-sahasrāṇạ̄ mahaugha iti viśrutah.
These lines occur in verses of the 28th sarga in the yuddha-kānda of the work. They may literally translated as follows:
(L1) A hundred of hundred-thousand is said to be kott (crore) by the learned.
(L2) A hundred of thousand-koṭi is termed sañku.
(L3) A hundred of thousand-śañku is known as mahāśañku.
(L4) A hundred of thousand-mahāsániku is called vrnda.
(L5) A hundred of thousand-vrnda is known as mahāvrnda.
(L6) A hundred of thousand-mahāvrnda is called padma.
(L7) A hundred of thousand-padma is known as mahāpadma.
(L8) A hundred of thousand-mahāpadma is called kharva.
(L9) A hundred of thousand-kharva is known as mahäkharva.
(L10) Thousand-mahākharva is termed samudra.
(L11) A hundred of thousand-samudra is termed ogha.
(L12) A hundred of thousand-ogha is heard to be mahaugha.
It should be noted that the text most frequently uses 'hundred-thousand' which is equal to a lakṣa (lac or lākha i.e. 10^{5}). For convenience the above numeration scheme may be presented in the form of following table:

Table of Indian Lakṣa Scale

100 lac	$=1$ koti	$=10^{7}$
1 lac koti	= 1 śañku	$=10^{12}$
1 lac sañku	= 1 mahāśánku	$=10^{17}$
1 lac mahāśaniku	= 1 vrrnda	$=10^{22}$
1 lac vrnda	= 1 mahāvrnda	$=10^{27}$
1 lac mahāvrnda	$=1$ padma	$=10^{32}$
1 lac padma	$=1$ mahāpadma	$=10^{37}$
1 lac mahāpadma	$=1$ kharva	$=10^{42}$
1 lac kharva	= 1 mahākharva	$=10^{47}$
1000 mahākharva	= 1 samudra	$=10^{50}$
1 lac samudra	$=1$ ogha	$=10^{55}$
1 lac ogha	= 1 mahaugha (= mahā-ogha)	$=10^{60}$

The use of the scale factor 1000 in one place (instead of lac) may be noted. The use of the term samudra without corresponding maha-samudra was done perhaps to terminate the table at the sexagesimal power. The socalled Bombay version of the Vālmiki-Rāmāyana has been recently published by the Rashtriya Sanskrit Sansthan, New Delhi (second edition, 2005). In this version the same above lakṣa scale is decribed in similar words in the six verses, 33 to 38 of the 28th sarga of the yuddha-kānda (see Vol. 5, p. 94). But there is one variant name. The term śariku is replaced by śarikha in this Bombay version. Mathematically this is a minor matter.

Mathematically serious is the confusion created about the above numeration system by the writings of some scholars. These may be pointed out as follows:
(i) C.N. Srinivasiengar in his The History of Ancient Indian Mathematics (Kolkata, 1967, p. 3) has quoted a Sanskrit text of only 11 lines omitting the important. L11 altogether. Thus his said enumeration ends with mahaugha $=10^{55}$ instead of 10^{60}. Due to this omission he had to also take the ogha of the 12th line to be the same as the samudra of the 10th line (Note that our 12th line is his last or 11th line).
(ii) S.A.S. Sarma in his "Vedic Numerical System including Śūnya" (see The Concept of Śunya, New Delhi, 2003, pp. 30-31) has quoted the full above text of 12 lines. But in his translation he omits the L11 altogether thereby still getting the wrong value 10^{55} for the mahaugha! (He also coolly replaces ogha in $12^{\text {th }}$ line by samudra in his translation).
(iii)P.V. Arunachalam in his "Infinity in Mathematics" (Ganita-Chandrika, $3.2,2002$, p. 23) has mentioned some denominations from the VālmikiRāmāyaṇa without quoting text source, or details. His values are:
Padman $=10^{37}$ (instead of 10^{32}); Samudram $=10^{52}\left(\right.$ instead of $\left.10^{50}\right)$; Gugham $($ Ogham $)=10^{57}\left(\right.$ instead of $\left.10^{55}\right) ;$ Mahaugham $=10^{62}(\mathrm{instead}$ of 10^{60}).

Naturally readers will be confused and will wonder as to what the correct values are!
(iv) Venkatesha Murthy in his Numbers and Numerals in Sanskrit Works (Rashtriya Sanskrit Vidyapeetha, Tirupati, 2003) has committed error of
translation in this regard, although he has quoted the 12 Sanskrit lines (correctly) which are found in the Mumbai version (i.e. sáaikha for śaniku etc.) However, he wrongly translated L10 as (see p. 5 of his book)
"1 Samudra $=10^{2} \times 10^{3}$ Mahākhava" (instead of 1 samudra $=1000$ mahākharva).

This wrong translation also rendered his subsequent values of ogha and mahaugha to be both wrong (similar to what P.V. Arunachalam has mentioned).
(v) Vangeepuram V. Srinivasan in his recent Chudamani Suthram (Chennai, 2004) gives altogether a different interpretation. He states that VälmikiRāmāyaṇa's relevant verses describe a centesimal number system (instead of the lakṣa scale). His list has śanikha (for śaniku), bindu for vrnda, and omits samudra altogether. Thus mahaugha comes to be 10^{27} (instead of 10^{60}) in his table (pp. 16-17).

Thus if the students or scholars of history of science read the above works, they will be confused. Writers on history of ancient Indian mathematical sciences should avoid creating such undesirable situation. They must study widely and should have a critical view. Creating confusion will go against the purpose of history of science and its popularity. Of course there may be variants in the original texts and sources consulted. But then, such variants should be mentioned clearly.

The lakṣa scale is not mentioned in the famous History of Hindu Mathematics by B. Datta and A.N. Singh (They placed the Rāmāyaṇa in about 1000 BC). But it is described correctly in V.D. Heroor's The History of Mathematics and Mathematicians of India (Bangalore, 2006) which is based mostly on the papers and findings of the present author.

[^0]: * Contributed by R.C. Gupta, Ganita Bharati Academy, R-20, Ras Bahar Colony, Jhansi 284003, India.

