THE VEDIC NAKṢATRAS - A REAPPRAISAL

Prabhakar Gondhalekar*

(Received 24 October 2008; revised 26 November 2009)
In the calendar of Vedänga Jyotiṣa the position of the sun and the moon is identified by a lunar mansion (or a sector of the ecliptic) and the distance from the leading edge of this sector (bhāmśa). It has been generally accepted that the position and the extent of these lunar mansions are defined by the naksatras (background stars and asterisms). In this paper it is shown that the jā$v \bar{a} d i$ arrangement of naksatras, given in Vedānga Jyotiṣa, defines an invariant frame of reference that is anchored to the ecliptic and not to the background stars. Fixed and absolute coordinates of the lunar mansions or naksatra-sectors can be determined within this frame of reference. Unlike all previous determinations of coordinates of naksatra-sectors, these coordinates are independent of the stellar coordinates found in the post-Vedic texts like Paitāmahasiddhānta. In the coordinate system defined by the jāvādi arrangement of naksatras, the position of the sun and the moon is also independent of the coordinates of the background stars. This analysis suggest that between 2000 BC and 1500 BC the Vedic New Year started in spring.

Key words: Jāvādi arrangement, Nakṣatras, Vedānga Jyotiṣa, Vedic New Year.

1. Introduction

In the Vedic texts the word nakṣatra indicates both a star (and an asterism) and a lunar mansion. The moon is supposed to conjoin each night with the twentyseven (sometimes twenty-eight) nakṣatras (stars or asterisms) or reside in the twenty-seven lunar mansions. It is very likely that the mansions were identified by nearby stars. It is impossible to identify the origins of naksatras or their identification by stars but some names, which appear in the lists of nakṣatras given in the later

[^0]Saṃhitās and the Brähmaṇas, can be traced back to the earliest Vedic text Rgveda Saṃhitā ($R V$). In addition, statements like "soma is stationed in the vicinity of naksatra" (RV.X.85.2) suggests that even in this early text the position of the moon in the sky may have been defined by reference to the stars. Pioneering work on Vedic nakṣatras was done in the nineteenth century ${ }^{1,2,3,4}$ but most of this work is based on interpretation of nakṣatras as stars or asterism. This discussion has been one-sided possibly because the stars were seen to provide the only possible fixed (and absolute) frame of reference against which the motion of the moon could be observed and calibrated. The Vedic texts have aided and abetted this one-sided discussion by not distinguishing between the lunar mansions and their stellar markers. To avoid the confusion caused by the dual use of the word naksatra, in this paper, the stars and asterisms are referred to as 'nakṣatras' and the lunar mansions are referred to as 'nakṣatra-sectors'.

The identification of stars and asterisms of the naksatras is fraught with difficulties and uncertainties. The Vedic texts provide little or no information to identify the stellar markers; neither relative position nor the shape of an asterism are given. The number of stars in each naksatra is of some help, that is, naksatras whose names are dual probably have two stars and plural names suggest a group of stars. In South Asia, coordinates of stars are only given in astronomical texts produced after fifth century AD. The oldest catalogue of coordinates of one (prominent) star, the yogatārā of the nakṣatra, is given in the Paitāmahasiddhānta of the Viṣnudharmottarapurāṇa. The provenance of this text is disputed ${ }^{5,6}$ but that is of no concern here. Suffice it to say that there is a gap of over a thousand years between the Vedic texts and this catalogue of coordinates. This gap should be borne in mind in arriving at conclusions based on the coordinates of the yogatārās. All attempts till date to identify the nakṣatras and their yogatārās are based either explicitly or implicitly on the coordinates given in the Paitāmahasiddhānta and the siddhānta is silent on the procedure by which these coordinates were obtained. Moreover, these coordinates - polar longitude and latitude - are very inaccurate; they are mostly expressed as integer degrees.

The lists of nakṣatras given in one of the earliest Saṃhita and Vedāniga Jyotiṣa (a text of the late Vedic period) are given in Table 1. These lists are broadly similar but differ in detail; the names and the number of nakṣatras differ from list to list but every list in the Vedic texts starts with krttikās. Twentyseven nakṣatras are common to all lists; the nakṣatra left out is Abhijit. The stellar counterparts, in modern astronomical catalogues, of yogatārās were

Table 1. List of nakṣatras in one of the earliest Samhitâs and a late Vedic text

	MS II.13.20	VJ RJ.25-28		MS II.13.20	VJ RJ.25-28
1	Krttikâs	Krttikâs	15	Anūrâdhâ	Anurâdhâs
2	Rohinī	Rohiṇi	16	Jyeṣthâ	Jyesthâ
3	Invaka	Mrgaśirsa	17	Mūla	Mūla
4	Bâhu	Ârdrâ	18	Âṣâdhâs	Pūrvâ Âṣâdhâs
5	Punarvasus	Punarvasus	19	Âṣâdhâs	Uttrâ Âṣâdhâs
6	Tissya	Pusya		Abhijit	
7	Âśreṣâs	Âśresâs	20	Śronâ	Śronâ
8	Maghâs	Maghâs	21	Śravisthâs	Śravisthâs
9	Phalgunis	Phalgunīs	22	Satabhiṣaj	Satabhisaj
10	Phalgunis	Phalgunis	23	Prostthapadas	Pūrva-Prost.thapadas
11	Hasta	Hasta	24	Prosthapadas	Uttara-Proṣthapadas
12	Citrâ	Citrâ	25	Revatī	Revatī
13	Nistyâ	Svâti	26	Aśvayuj	Aśvayujau
14	Viśâkhâs	Viśâkhâs	27	Bharaṇis	Bharaṇis
	Maitrâyaṇīya	Samhitâ	VJ - Vedâniga Jyotiṣa		$R J$ - Rgveda recension

identified in the late nineteenth century and recently these attempts have been reassessed and refined ${ }^{5,7}$. In this paper, an attempt is made to determine the absolute coordinates of the naksatra-sectors without an appeal to Paitāmahasiddhānta. This procedure has the advantage that the conclusions are based only on the Vedic texts and are not affected by the corrupt and inaccurate intrusions in the South Asian astronomy and calendric system from times far removed from the Vedic period. In Section 2 the jā̄vādi arrangement of naksatras in Vedäniga Jyotiṣa is discussed and derived. In Section 3 the equatorial and ecliptic coordinates of the nakssatra-sectors are derived and the discussion of the results and conclusions are given in Section 4.

2. The JĀVādi arrangement of nakṣatras

The Vedäniga (arm or limb of the Veda) Jyotiṣa (VJ) is the earliest South Asian text devoted exclusively to the calendar. The text is a manual for determining the proper times for Vedic ceremonies. This text has survived in two recensions - a Rgveda recension (RJ) called Ārca- Jyotiṣa and a Yajurveda recension (YJ) called Yäjuşa-Jyotiṣa. The Rgveda recension is considered to be the older of the two recensions. The differences between the two recensions are small and of no relevance to this paper. The verses in the text do not follow a thematic or logical order and verses on similar topics are scattered in different parts of the text. This

Table 2. The jâvâdi arrangement of nakṣatra

	Abbreviations	naksatra		Abbreviations	nakṣatra
	jau	aśvayujau(aśvinī)	14	mâ	Aryamâ uttraphâlguṇis
2	$d r a ̂$	ârdrâ	15	dhâh	anurâdhâh
		bhagah(pūrvaphâlgunīs)	16	nah	śravanah
4	khe	viśâkhe	17	re	revatí
	sive	viśvedevâh uttarâṣậhâs	18	$m \mathrm{r}$	mrgasirsa
6	hih	ahirbudhnyah (uttra proṣṭapadâs)	19	ghâh	maghâh
7		rohinī	20	svâ	svâtī
	ṣâ	âśreṣâ	21	pah	âpah(puvâṣâḍâs)
		citrâ	22	jah	ajaejapât (pūrva proṣtapadâs)
	$m \bar{u}$	mūla	23	$k r$.	krttikâs
	şa	śatabhiṣaj	24	syah	pusyah
	nyah	bharanyah	25	ha	hasta
13	$s \bar{u}$	punarvasū	26	jye	jyesṭhâ
			27	sth ${ }_{\text {a }}$ a	śravisṭhâh

suggests that the present versions of $V J$ are not the original versions. $V J$ came to the attention of early Indologists like Sir William Jones and in the nineteenth and twentieth century various attempts, of varying degree of success, were made to interpret it ${ }^{8,9,10,11,12}$. In 1979 a complete interpretation and translation of $V J$ was produced and this, along with the critical editions of both the Rgvedic and Yajurvedic recensions (from twenty manuscripts) was published in 1984 by the Indian National Science Academy ${ }^{13}$. The discussion in this paper is based on this edition and translation of $V J$.

The calendar of $V J$ is based on an 'intercalation period' of 1830 days or five tropical years of 366 days each. This intercalation period is called a yuga. This period is synchronized with five synodic years by intercalating two synodic months, that is, the intercalated 'synodic yuga' is composed of sixty-two synodic months (i.e. 1830.86 days). This intercalation period starts every five years around winter solstice "when the sun and the moon are in the nakṣatra Śraviṣthās" (RJ.5-6 - verses \#5-6 in the Rgveda recension, YJ.6-7 - verses \#6-7 in the Yājuṣa recension) i.e. when the new moon is in nakṣatra Śraviṣṭhās around winter solstice. Two lists of nakṣatras are given in VJ; in RJ.25-28 and YJ.3235 a list of nakṣatras is identified by their presiding deity. This list is very similar
to the lists of nakṣatras given in the earlier Samhitās and the Brähmaṇas and is reproduced in Table 1. In RJ. 14 and YJ.18, VJ introduces a different list of nakṣatras identified by either an abbreviation of the name of the nakșatra or an abbreviation of the name of the presiding deity of the naksatra. This arrangement of the nakṣatras is called the " jāvādi (jau ādi beginning with jau) arrangement". In RJ.18, YJ.39, VJ states that the sun stays in each nakṣatra 13 and $5 / 9$ days. These verses unambiguously state that in VJ a nakṣatra is not considered to be a star or an asterism but a sector of the ecliptic and this sector is 13.33° wide. There is also an implicit assumption here that all sectors are of equal width.

The jāvādi arrangement of nakṣatras is given in Table 2; the abbreviation, as given in $V J$, are given in columns \#2 and \#5 and the nakṣatra or the deity and the nakṣatra are given in columns \#3 and \#6 and the VJ abbreviations are highlighted in these names. $V J$ does not give the scheme or the algorithm used to obtain this arrangement. An inspection of the list of naksatras in Table1 and the list in the jāvādi arrangement (Table 2.) suggests that the nakṣatras in the arrangement are every fifth nakṣatra from Table 1 starting from Śraviṣṭhās (nakṣatra number \#21). That is, Śraviș̣̂̄ās is assumed to be nakṣatra number \#0 and the fifth nakṣatra is Aśvayujau and the fifth after that is A$r d r a \bar{a}$ and so on to choose twenty-seven nakṣatras. This of course prompts the question, why choose every fifth naksatra. A pedestrian answer could be "the Āryan predilection for numbers five"! A rational explanation for the choice of nakṣatras of the $j \bar{a} v \bar{a} d i$ arrangement is likely to be as follows. This derivation was presented and discussed by Thibaut ${ }^{14}$, it is reproduced here to make more comprehensible the derivation of the absolute coordinates of nakṣatra(-sectors) that follows.
In a yuga (the five year Vedic intercalation period) there are
62 lunations/lunar months
67 sidereal months (both these numbers are given in the $V J$)
Therefore, in 1 lunation there are $67 \div 62$ sidereal months
Or 1 lunation $=15 / 62$ sidereal months
In a sidereal month the moon passes by 27 naksatras
Therefore in 1 lunation the moon passes by $27 \times 1^{5} /{ }_{62}$ nakṣatras
$=29^{22} /{ }_{124}$ nakṣatras

Thus the separation of successive new (or full) moons is $29^{22} /{ }_{124}$ nakṣatras.
And the separation between a new and full (or full and new) moon (or a pakṣa) is $14^{73 /} /{ }_{124}$ nakṣatras.

To obtain the $j \bar{a} v \bar{a} d i$ arrangement of nakṣatra-sectors an 'origin' from which the naksatra of a full or a new moon is counted is required. As discussed above, the VJ yuga commences with new moon in Śraviṣṭhās (around winter solstice) and this is the origin for jāvādi arrangement. Thus starting from new moon in Śraviṣthās, it is possible to obtain the nakṣatra-sectors at successive full moons and new moons in a yuga by the scheme given above; the nakșatras are from the list of nakṣatras in Table 1. For example, the nakṣatra-sector of the first full moon after the start of a yuga will be the fourteenth nakṣatra counted from Śraviṣthās. If the nakṣatra-sector is divided into 124 parts then the first full moon will be in the $733^{\text {rd }}$ part of the fourteenth nakṣatra-sector. Similarly, the first new moon after the start of a yuga will be in the $22^{\text {nd }}$ part of the twenty-ninth nakṣatra-sector. However, there are only twenty-seven nakșatras-sector therefore this new moon will be in the $(29-27)$ or the second nakșatra-sector. The division of the nakṣatra-sector into 124 parts is implicit in $V J$ and each part is called a bhāṃśa, but an explicit definition of a bhāṃśa is not given in VJ. The nakșatras-sector of the new moon and full moon (and the location of the moon within a nakṣatras-sector in terms of the number of bhāmśas) of the sixty-two lunations of a yuga are given in Table 3. These nakṣatra-sectors and bhämśas are obtained by assuming that the 'length' of a synodic month is $29^{22} /{ }_{124}$ naksatras i.e. 29.52502 days (the modern value for the mean length of the synodic month is 29.53059 days). The nakṣatras-sectors of the jāvādi arrangement are selected from this list of new-moon and full-moon nakṣatras-sectors. The nakṣatrassector when the moon is in the first twenty-seven bhäṃśa are selected (the sequence of naksatra-sectors repeats after the twenty-seventh naksatrasector) for the arrangement, these nakṣatra-sectors are highlighted in Table 3. Equivalently the position of a nakṣatra-sector in the jāvādi arrangement is given by X where

$$
\mathrm{B} \equiv \mathrm{X} \text { modulo (27) }
$$

where B is the bhāṃśa given in Table 3. For example, the first full moon of a yuga is in the nakṣatra-sector Maghā at bhāṃśa \#73, then the position of nakṣatra-sector Maghā in the jāvādi arrangement, by the above equation
Table 3. The bhâmśa and the naksatra at new moon and full moon of sixty-two synodic months of a yuga. The jâvâdi arrangement of naksatras is high-lighted

No:	New moon			Full moon			No:	$\begin{array}{lc} \hline \text { New } & \text { moon } \\ \# 1 & \# 2 \end{array}$		$\begin{aligned} & \text { Full moon } \\ & \# 3 \end{aligned}$	\#1	\#2	\#3
	\#1	\#2	\#3	\#1	\#2	\#3							
1	0	0	śravisṭhâ	14	73	maghâ	32	13	62	âślesâ	1	11	śatabhisaj
2	2	22	p. prợtapadâ	16	95	u. phâlguṇi	33	15	84	p. phâlguṇi	3	33	u. prostapadâ
3	4	44	revatī ${ }^{\text {. }}$	18	117	citrâ	34	17	106	hasta	5	55	asvayujau
4	6	66	bharaṇī	21	15	anurâdhâ	35	20	4	viśâkhe	7	77	krttikâ
5	8	88	rohini	23	37	mūla	36	22	26	jyesthâ	9	99	mrgasirsa
6	10	110	ârdrâ	25	59	u. âṣâdhâ	37	24	48	p. ậậdhâ	11	121	punarvasū
7	13	8	âśleṣâ	0	81	śravisthâ	38	26	70	śravaṇa	14	19	maghâ
8	15	30	p. phâlgunī	2	103	p. prostapadâ	39	1	92	śatabhisaj	16	41	u. phâlguni
9	17	52	hasta	5	1	asvayujau	40	3	114	u. prostapadâ	18	63	citrâ
10	19	74	svâti	7	23	krttikâ	41	6	12	bharañi	20	85	viśâkhe
11	21	96	anurâdhâ	9	45	mrgasirsa	42	8	34	rohini	22	107	jyesthâ
12	23	118	müla	11	67	punarvasū	43	10	56	ârdrâ	25	5	u. ầsâdhâ
13	26	16	śravaṇa	13	89	âśleṣâ	44	12	78	pusya	0	27	śravisthâ
14	1	38	Śatabhisaj	15	111	p. phâlguṇi	45	14	100	maghâ	2	49	p. prostapadâ
15	3	60	u. prostapadâ	18	9	citrâ	46	16	122	u. phâlguṇi	4	71	revatī
16	5	82	asvayujau	20	31	viśâkhe	47	19	20	svâtí	6	93	bharaṇī
17	7	104	krttikâ	22	53	jyesthâ	48	21	42	anurâdhâ	8	115	rohini
18	10	2	ârdrâ	24	75	p. âsâdhâ	49	23	64	mūla	11	13	punarvasu
19	12	24	pusya	26	97	śravaṇa	50	25	86	u. âṣâdhâ	13	35	âśleṣâ
20	14	46	maghâ	1	119	Śatabhisaj	51	0	108	śravisthâ	15	57	p. phâlguṇi
21	16	68	u. phâlguņī	4	17	revat ${ }^{\text {i }}$	52	3	6	u. prostapadâ	17	79	hasta
22	18	90	citrâ	6	39	bharaṇī	53	5	28	asvayujau	19	101	svâtī
23	20	112	viŝâkhe	8	61	rohinī	54	7	50	krttikâ	21	123	anurâdhâ
24	23	10	mūla	10	83	ârdrâ	55	9	72	mrgasirsa	24	21	p. âṣâdhâ
25	25	32	u. âṣâdhâ	12	105	pussa	56	11	94	punarvasū	26	43	śravaṇa
26	0	54	śravisthâ	15	3	p. phâlguṇi	57	13	116	âślesâ	1	65	satabhişak
27	2	76	p. prostapadâ	17	25	hasta	58	16	14	u. phâlguṇ \bar{i}	3	87	u. prostapadâ
28	4	98	revatī	19	47	svâti	59	18	36	citrâ	5	109	asvayujau
29	6	120	bharaņi	21	69	anurâdhâ	60	20	58	viśâkhe	8	7	rohiní
30	9	18	mrgasirsa	23	91	mūla	61	22	80	jyesthâ	10	29	ârdrâ
31	11	40	punarvasū	25	113	u. âṣâdhâ	62	24	102	p. âṣâdhâ	12	51	pussya

\#1: nakṣatra number as counted from śraviṣṭâ, see Table 1; \#2: bhâmśa of the new and full moon; \#3. nakṣatra
($73 \div 27$ remainder 19) is at $\# 19$ as given in Table 2. The bhäṃśas of the new and full moons in Table 3 can similarly be 'reduced' to obtain the position of the nakṣatra-sector of the moon in the jāvādi arrangement. The nakṣatra-sectors of the j $\bar{a} v \bar{a} d i$ arrangement are rearranged in Table 4 to demonstrate that, as stated above, the selected nakṣatra-sectors are the nakṣatra-sector of the full moon and the new moon in the first twenty-seven bhämśas following the new moon in Śravisṭhās at the start of a yuga. It is not entirely clear why the composer(s) of $V J$ chose to arrange the nakșatra-sectors of the jāvādi arrangement in the bhāmśa sequence. The jāvādi arrangement or the derivation of the jāvādi arrangement emphasises the primary usage of the word nakstatra in the calendric system of $V J$ - the naksatras are wide sectors of the ecliptic and are evenly distributed along the path of the moon or they are naksatra-sectors and these are anchored to the ecliptic and are independent of the background stars. Since every yuga starts around winter solstice when the new moon is in naksatra Śraviṣthās, the nakșatra-sectors (and the bhāmśas) define the fixed (and absolute) position of the full moon and new moon in every yuga. In other words, the $j \bar{a}$ $v \bar{a} d i$ arrangement defines a coordinate system along the ecliptic with the origin around winter solstice when the new moon is in nakṣatra Śraviṣ़̣hās.

Table 4. The jā̄ādi arrangement of nakṣatra arranged in the bhāmśa sequence

	Full Moon		New Moon		
N	B	nakṣatra	N	B	naksatra
9	1	âsvayujau	18	2	ârdrâ
26	3	p. phâlguni	35	4	viśâkhâ
43	5	u. âṣâdhâ	52	6	u. prostapada
60	7	rohini	7	8	âśleṣâs
15	9	citrâ	24	10	mūlâ
32	11	satabhisaj	41	12	bharanya
49	13	punarvasu	58	14	u. phâlguṇi
4	15	anurâdhâ	13	16	śravana
21	17	revatī	30	18	mrgasirsa
38	19	maghâ	47	20	svâtī
55	21	p. âşâdhâ	2	22	p. prostapada
10	23	krttikâ	19	24	puşya
17	25	hasta	36	26	jyest.thâ
44	27	śravist.̣hâ			

N - Full moon and new moon number from Table 3; $\quad \mathrm{B}$ - bhāmśa

3. Naksatras - absolute coordinates of lunar mansions

The $j \bar{a} v a \bar{a} d i$ arrangement (and the procedure to obtain the arrangement) gives the location of the (new and full) moon in a nakṣatra-sector and if the (ecliptic or equatorial) coordinates of the moon are determined then the (ecliptic or equatorial) coordinates of a point in the nakștra-sector are established. The coordinates of the full moons in a yuga are determined as follows;

- Determine the date(s) of the new-moon at or around winter solstice.
- Determine the separation in days between the new moon at winter solstice and the following full moons in a yuga.
- Convert the separation to coordinates of the full-moon. The reference frame for this conversion is the standard reference frame with the origin at the first point of Aries.
- The nakșatra-sector of this full-moon is given by the scheme for jāvādi arrangement and is given in Table 3.

The currently used zero point (the first point of Aries) is used to obtain the coordinates of the full moon because the origin that may have been used by the Āryas is not known. However, as will be shown below, the Āryas may have (unwittingly) used the vernal equinox as the origin. Two procedures have been followed to determine the coordinates of the full moons in a yuga. In the first method, the dates of the new moon at or within one day of the winter solstice between 1900 AD and 2000 AD were obtained from the available calendars. The dates of the sixty-two full moons following each of these new-moons were also obtained from these calendars. In the second method, the dates of the new moon at or within one day of the winter solstice between 1500 BC and 500 BC were obtained by first calculating the dates of the winter solstice, that is, dates of minimum declination of the sun each year. The separation between the sun and the moon was calculated for each date and the dates when the separation was within five degree (i.e. the sun and the moon were in conjunction) were retained. These dates were considered to be the dates of the new moon at winter solstice. For each new moon date the following sixty-two dates when the sun and the moon were in opposition (i.e. about 180° apart or full moon) were determined, these were considered to be the dates of the full moons of a yuga. For both methods, the dates determined were in Julian days and for the second method the currently available orbital parameters of the earth and moon were used. The separation
between the new moon at winter solstice and the following full moons was converted to equatorial and ecliptic coordinates. For the two periods considered, the coordinates for each full moon in a yuga were averaged to obtain the spread (root mean square deviation) in the mean value. The full moon number, the corresponding nakṣatra-sector, bhāmśa and the ecliptic and the equatorial coordinates of the moon determined for the 1500 BC to 500 BC period, are given in Table 5. The computed nakṣatra-sector and the bhämśa at each full moon can be compared with the corresponding parameters given in Table 3, the match between the nakṣatra-sectors is prefect but the bhāṃśas differ. This is because in computing the nakṣatra-sectors and the bhāṃśas of Table 3 a fixed value (the mean length) of the synodic month was used but in the computations for the period of 1500 BC to 500 BC the length of the synodic month varies (slightly) because of the changes in the speed of the moon in its orbit. The mean ecliptic coordinates of the first twelve full moons in a yuga determined for both the 1500 BC to 500 BC period and for the 1900 AD to 2000 AD period are plotted in Fig. 1. It is important to emphasise that the coordinates determined and given in Table 5 are the coordinates of the (full) moon; the naksatra-sector of the moon is obtained from the procedure followed to obtain the jā $\bar{a} \bar{a} d i$ arrangement

Fig. 1. The ecliptic longitude and latitude of first twelve full-moons of a yuga. The 'lay-out' of the positions of all subsequent full moons of the yuga will be similar but slightly shifted to the left. The data obtained for the 1500 BC to 500 BC period are shown by crosses and the data for 1900 AD to 2000 AD period are shown by dots. To avoid crowding only representative error bars are shown. The nakṣatra of full moon \#10 is Kṛttikās. The nakṣatra of full-moon \#3 and \#15 is Citrā.
Table 5. Ecliptic and equatorial coordinates of the first twenty-seven full moons of a yuga and their respective naksatras or

Table 6. The width of the naksatra-sectors (in degrees)

nakșatra	FM	bhāṃśa	L	FM	bhāṃśa	L	WNS
Krttikâ	10	23	10.17	35	77	15.98	13.34
Rohiṇī	23	61	27.49	48	115	33.45	13.69
Rohinī	48	115	33.45	60	7	21.23	14.03
Mrgaśirsa	11	45	38.32	36	99	44.53	14.26
Ârdrâ	24	83	55.91	61	29	50.48	12.47
Punarvasū	12	67	67.90	37	121	73.74	13.41
Punarvasū	37	121	73.74	49	13	61.69	13.84
Pustya	25	105	85.34	62	51	79.22	14.05
Âślesâ	13	89	96.13	50	35	91.45	10.75
Mâgha	1	73	107.91	38	19	102.49	12.45
Purva Phâlguṇī	14	111	125.68	26	3	113.58	13.89
Purva Phâlgunī	26	3	113.58	51	57	119.71	14.08
Uttra Phâlguṇi	2	95	137.33	39	41	131.45	13.50
Hasta	27	25	143.26	52	79	149.37	14.03
Citrâ	3	117	166.12	15	9	154.32	13.55
Citrâ	15	9	154.32	40	63	160.53	14.26
Svâti	28	47	171.62	53	101	177.76	14.10
Viśâkhe	16	31	183.87	41	85	189.36	12.61
Anurâdhâ	4	15	195.82	29	69	201.47	12.97
Anurâdhâ	29	69	201.47	54	123	207.27	13.32
Jyesṭhâ	17	53	212.80	42	107	218.70	13.55
Mūla	5	37	224.49	30	91	229.90	12.42
Purvâsâdhâ	18	75	242.20	55	21	235.78	14.74
Uttrâsâdhâ	6	59	254.28	31	113	259.81	12.70
Uttrâṣâdhâ	31	113	259.81	43	5	247.40	14.25
Śravaṇâ	19	97	271.29	56	43	265.19	14.01
Śraviṣṭhâ	7	81	282.63	44	27	277.04	12.84
Śravisṭhâj	20	119	300.29	32	11	288.25	13.82
Śatabhisaj	32	11	288.25	57	65	294.02	13.25
Purva Prostapada	8	103	312.37	45	49	305.56	15.64
Uttra Prostapada	33	33	317.99	58	87	323.20	11.96
Revatī	21	17	329.53	46	71	335.34	13.34
Asvayujau	9	1	340.56	34	55	346.52	13.69
Asvayujau	34	55	346.52	59	109	352.28	13.23
Bharaṇī	22	39	358.21	47	93	3.71	12.62
Mean Width of the Naksatra Sector 12.65 ± 3.28 L: Ecliptic Longitude; WNS: Width of the Nakșatra Sector in degrees							

of naksatras. The coordinates of the full moon and the nakṣatra-sector of this moon are obtained by independent methods. These lunar positions do not change with epoch because they are not affected by precession of the equinox (this is demonstrated by the agreement between the values obtained for the two periods). If background stars are used to identify the naksatra-sectors in which the moon is full (or new) each yuga, then the positions of the stellar markers will be epochdependent, because of the precession of the equinox; the same set of stars will not identify the same nakṣatra-sector at different epochs.

It can be seen from Table 3 that the full moon (and new moon) can occur in the same nakṣatra-sector at different times in a yuga i.e. in a yuga different full moons (identified by full moon numbers in Table 3) can occur in the same nakṣatra-sector, but they occur at different bhāṃ́as. For example, full moon three, fifteen and forty occur in the nakṣatra-sector Citrā (positions of full moon \#3 and \#15 are shown in Fig. 1) but at bhāmśa 117, 9 and 63 respectively. In Table 6 are collated all nakṣatra-sectors in which there are multiple occurrences of the full moon during a yuga and the full moon number, the bhāmśa and the ecliptic longitude (obtained by the first method described above) of the full moon are given. The size of the nakṣatra-sector calculated from ecliptic longitudes of pairs of full-moons in the same nakṣatra-sector is also given in this table. The mean width of the nakșatra-sector is 12.65 ± 3.28 degrees. The mean width obtained from the ecliptic longitude of the full moon determined by the second method above is 11.38 ± 5.07 degrees. These values are consistent with the width of the naksatra-sector given in VJ (RJ.18, YJ.39) and discussed above. The spread in the mean values also demonstrates that the nakṣatra-sectors are of equal width. The (equatorial) coordinates of the centre of each naksatra-sector are given in Table 5. For comparison the coordinates of the yogatārās of the naksatras ${ }^{15,16}$ are also given in this table. VJ emphasises the importance of the bhāmśas and gives algorithms for calculating the bhāmśas of the sun and the moon but the method to empirically determine the bhāmśa (of the sun or the moon) at any particularly time is not given. Since $V J$ describes the use of a clepsydra (water-clock) it is very likely that the Āryas determined the bhämśa by timing the passage of the moon across a nakṣatra-sector.

5. Discussion and Conclusions

The jā̄vādi arrangement of nakṣatras in Vedāniga Jyotiṣa enables the invariant positions of the nakṣatra-sectors to be determined. This arrangement is
unique to $V J$ and no trace of it is found in any of the earlier Vedic texts. However, this arrangement casts light on some of the aspects of calendar of these earlier Vedic texts. The tenth full moon, which is in the nakṣatra-sector K!̣tikās (Table 4 and 5.), will be in autumn (śarad) (this is determined by counting the number of lunations from the first full moon after the new moon at winter solstice). The sun will occupy this position six months later that is the sun will be in the naksatrasector K!ttikās in spring (vasanta). In the northern hemisphere the vernal equinox is in spring, the jāvādi arrangement thus states that (around) vernal equinox the sun is in the nakṣatra-sector K!̣ttikās. In the early Vedic texts, spring (vasanta) is described as "the mouth of the seasons" or the seasonal cycle starts with spring. It would appear that at the time of these early Vadic texts the (Vedic) seasonal year commenced in spring (around vernal equinox) when the sun was in the nakṣatra-sector K!ttikās. This hypothesis is confirmed by the absolute position of the nakṣatra-sector K!̣ttikās. The ecliptic longitude of the tenth full moon which is in the nakṣatra-sector Kṛttikās is almost 0° (Table 5.) that is, this nakșatrasector is close to vernal equinox. The start of the seasonal cycle in spring with the sun in K!ttikās is consistent with the myth of Skanda (the year) with its six heads (seasons) who was born when agni/sun was in K!̣ttikās ${ }^{17}$. In this respect the Āryas would appear to be similar to a number of early cultures in which the food gathering and agricultural season started when the sun was 'close' to the Pleiades (K!ttikās) or around vernal equinox in the northern hemisphere and around autumnal equinox in the southern hemisphere ${ }^{18}$.

In the calculation of the coordinates of the full moons in a yuga the origin was assumed to be the first point of Aries or vernal equinox and a nakșatra would be expected to be close to this origin or close to vernal equinox. That this nakṣatra should be the K!̣ttikās is perhaps not entirely fortuitous; the start of the seasonal year discussed above suggests that the Āryas set-up their scheme of nakṣatra with origin at vernal equinox i.e. the nakṣatra of the sun at vernal equinox was considered to be the first nakṣatra and this was Kṛttikās. This explains why all lists of nakṣatras in Vedic texts start with K!̣ttikās.

The use of the word nakṣatras both as nakṣatra-sectors and as asterisms suggests that the Āryas may have identified the nakșatra-sectors by the stars in proximity of these sectors. This method of identification of nakṣatra-sectors would be more reproducible then counting the number of full or new moons from the start of every yuga. The stellar identifiers of the nakṣatras are not given in
the Vedic text including VJ. An exception may be the K!ttikās; the mythology, the number of stars, the position in the list of naksatras and the comparison with other cultures suggests that the identification of the Kṛttikās with the Pleiades is unambiguous. Like other cultures the Āryas could have used the heliacal rising or setting of the Pleiades (K!̣ttikās) to herald the seasonal cycle and the New Year.

To identify the epoch when the Vedic New Year was in spring it is necessary to identify the (precessed) coordinates of the Pleiades at this epoch. To determine this epoch it is necessary to consider the Cāturmāsya (or seasonal) sacrifices. In the post-Rgvedic texts the 'dates' of the performance of these three sacrifices are identified by the conjunction of the full moon and three prescribed nakṣatras. The autumn sacrifice, Sākamedha, was performed when the full moon was in K!ttikās ${ }^{19,20}$. In Figure 2 are shown the ecliptic longitude and latitude of the tenth full moon of a yuga; as discussed above, this full moon is in autumn (śarad). Also shown in Figure 2 are the coordinates of seven principle stars of the Pleiades precessed to eleven evenly spaced epochs (250 years apart) between 3000 BC and 500 BC . Between 2000 BC and 1500 BC the

Fig. 2. The coordinates of seven brightest stars of the Pleiades (Krttikās) precessed to eleven epochs (250 years apart) between 3000 BC and 500 BC . In this diagram, the ecliptic is the line along latitude 0°. The 'bar' is the width of the nakșatra-sector Krttikās. For clarity, the naksatra-sector is off-set from the ecliptic. The ecliptic longitude and latitude of the $10^{\text {th }}$ full moon in a yuga are shown. The mean coordinates obtained for 1900 AD to 2000 AD period are plotted as a large dot and those obtained for 1500 BC to 500 BC period are plotted as a cross. The error bars denote the spread in the coordinates over the period for which the coordinates have been calculated (see text for details).

Krttikās conjoin the autumn full moon and during this period the sun will be in K!̣ttikās in spring (vasanta). During this epoch the nakṣatra Kṛttikās are also in the nakṣatra-sector K!̣ttikās (shown in Fig. 2). At vernal equinox at this epoch the Pleiades will rise after sun-rise but set after sun-set. Few (fifteen to twenty) days later they will rise before sun-rise and set before sun-set. Thus around vernal equinox between 2000 BC and 1500 BC the K!̣ttikās/Pleiades would have been observed to rise and set heliacally and this would have been (perhaps) a good omen to start a New Year.

A number of passages in various Vedic texts suggest that during the Vedic period there was also a tradition to start a New Year at winter solstice. As discussed above, in the calendar of Vedäniga Jyotiṣa, the yuga starts at winter solstice "when the sun and the moon are in Śraviṣthās". The parameters of the calendar of Vedāniga Jyotiṣa depend on this start of the yuga. It is possible that the New Year in spring was an earlier tradition (in conformity with most other early cultures) and the New Year at winter solstice was a later development. It is equally possible that these were two parallel traditions. It would have been possible for the composer(s) of Vedāniga Jyotiṣa to rearrange the list of nakṣatras to start with Śraviṣthās but they clearly opted to retain the arrangement of nakṣatras given in the earlier texts. The j $\bar{a} v a \bar{a} d i ~ a r r a n g e m e n t ~ o f ~ n a k s ̣ a t r a s ~ a p p e a r s ~$ to have been devised to create an absolute and fixed frame of reference that is anchored to the ecliptic. Background stars could be and most probably were used to identify the sectors of this reference frame. However, because of precession of the equinox, over time these stellar identifiers will have moved out of their original sectors.

Acknowledgements

I would like to thank Elizabeth Tucker for encouragement and help in my studies of the Vedic texts. Christopher Minkowski and S. R. Sarma are thanked for helpful comments on an earlier version of this paper. Patrick Wallace (Rutherford Appleton Laboratory) is thanked for providing the SLALIB positional-astronomy software and advising on its use.

References

1. Weber, A. Die vedischen Nachrichten von den naxatra (Mondstationen). II., Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1861. pp.267400.
2. Whitney, W.D., Oriental and Linguistic Studies, (New York 1874)
3. Thibaut, G. Contributions to the explanation of Jyotiṣa Vedänga, J. Asiatic Soc. Of Bengal, Culcutta, 47 (1877), pp. 411 - 437.
4. Dīkṣita, S.B, Bhāratī ya Jyotiśāstra (in Marathi) (Puna, 1896).
5. Pingree, D., and Morrissey, P., On the Identification of the Yogatārās of the Indian Naksatras, Journal of History of Astronomy, xx. (1989) pp. 100-119.
6. Billard, R., L'astronomie indienne : investigation des textes sanskrits et des données numériques (Paris, 1971)
7. Abhyankar, K.D., Misidentification of some Indian Nakṣatras, Indian Journal of History of Science, 26 (1), 1991. pp.1-10.
8. Weber, A. Uber den Vedakalender, namens Jyitisham, Abh. Der Konig. Akademie der Wiss, zu Berlin, 1862, pp. 1-130.
9. Thibaut. op. cit. (ref. 3), pp.425-428
10. Dīkṣita, op. cit. (ref. 4), pp.70-87
11. Tilak, B. G. Vedic Chronology and Vedānga Jyotiṣa, Puna, 1925.
12. Shamasastry, R. Vedangajyautisha, (Sanskrit commentary and English translation), Mysore, 1936.
13. Kuppanna Sastry, T.S. Vedäniga Jyotiṣa of Lagadha, critically edited by K.V. Sarma, (New Delhi, 1984).
14. Thibaut,, op. cit. (ref. 3), pp.425-428
15. Pingree and Morrissey, op. cit. (ref. 5), p.107.
16. Abhyankar, op. cit. (ref. 6), p.9.
17. O’Flaherty, W. D. Hindu Myths, England 1975, pp.104-105.
18. Frazer, J.G. The Golden Bough: Spirits of the Corn and of the Wild, (London 1933), vol. I, pp.207-319.
19. Bhide, V. V. The Chaturmasya Sacrifice, Puna, 1979.
20. Ranade, H. G. Kātyāyana Śrautra Sūtra, Puna, 1978.

[^0]: * Stoke Lodge, 10 Royal Crescent, Sandown, Isle of Wight, PO36 8LZ. Email: p.gondhalekar@btinternet.com

