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TECHNIQUES OF ANCIENT EMPIRICAL
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The paper deals with techniques used in primitive and ancient
mathematics. For the length of the arc of a circular segment, a newly
discovered old Babylonian rule and an ancient Indian formula are discussed.
For obtaining the approximations and limits of square roots, the quite
simple method of squaring and cubing has been described. Equivalence
with other usual methods has been shown. The ancient popular process
of averaging for computing areas and volumes is illustrated with several
examples. The simple Golden Rule of Three (traira–sƒika) has been dealt in
quite wider sense with a indent variety of uses in history of mathematics.

The analogy principle as a method of proof was a common and
powerful tool in empirical mathematics. Its use in a wide range of
mathematical formulas has been discussed. Interpretations of A– ryabhat.a
I’s empirical formulas for the volume of a tetrahedron (s.ad.asƒri) and sphere
have been freshly presented from ancient sources. Representation of
mathematical quantities through ancient popular unit fractions have been
dealt. Some miscellaneous topics such as computation of tabular Sines
and the process of iteration (asakr. ta-karma) have been included. The
paper is fully documented.
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Averaging; Pythagoras Theorem; Rule of Three; Segment of a Circle;
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1. INTRODUCTION

The subject of mathematics can be said to have great antiquity. Among the
three famous old topics of reading, writing, and arithmetic, the last one is the most
ancient because the other two needed some sort of script to be developed.
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The idea of whole number and the process of counting are very ancient.
Artifacts of numerical significance (e.g. those containing notches for counting)
which are older than twenty thousand years, have been found1. Thousands of
tokens (small clay objects of varied shapes) were produced in the middle east
during the period 8000 to 6000 BC. After careful examination of the tokens,
Denise Schmandt-Besserat2 had concluded that they were used for concrete
counting entailing both cardinality and object specificity. In fact “to calculate”
earlier meant “to reckon by means of pebbles” (the word “calculus” comes from
the Latin calx which means “stone”).

Ancient Babylonian, Chinese, Egyptian, and Indian mathematics were all
concerned with rectilinear as well as curvilinear measurement. But their treatment
could not be granted full-fledged mathematical stature for want of deductive
reasoning (from first principles) and rigorous logical procedure. Also, frequently
there was no clear cut distinction between results which were exact and those
which were approximate only.

Another lacuna in primitive mathematics was that proofs of formulas and
other mathematical relationships were not explicitly brought out through deductive
logic. The main reason was that mathematics was not studied commonly for its
own sake. During antique remote times, this situation was usual in most of the
cultural areas of the world.

In India of Vedic period, mathematics as well as astronomy were studied
and developed for religious purpose. Thus it seems that the aim of early Indians
was not to build up an edifice of logically deductive science of mathematics on
the foundation of a few self evident fundamental axioms (as was done in Greek
mathematics later). Even a visual demonstration or a non-rigorous derivation and
explanation was quite an accepted from of the proof.3 Moreover, empirical reasoning
was often considered sufficient. Also, generally the proofs (whatever sort they
might have been) were supposed to be explained orally by the teachers to students.
Frequently it was left to the commentaries to give exposition by including possible
derivations or rationales and other details.

When proofs of the theorems and formulas are found in later sources, the
tools used in them should be examined. If they are attributed to the older sources,
the availability of the said methods in older times should be checked. It should
also be noted that if simpler or empirical techniques enable us to get the needed
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rules and results, we should be careful in assigning more sophisticated or more
general methods of later period to old sources.4

2. SOME SIMPLE EMPIRICAL RULES

In a given circular segment (Fig.1), let the length of the chord PQ be c
and the height of the segment be h (=EM). A modern exact method of finding the
segment’s arc-length PEQ (= s) is to make use of the trigonometrical formula

s = d sin-1 (c/d) …(1)

where the diameter d (= 2r) of the circle is given by the rule

C2 = 4h (d - h) …(2)

But more than 350 years ago (when such trigonometrical method was not
known), the Babylonians made use of the empirical relation

s = c + h …(3)

Fig. 1.

The supposed use of this simple formula is based on certain calculations
found in the old Babylonian text BM 85194 which is dated about 1600 BC5. The
details of the discovery of the pre-trigonometry empirical formula (3) are given in
a recent paper6. A simple and possible empirical way of arriving at the formula
is also suggested in the paper as follows. Consider various segmental arcs on the
chord PQ (Fig. 2). When the height h is zero, the curved arc PEQ coincides with
the straight chord PQ. As the curved arc moves more and more away from the
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chord PQ, the excess of the length of arc PEQ are PQ as well as the height h
both increase. That is, (s-c) increases with h. Assuming a simple proportionate
variation, we have

s – c = λh …(4)

where λ is the linear proportionality constant. This constant can be easily found
by taking the simple case of semicircle (which is also a segment) on PQ as
diameter. That is,

when c= 2r, s = πr, h = r.

Putting these in (4) we get λ = 1 for the then commonly used simple
Babylonian value π = 3. Hence we get (3). Another empirical derivation of (3)
follows if the segmental arc PEQ (Fig. 1) to treated analogous to a semicircle for
which (3) is true with

π = 3, so that s = 3r = 2r + r = PQ + ME = c + h.

About 2000 years later and about 2000 miles east of Babylonia, we
come across a different type of rectification of the circular segment. The new
empirical formula is found in the Jaina School in India. It can be expressed as7

2 2s c kh= + …(5)

where

k = π2 - 4 …(6)

Fig. 2
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The derivation seems to follow the reasoning thus (Fig. 1):

s = arc PEQ = arc PE + arc EQ

>(chord PE + chord EQ)

( )2
2c2PE 2 h2= = +

That is, 

2 2s c 4h> +

…(7)

So that s can be assigned the form (5) empirically provided that k is
greater than 4. Finally, to find k numerically, the case of semi-circle (which is also
a circular segment) was considered there by getting (6) by putting c = 2r, h = r,
and s = πr in (5).

For the commonly used Jaina valued π = 10  in (6), the value of k will
be 6, and (5) becomes

2 2s c 6h= +
…(8)

This formula (8) is found in most of the Jaina works on mathematics and
cosmography (in prakrit and sanskrit) including those of Umasva–ti who is variously
placed from 1st to 5th century AD.8 Interestingly, if we replace c2 in (8) from the
well known formula (2) and simplify, we get the form

( )2s 2 d h d⎡ ⎤= + −⎣ ⎦ …(9)

This peculiar form is found in the Tiloya-pan.n.atti, IV. 181 of Yativr.s.abha9.
Maha–vi–ra in his Gan. itasa–ra-san.graha gives (8) as well as the case for k = 5
(which corresponds to π = 3) while the form corresponding to π = 22/7 is found
in the Maha–siddha–nta of A– ryabhat.a II who was not a Jain.10

As already pointed out earlier, the analogy between segment and semicircle
can also be used to derive the rectification formulas by empirical generalization.
For example, for the semicircle of radius r, the curved arc is s = 

10

 r, using the
usual Jaina value of π. Now we write it as

( )2 2s 2r 6r= +

…(10)
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With respect to semicircle (Fig. 2), 2r in (10) is the base chord PQ and
r is the height MF. So, by replacing 2r by c and r by h in (10) we get, of course
analogously, the empirical rule (8) for segment PEQ (Fig. 1). This primitive type
of analogy is quite crude. However, analogy in a wider sense was an accepted
method of proof (see the next section).

3. ANALOGY AND SOME RULES OF A– RYABHAT.A I

Interpreted in the wider sense of similarity, the analogy as method of proof
has been quite common in mathematical sciences since long in all cultures. It
seems to be based on the general belief that the world itself was a mathematical
creation in which all things were connected by a common mathematical plan.
Many eminent mathematicians such as A– ryabhat.a, Kepler, Newton, and Euler,
relied heavily on analogical reasoning. Often new discoveries are made on the
basis of analogy and their justification and demonstration are found later on.

When Newton extended the binomial theorem over to negative and
fractional index, he appealed to the uniformity of nature which is a sort of analogy
principle. Euler often used analogy to extend mathematical notions and concepts.
He defined “sum” of any series, the expression whose expansion yields that series
(even if it is not convergent). For instance, if we divide 1 by (1-x) by the usual
method, we get

1/(1-x) = 1 + x+ x2 +x3+……….

So he took 1/(1-x) as the ‘sum’ of the RHS series for all finite values of
x, e.g. he got the absurd result

1 + 2 +4 + 8 + ……..= -1

by putting x = 2 in the above series! Following such generalized concept, Ramanujan
got11

1 - 2 + 3 - 4 + 5 - 6……..=1/4

from the expansion of 1/(1+x)2 and then putting x = 1.

In primitive times, the analogical principle was helplessly employed when
exact or better method seemed to be out of reach. The so-called Jorge’s formula12.

Area, A = (p/4)2 …(11)
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for the area of a general quadrangular field with sides a,b,c,d, was a choice in
primitive lines. Here

p = (a + b + c + d) …(12)

is the perimeter of the field. The formula (11) was based on the analogy
of the area of a square for which it is true. An equivalent of (11) is also found
in the Latin work of Alcuin (about 800 AD)13. To estimate area through perimeter
is an older practice although (11) may be seen to imply the concept of average
also.

According to Boyer14, the Rhind papyrus (c. 1650 BC) shows shat the
Egyptians correctly found the volume of a square pyramid to be one-third the
volume of the right prism having the same base and altitude. According to the
Archimedes’ treatise Methods, the formula

Vol. of pyramid = (1/3) (vol. of prism) …(13)

(the polygonal base and height being same) was known to Democritus (c. 400
BC) who also knew that a similar relation exists between the cone and the
cylinder.15 But it is surprising to find that Maimonides (1135-1204) in his Moreh
N Vokheem speaks of those who still thought the cone to be half of the cylinder
with the same base and height.16

In India, A– ryabhat.a I (born 476 AD) states in his A–ryabhat. i
–ya II. 6 (2nd

half) that the volume of a tetrahedron (s.ad.asƒri or six-edged solid) is half the
product of the area of its triangular base and height.

That is, for a regular pyramid with triangular base

Vol. V = (1/2) (area of base).(height) …(14)

which is wrong. The correct formula (13) is found in the Bra–ham-sphut.a
Siddha–nta XII. 44 of Brahmagupta (628 AD). However, the surprising thing is
that most of the commentators of the A–ryabhat. i

–ya made no fuss about (14) even
as late as Kodan.d.ara–ma (c.1850).17

Many explanations have been suggested for A– ryabhat.a’s mistake or
confusion. One of them is that (14) is based on the speculation of analogy with
the formula for the area of a triangle (dealt in the 1st half of II. 6) namely

Area, A = (1/2) (length of base).(height) …(15)
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It is interesting to note that the Greeks associated the metaphysical element
fire with a tetrahedron while in India the triangle with apex upwards was also
called agni (fire) or Sƒiva triangle.18 Another explanation is that, for the volume of
a frustum of a pyramid, an ancient formula (based on the frequently used habit of
averaging) could be

Vol. = (1/2) (A +A′).(height) …(16)

where A and A′ are the areas of the base and top.19 In the case of a pyramid,
A′ = O, and we get (14).

Some very artificial and twisted interpretations of the A– ryabhat.a’s rules
have been also given 20 but they are not supported by texts or commentators. An
important point to note is that the falsehood of (14) could have been easily found
by making some models or even by weighing crude replicas.

There is also a mathematically important point to note. A– ryabhat.a’s mistaken
formula (14) is not in harmony with his correct rule for the total number of small
balls or shots which form a triangular pyramidical pile. Counted from the top, the
nth layer will have

1 + 2 + 3 +…….. + n = n(n + 1)/2 balls …(17)

According to the A–ryabhat. i
–ya II. 21, the total number of balls in the n

layers will be given by

n(n + 1)(n + 2)/6

which is the citighana or voluminous contents of pile. In the same spirit (17) will
represent the oral contents of the nth layer or the triangular base, and n (the
number of layers) the height. So by assuming (for the triangular pyramid)

Volume = k(area of base) × (height) …(18)

We should have, roughly speaking, in the limit (as n→∞)

n(n+1)(n+2)/6 = k.[n(n+1)/2].n

By taking the limits in this, we easily get k=1/3 using which in (18), will
lead to the correct formula(13)*.

* For a pile in the shape of a square pyramid (with n2 ball in the nth layer), the next verse
(II.22) gives the voluminous contents as n(n+1)(2n+1)/6. So here also
k = limit   n(n+1)(2n+1)/(6n2.n) = 1/3 correctly.n→∞
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For the mensuration of a circle and sphere, certain bold analogies have
been used in the history of mathematics. The Jorge’s formula (11) used analogously
for a circle of circumference C, will give

area of circle = (C/4)2 …(19)

This was applied not only in primitive mathematics21 but was suggested
even in 1894 by Goodwin in America.22 Interestingly, attempts to legalise (19)
were made in the U.S.A. through the notorius house Bill No. 246 (Indiana State
Legislature, 1897) but they could not succeed.

The A–ryabhat. i
–ya II. 7 (1st half) contains correctly a rule for the area of

a circle equivalent to

Area = (C/2).(D/2) = C.D/4 …(20)

where the width (vis. kam. bha) or diameter D = 2r.

The rule (20) is very ancient and quite common. Interestingly, it is true for
the square (C = p = 4a, and D = a = side of square) and was used for general
round plane figures.

A similar analogy exists between cube (of side a) and sphere (of radius
r) for their volumes in respect to the formula.

Volume = (total surface) × (width)/6 …(21)

which yields the exact volume in each case.

For cube, total surface = 6a2, width = a, and by (21)

Vol. V1 = (6a2). a/6 = a3, correctly …(22)

For sphere, surface = 4πr2, width = 2r, and by (21),

Vol. V2 = (4πr2), 2r/6 = (4/3) πr3, correctly …(23)

Now for the cubic volume, the formula (22) can also be written as

V1 = (a2).a

= M√m …(24)

where M is the area of the middle section which passes through the centre of the
cube and lies half way between a pair of opposite faces. A– ryabhat.a I seems to
have followed the rule (24) analogously for the sphere.
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In A–ryabhat. i
–ya II.7 (2nd half) he says

tannija-mu–lena hatam.  ghana-gola-phalam.  niravasƒes.am

“That (i.e. the area of a circle mentioned in the first half of the verse)
multiplied by its own (square) root is the volume of a sphere (whose central
section is the above circle) without remainder (i.e. exactly).”

That is, the volume of a sphere of radius r is

V = A√A …(25)

where A is the area of the central (or greatest) circular section and which, by (20),
is given by

A = (2πr).(2r)/4 = πr2 …(26)

Putting this in (25) we have the wrong formula

( )2 2V r r= π π …(27)

Thus we see that the analogy of cube and sphere works alright for (21),
but fails for (24).

Of course, the correct volume of a solid can be found by applying a more
general rule

Vol. = (chosen sectional area) × (effective height)

provided the effective height is properly found out. For the central section of a
sphere the correct effective height (ucchra–yah., as Paramesƒvara call it)23 is 4r/3
and not 

2rπ

 (= 1.77 r nearly) as implied in (27).

Correct volume of a sphere (or any solid) can also be found by determining
the side of a cube (called dva–dasƒa–sƒra by Ni–lakan. t.ha) of equal volume. But this
effective side is not equal to the side of a square (caturasƒra) whose area is equal
to the central section of the sphere. That is, although square of side (√π.r) will
give area equal to that of a circle of radius r, the cube on side (√π.r) will not yield
the volume of the sphere of radius r. Thus the analogy pointed out by Ni–lakan. t.ha24

as an explanation of A– ryabhat.a’s rule (27) does not work. The correct effective
side of a cube equal in volume to the sphere will be, using (23),

side, s = (4π/3)1/3.r = 1.61 r nearly …(28)
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while A– ryabhat.a’s rule (27) implies 

rπ

 = 1.77r, nearly. The error here is less
than in treating √πr) as effective height.

Thus we find that Ni–lakan. t.ha’s interpretation of A– ryabhat.a’s rule is far
better than that of Paramesƒvara. Correct formula for the volume of a sphere was
known to Archimedes (c. 225 BC) and many empirical rules were also known.25

A– ryabhat.a called his rule as exact (niravasƒes.am). He showed his originality in his
attempt to find correct volume through effective side or height.

4. SQUARE-ROOTS BY SQUARING AND CUBING

The extraction of square-roots is a frequently employed operation in
computation beyond rational arithmetical operations. The square root of a non-
square positive integer N is irrational and so its true or exact numerical volume
cannot be expressed as a terminating decimal or represented by a fraction p/q of
two integers. But the value of √N can be found approximately or to any desired
degree of accuracy by some simple methods. One of the earlier such method is
the process of squaring and cubing.

The practical working of the method may be illustrated by taking an
example. Here we take the evaluation of √10 which is called the Jaina value of
π in historical context. For calculating the circumference of a circle of diameter
D, the Jaina School commonly used the empirical rule

2C 10D=

…(29)

which may be taken to imply the use of √10 for π. However, it must be noted
that their actual numerical computation of C was based on the ancient empirical
formula

2a x a (x / 2a)+ = + …(30)

Rather than on the direct multiplication of 10  and D.26

Now the square number nearest to 10 is 9 and

( ) ( ) ( )10 3 1 10 3 1 3 3 1 6− = + < + =

Thus the error e in taking √10 = 3 is less than one numerically. So that

en = ( 10 -3)n, n = 1,2,3 …(31)
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will form a decreasing sequence (converging to zero). In this way by expanding
the right hand side of (31) for n =2, 3, 4 etc. and equating to zero each time, we
can easily find improvingly better and rational approximations for √10. For n =
2, we have

( )2
10 3 10 9 6 10 0− = + − =

…(32)

which gives 

10

 = 19/6. This value, which also follows from (30) with a = 3 and
x = 1, is often found separately among the Jainas and elsewhere. For n = 3 and
4, we have

( ) ( )3
10 3 0 and 19 6 10 2 0− = − =

Expanding and simplifying we get

37 10 117 0, and 721 728 10 0− = − =
From these we get the approximations

10
 = 117/37, and (the better one) 

10
 = 721/228 …(33)

Decimally 721/228 is 3.162281 nearly while the correct value is 3.1622776
nearly (correct to 7 decimals).

It may be pointed that the approximation 721/228 was also obtained by
Rhabdas (c. 1340) as well as by his Indian contemporary Na–ra–yan.a Pan.d.ita but
they followed different methods.27 Na–ra–yan.a also obtained the still better
approximation 27379/8658. Here this value can be easily obtained by zeroing
square of e3 (which is already found above) i.e. by

( )2

37 10 17 0− =

 (to be squared first).

The above elementary method of squaring and cubing can also be used
to find fine limits between which the value of a simple surd lies. To illustrate this
we take a historically famous example. It is known that the famous Greek scholar
Archimedes (c. 225 BC) stated

( ) ( )265 153 3 1351 780< <

…(34)
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Several explanations are available for the limits set here and they have
offered a great fascination as well as challenge to historians of science to reach
the original derivation of Archimedes.28 The following simple method was given
first by T.N. Thiele 29 as early as 1884 but is not found in standard histories of
mathematics. The square of 5/3 is 25/9 which is less than 3, so that 5/3 is less
than √3 and we have (5-3√2) < 0.

Thus by expanding (5-3√3)n for n = 2 and 3 we get

25 27 30 3 0, i.e.26 15 3 0+ − > − > …(35)

and, 

( )125 81 3 45 3 5 3 3 0− − − <

or 

530 306 3 0, i.e.− <

3 265 153> …(36)

Again from (35) we have, by squaring

( )2
26 15 3 0− >

or, 676 + 675 – 780√3 >0, i.e. √3<1351/780

which along with (36) leads to the remarkable result (34). Thus by just squaring
twice and cubing once, the baffling Archimedean limits in (34) are obtained!

But we still need an explanation for the initial choice of the fraction 5/3
instead of, say, 3/2 or 7/4. My attention goes to the ancient rule:

2a x a x (2a 1)+ = + +

…(37)

with a = 1 and x = 2. This rule was also used in India.30 It gives a lower value
to allow a convenient positive correction to be made.

Datta in his famous classical work The Science of the Sulba31 gives a
plausible geometrical derivation of the following 4-term expressions

1 1 12 1
3 3.4 3.4.34

= + + −

…(38)

2 1 13 1
3 3.5 3.5.52

= + + − …(39)
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We write these as

17 1 5772
12 408 408
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

…(40)

26 1 13513
15 780 780

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

…(41)

It is seen that the first two terms of (39) gives the starting fraction 5/3
used by Thiele in deriving the Archimedean result (34) whose upper limit is in fact
the above value of √3 as shown by (41). Also 5/3 comes from (37).

The approximation (38) is found in all the three major sƒulba-su–tras.32 as
is well known. Its first two terms can also be attained by using (37) and represent
the fraction 4/3. It can be easily seen that (4-3√2)<0.

So by expanding (4-3√2)n, successively we get

( )2
4 3 2 16 18 24 2 34 24 2 0− = + − = − > …(42)

( )34 3 2 280 198 2 0− = − <
…(43)

( ) ( )4 2
4 3 2 4 17 12 2− = −

, by  (42);

( )4 289 288 408 2 0= + − > …(44)

From (43) and (44) we get

140 99 2 577 408< <

Here also the upper limit represents the sƒulba value.

Interesting by (35) and (42) also lead as to the popular and convenient
approximations √2 = 17/12 and √3 = 26/15. It may be noted that (40) and (41)
show that a small negative correction in each of these convenient fractions lead
us to the good and final values as implied in (38) and (39). More significant to
note are their associated relations

2.122+1 = 172, and 3.152+1 = 262. …(46)
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These relations at once show their connection to the well-known Indian
varga-prakr. ti equation

Nx2 + 1 = y2 …(47)

Further by writing the first equation in (46) as

( ) 22 1 12 . 17 1= −

And applying the formula (30) with x = -1, we get

( )2 17 12 1 12.2.17= −

which is equivalent to (40). Other ancient methods such as Heronian algorithm
and iteration also lead us to same solution equivalently.33

An important point to note is that just as the pair (12, 17) is a solution
of (47), the pair (408, 577) picked up from (40) is also a solution because

2.4082 + 1 = 5772 …(48)
This also means tat the solution (408, 577) could have been derived from

(12, 17) by using the tulya-bha–vana– theorem of Brahmagupta (628 AD). What
we have shown is that the task is done just by squaring i.e. by (17-12√2)2 = 0.

5. METHOD OF AVERAGING

In the history of mathematics, the use of average (arithmetic mean of two
or more numbers or measures) has frequently yielded helpful results. This was
especially so in those cases where the exact results were not known or were
cumbersome to derive. Of course, in many cases the exact mathematical formula
itself is nicely expressed in terms of certain average. The sum of an arithmetical
progression is the average of the first and the last term multiplied by the number
of terms. The area of a trapezium is equal to the product the average of the
parallel sides and their distance.

In practice, a compelling situation far employing the technique of averaging
arose in antique time when the problem of finding the area of general quadrangular
field was faced. The quadrilateral of sides a, b, c, d is physically fixed on the
ground but mathematically the four sides are not enough to fix the figure or define
its area uniquely. So it is not possible to find an exact mathematical formula for
the area in terms of four sides alone. Moreover enough sophisticated mathematics
could not be expected to the known in remote antiquity.
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We might see averaging of the four sides in the primitive Jorge’s rule (11)
for the area of a quadrilateral. Mathematically more analytic ancient peoples
solved (3000 BC or earlier) the problem by using the formula

Area, A = [(a + c)/2] [(b + d)/2] …(49)

which simply takes the product of the average length and average breadth.
The formula (49) was so popular that it is found widely used in almost all ancient
civilizations.34 It is variously called as Surveyor’s Rule or Taxman’s formula or
Ada–o’s Method, and is said to be used even now in the absence of a convenient
practical rule. It always overestimates the area of all quadrilateral except rectangles.
It helped in maintaining a sort of uniformity of practice and calculation.

In India, the first explicit statement of (49) is found in the Bra–hmasphut.a-
Siddha–nta XII. 21 of Brahmagupta as a rough rule.35 An interesting point to note
is that (49) was often used for triangles also by assuming one side of quadrilateral
to be zero. But this will lead us to three results (in the case of a general triangle
of sides a,b,c) namely

(a+c) b/4, (b+c)a/4, and (a+b)c/4.

However, by using averaging technique here, we can get the unambiguous
rule for the triangle as

Area = (ab+bc+ca)/6 …(50)

For the case d=0, i.e. for a triangle Jorge’s formula (11) will give

Area = (a+b+c)2/16 but a better suggested rule is:

Area = (a+b+c)2/21 …(51)

For an equilateral triangle (51) gives area 0.429 a2 (correct answer 0.433
a2 nearly), but for the triangle of sides13,14, and 15, the formula (51) yield exact
area of 84 units.36

It seems that averaging was taken to be more convenient even when
better results could be found by other methods. For the area of a drum-shaped
field (double trapezia), the 4th country AD. Chinese compilation Wu Tsha–o Suan
Ching gives the formula37

Area = [(a+b+c)/3]. (height) …(52)
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where a and c are the two parallel edges of the field and b is the linear
measure along the line lying half-way between the above edges. The correct
formula

Area = [(a+c)/2 +b}.h/2 …(53)

was used in India by Bha–skara I (629 AD).38

A point to note in this connection is that the process of averaging may lead
to exact results accidentally when only an empirical one is expected. For instance,
suppose a cone, a hemisphere, and a cylinder (all of same height r) are described
on the same circular base (of radius r). Assuming the hemisphere to be the
average between cone and cylinder its volume will be39

Vol = (1/2) [(πr2.r)/3 + πr2.r.]

= (2/3) πr3

which is, in fact, the exact volume of the hemisphere. If the base and top
of a frustum-like solid are rectangles (of sides a, b and a′, b′) with edges of top
also parallel to edges of base correspondingly, them we have two averaging type
formulas for volume of the solid

V1 = (1/2) (ab + a′b′).h …(54)

V2 = [ (a+a′)/2]. [(b+b′)/2].h …(55)

where h is the height of the solid.

For frustum (dva–dasƒa–sƒra) of square base and top, both the above formulas
were used in Babylonia.40 Brahmagupta calls V1 which is based on averaging the
areas, as autra or aun.d. ra (gross) volume and V2 which is based on averaging
first the linear dimension (of base and top) as vyavaha–rika (practical) volume.
He then uses the concept of a sort of weighted average to reach the final volume
of the frustum.41 An elegant generalization by considering any number of sections
(instead of mere base and top) was given two centuries later by Maha–vi–ra42 in
his Gan. ita sa–ra-san.graha VIII, 9-11.

For a truncated right triangular prism (nava–sƒra) the following averaging
was used in China43

Volume = (base).(h1+h2+h3)/3*

* This ancient Chinese formula was found to be mathematically exact by A.M. Legendre in
his Eléments de Géométrie (1794).
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where h1, h2, h3 are the heights of the vertical edges, and similar process
applied to other irregular solids.

Mention of Heronian algorithm for finding square root has been made
already. This popular ancient method is based on averaging. For finding √N, we
take any (rough) approximation a0. Then N/a0 is another approximation. The
average (arithmetic mean) of the two is the next (better value). For example,
assuming 17/12 to be the starting near about value for √2. Then 2/(17/12) or
24/17 is another value. And

(1/2 (17/12 + 24/17) = 577/408

will be a better approximation than 17/12. In fact it is the Sƒulba approximation
in the form (40). For better value of √2, we can repeat the process with a0 =
577/408. Heronian method always yields value in excess of the true value. So in
vain Neugebauer and Sachs tried to explain by it the Babylonian √2 = 1; 24, 51,
10 which is in defect.44 Recently D.G. Morin of Venezuela has extended Heron’s
algorithm to cube roots etc. by averaging of rational means.

Consider now the approximation

2N a x a x (2a c)= + = + + …(49)

which gives result in excess (30) when c = o, or in defect (37) when c = 1. For
the average or mean value of c (i.e.c. = ½) we get45

2a x a 2x (4a 1)+ = + +

…(50)

which is found in al-Uqli–disi– (10th century).

A similar discussion can be given for the rule

2a x a x (2a c)− = − −

…(51)

In Jaina cosmography, the circular Jamba–dvi–pa is divided into a number
of segments by parallel chords. For the area of a segment between two chords
(lying on the same side of the centre) of lengths a and b, Jina Bhadra Gan. i (c.
600 AD) gave the formula

A = [(a+b)/2].(height) …(52)



81TECHNIQUES OF ANCIENT EMPIRICAL MATHEMATICS

which is based on the average of a and b. He knew the gross defectiveness
of (52), and so gave another rule which used root-mean square of a and b.46

In the absence of exact methods, the “best” that Kepler (c. 1600) could
do for the perimeter of an ellipse was to take average of the circles on the two
axes47. For its area a medieval formula took the average of the axes and computed
the area by using48

Area = π[(a + b)/2]2

This is surprising because the correct formula π ab could have been
reached in a simple manner. Averaging has been also used in finding π = 355/113
by Adriaen Anthoniszoon in 1585 and in connection with certain series50. The use
of arithmetic mean for averaging is justified by the Principle of Least Squares.

6. THE GOLDEN RULE OF THREE (TRAIRA–SƒƒƒƒƒIKA)

In some form or the other, the traira–sƒika (Rule of Three) is being used
universally since remote antiquity. It was called a Golden Rule due to its simplicity
and utility in all practical matters of calculation. The importance of the rule is
mentioned by the famour Bha–skara–ca–rya by saying that “as the lord Hari pervades
the universe with His manifestation so does The Rule of Three, with is variations,
pervades the whole science of calculation”.51

The Rule of Three is a basic rule of Arithmetic. It is frequently used in
other branches of mathematics either as such or in it other forms. Also, Rule of
Five, Rule of Seven etc. are used as its higher forms when the number of variables
is more.

When similarity property is used in geometry, it amounts to using the Rule
of Three. Similar triangles ABC and PQR gives (Fig. 3).

AB/PQ = AC/PR …(53)

If any three segments in (53) are known  we can find the remaining 4th

segment e.g.

PR = (PQ/AB).AC …(54)

In the language of Rule of Three, we may say: “Given AB, we get PQ.
Then how much or what shall we get when AC is given.” The answer is PR
represented by (54).
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In trigonometry, the similarity or proportionality property is indicated by
certain named functions. For instance the ratio AM/AC is called sine of angle
ACM and is written as sin θ which will also be equal to the ratio PN/PR in the
similar triangle PRN. Thus when we use trigonometrical function, it implies the use
similarity property geometrically and the Rule of Three arithmetically as shown
alone.

In the case of simple or linear interpolation also, we are essentially using
the Rule of Three by taking proportionate changes in the argument and the
functional values. For example, let us find sine of 35° from known sines of 30°
and 45°. Here we have (upto 4 decimals).

sin 30° = 0.5000

sin 45° = √2/2 = 0.7071

Change: + 15° = +0.2071

Here, change of 15° in angle corresponds to a change of 0.2071 in the
value of sine (approximately).So by Rule of Three, for 5° (from 30° to 35°), the
change in sine value will be (linear interpolation)

= (5/15) x 0.2071 = 0.0690 nearly

Hence, sin 35° = sin 30° + 0.0690 = 0.5690.

Thus we find that the Rule of Three in the more general and wider sense
is used in various forms. It has been used as a method of proof as well as of
computation through out the history of mathematics.

Fig. 3.
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The popular algebraic formula (37) is based on the Rule of Three (see
section 4 above). Suppose the non-square positive integer N is (a2 + x),

where 0 < x < (2a +1). Let

2a c a e+ = +

Now we see that when c = 0, e is also 0. But when c = 2a+1, e will be
1. so when c = x, e will be x/(2a+1) by the Rule of Three applied empirically.
Hence we have

2N a x a x (2a 1)= + = + +

…(55)

By using this we get

210 3 1 3 1 7 22 7= + = + =

…(56)

It is interesting to mention that al-Bi–runi– credits Brahmagupta for deriving
(56) and for knowing 22/7 as an approximation of π for which the latter used √10
as the accurate value52 for nth root, the corresponding empirical formula will be

(an +x)1/n = a + x / [(a+1)n – an] …(57)

The case n = 3 was used by Leonardo Fibonacci perhaps for the frest
time (c. 1220)53. In fact in this case, the denominator of the second term in (57)
can be variously taken as (3a2 +3a +1), or (3a2 +3a), or (3a2 + 1), or 3a2 in
decreasing order. And it is noteworthy that the rules for cube root with all four
expressions in (57) are found in various Arabic and European authors54.

In India Laks.mi–da–sa Misƒra (c. 1500) made a very peculiar use of the
Rule of Three. Bha–skara II in his Jyotpatti (9th verse) had given the exact value

( )2R sin18 5R R / 4° = − …(58)

To prove this, Misƒra started with R sin90° = R and wrote it as

( )2R sin 90 25R R / 4° = − …(59)

He argued that for the sine of 90°, the coefficient of R2 in (59) is 25.
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Hence for sine of 18°, this coefficient, by Rule of Three, should be (18/90) x25
i.e 5 and thus we reach the result (58)! Of course, his argument is very empirical
as it will not work for other angles (say, 30°) as was pointed by Muni–sƒvara in
his Mari–ci on Jyotpatti.55

For the so-called Pythagoras Theorem, a very short proof was given by
Bha–skara II (12th century) by using the similarity property or the traira–sƒika (Rule
of Three) as he calls it56. In his Bi–jagan. ita  (“Algebra”), he considers the similar
triangles ABC (the given right angled triangle), CBH, and ACH, CH being
perpendicular from C on the hypotenuse AB. We have

x/a = a/c, and y/b = b/c

By putting x and y from these in x+y = c, and simplifying, we at once get
the required result

a2 +b2 = c2 …(60)

The similarity of the above three triangles (Fig. 4) can lead us to another
proof if we use the fact that areas of similar figures similarly described on their
bases, are proportional to the squares of the bases. Now the ∆ABC is described
on the hypotenuse AB = c, ∆BCH on BC = a and ∆ACH on AC = b, and since
the area of the biggest triangle ABC is equal to the sum of the areas of the other
triangles, the result (60) follows. This proof was given by H.A. Naber in 190857.

About Bha–skara’s above short proof, Cajori58 says that it “was unknown
in Europe until it was rediscovered by Wallis who gave it in his treatise on angular
sections59. But according to Loomi60, it also appears in Fibonacci’s Practica
Geometriae (1220).

Fig. 4
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In India, The technique of the Rule of Three has been suggested in
deriving the formulas which may not be considered simply elementary. One such
result is Bha–skara I’s remarkable formula

sinθ = 4θ (180-θ)/[40500-θ(180-θ)] …(61)

found in his Maha–bha–skari–ya, VII, 17-19 (7th century)61. In (61) the
angle is in degrees and it represents a rational approximation to a transcendental
function. An equivalent geometrical form of (61) appears in the Li–la–vati– (rule
210) of Bha–skara II whose famous commentator Gan.esƒa (1545 AD) remarks62

yathakatham. icita traira–sƒikam-upalabdhya– a–ca–ryaih.  kalpitam

“Some Rule of Three was applied by the professors to obtain the result”.

Now formula (61) can be written in the simpler form as

sin θ = 4P/(5-P) …(62)

where

P = θ (180-θ)/8100 …(63)

We note that (62) is better than the parabolic approximation

sin θ = P …(64)

The behaviour of sin θ, P, and P.sinθ is similar e.g. all vanish for θ = 0
and 180, and all attain the same greatest value at θ = 90 about which they have
a symmetry. For θ =30, there value is 1/2, 5/9, and 5/18 respectively. So by Rule
of Three (i.e. linear proportionality) applied to deviations of P and P. sinθ from
sinθ, we have63

( )
( )

( )
( )

5 1
9 2
5 1

18 2

P sin
P.sin sin

−− θ
=

θ − θ −

which on simplification, yields (62) .

More remarkable is the Indian proof of the second order property of the
sine function viz. that the second order finite differences of sines are proportional
to the sines themselves. The proof is intelligently creative and uses simply the Rule
of Three twice64. The golden rule has been also used in solving problems of
spherical astronomy by the technique of ‘working inside the sphere65.
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7. REPRESENTATION AND APPROXIMATION BY UNIT FRACTION

Unit fractions were quite popular in ancient times among various civilizations
along with the sexagesimal fractions. In the Maitra–yan. i

– Sam. hita– 3.7.7 of the
Kr. s.n. a Yajurveda, the fractions 1/4, 1/8, 1/12 and 1/16 are called pa–da, sƒapha,
kus. t.ha and kala– respectively and some of these names had already appeared in
the R.gveda66.

It was in Egypt that the unit fractions were used extensively as is clear
from the famous Rhind Papyrus (c. 1650 BC) which was copied by Ahmes (or
Ahmos) from an still older document. In fact Egyptian scholars took great pains
in preparing tables of unit fractions and in expressing various results in terms of
unit fractions. For example, consider problem 31 from the above papyrus  : ‘A
quantity, its 2/3, its 1/2, its 1/7 together make 33. what is the quantity?’ In modern
form67 the problem is to solve (x being the unknown quantity)

(2x/3) + (x/2) + (x/7) = 33 …(65)

The answer (i.e. value of x) is given in the complicated form as

1 1 1 1 1 1 114
4 56 97 194 388 679 776

+ + + + + + +…(66)

It is clear that cumbersome labour was done for love of the unit fractions,
the modern solution has the form 14 28/97, and even this can be expressed as

1 1 114
4 26 5044

+ + + …(67)

But a merit of (66) is that numbers used are all below 1000.

With the same merit, the Rhind Papyrus contains a table in which fraction
of the form 2/N are expressed in terms of unit fractions for all odd values from
N = 5 to N = 101 e.g.

2 1 1 1
17 12 51 68

= + + …(68)

2 1 1 1 1
101 101 202 303 606

= + + + …(69)
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The table is remarkable, beautiful and shows mathematical feat. There is
no arithmetical error, and we cannot fail to appreciate that each expansion sets
the fractions in descending order of magnitude without repetition.

In this connection, it must be remembered that the representation of a
fraction in terms of unit fractions in not unique in the light of relations like

1 1 1
n (n 1) n(n 1)
= +

+ + …(70)

For instance we have

2 1 1 1 1 1 1 1 1
5 3 15 4 10 20 5 6 30
= + = + + = + +

, etc.

But it is interesting to note that if we confine to expansions of 4 terms and
use numbers upto 1000, then (69) is unique.

A simple and practical algorithm to express a given fraction p/q into unit
fractions is the Maha–vi–ra – Fibonacci method68. In this method the denominator
q is slowly increased by 1, 2, 3, … till we reach a value x such that (q + x) just
becomes a multiple (say r times) of p, so that

p/q = p/(q+x) + [(p/q) – p/(q+x)}

= 1/r + (p x/r)

We repeat the process with the second term (px/r) if it is not already a
unit fraction etc.

Exm. 1: 
2 2 2 2 1 1

17 18 17 18 9 153
⎛ ⎞= + − = +⎜ ⎟⎝ ⎠  which is different from (68).

Exm. 2: 
7 7 7 7 1 5
9 14 9 14 2 18

⎛ ⎞= + − = +⎜ ⎟⎝ ⎠

             
1 5 5 5 1 1 1
2 20 18 20 2 4 36

⎛ ⎞= + + − = + +⎜ ⎟⎝ ⎠ …(71)

Exm. 3: 
11 11 11 11 1 5
17 22 17 22 2 34

⎛ ⎞= + − = +⎜ ⎟⎝ ⎠
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1 5 5 5 1 1 1
2 35 34 35 2 7 238

⎛ ⎞= + + − = + +⎜ ⎟⎝ ⎠ …(72)

There is another general method which has been called Vedic Principle.
It is based on minimality property and admits both positive and negative terms.
It can be applied to expand fractions (p/q) as well as to other numerical quantity
Q (e.g. surd √N) in terms of converging unit fractions. In this method of trial of
successive terms the assumed form (finite or infinite) has the pattern

1 1 2 1 2 3

1 1 1Q I ......
n n .n n .n .n

= ± ± ± ± …(73)

We first find integer I nearest to Q. Then we add or subtract from it a
until fraction (1/n1) such that (I + 1/n1) is nearest to Q. Then again add or subtract
from this resulting rational number, a unit fraction (1/n2) times or multiple of the
last unit fraction (1/n1) such that the new resulting rational number namely

I ± (1/n1) ± (1/n1.n2)

is closest to Q. And so on by repeating the process if necessary. Here the
obtained expansion will represent the best or closest value at any stage.

Example 1 : Express 2/101 in terms of expansion of the type (73). Here
2/101 = 1/50.5, and thus 2/101 lies between 1/50 and 1/51. Now considering
the deviations, we see that

(1/50) – (2/101) = +1/(50 × 101)

and (1/51) – (2/101) = -1/(51 x 101) which is numerically less than the
above deviation. Thus the unit fraction 1/51 is nearest  to 2/101 e.g. n1 = 51 in
(73) and with I = 0, we now write

2/101 = (1/51) + 1/(51 × n2)

Luckily in this example, the above second deviation also readily tells us
that n2 = 101 will give the exact value

2/101 = (1/51) + 1/(51 × 101) …(74)

It can be easily seen that (74) can be also obtained by the Maha–vi–ra-
Fibonacci method but the Egyptian (69) is quite different.
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Example 2: To represent 7/9 in form of (73).

Here 7/9 = 1/(9/7) = 1/(1.3), nearly. So 7/9 lies between 1/1 and 1/2,
and considering the deviations, we have

1 - (7/9) = 2/9, while (1/2 – (7/9) = - 5/18

which is numerically greater than the first. So we take I = 1 and write

7/9 = 1 – (1/n1) …(75)

From this, 1/n1 = 2/9 = 1/4.5, so that n1 is 4 or 5.

With n1 = 4, the deviation from 7/9 will be

= 1 – (1/4) – (7/9) = –1/36

With n1 = 5, The deviation will be, by (75)

= 1 – (1/5) – (7/9) = +1/45 …(76)

which is smaller, so that n1 = 5 is to be accepted in (75) and we have

7/9 = 1 – (1/5)

Also if (-1)/(5 x n2) is the next term, (76) shows that n2 = 9. Thus

7/9 = 1 – (1/5) – 1/(5.9) exactly …(77)

It should be noted that ‘Vedic’ expansion (77) is different from (71)
obtained by the simpler Maha–vi–ra-Fibonacci algorithm. The Vedic method is
based on minimality principle and gives ‘best’ term by  term expansion.

Example 3 : Expand 11/17 into unit fractions by Vedic method.
Here 11/17 = 1/(1.55), nearly and it can be seen that it lies nearer ½ than 1. So
we assume now

11/17 = (1/2) + (1/2n) …(78)

In which n stands for n2, while n1 = 2. From this we get

1/n = 2[(11/17) – (1/2)] = 5/17 = 1/3.4

So we have to check (78) for closeness for n = 3 and 4 (between which
n lies). For n = 3, the deviation of the right hand side of (78) from 11/17 is seen
to be 1/51 while that for n = 4 is found to be (-3)/136 which is numerically
greater. Also, the first deviation is a unit fraction and we have
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11/17 = (1/2) + (1/6) – (1/51) …(79)

However, it must be noted that it is not of the type (73) because 51 is
not a multiple of 6. So we write

11/17 = (1/2) +(1/6) ± (1/6m) …(80)

in which n1 = 2, n1. n2 = 6, and m stands for n3

Now from (80)

±1/m = 6[(11/17) – (1/2) – (1/6)] = (-2/17) = -1/8.5

So we have to take lower sign in (80) and test for m = 8 and 9. It can
be seen that m = 9 gives the right hand side of (80) closer to 11/17, than m =
8. In fact, taking lower sign and m = 9, the numerical error in right hand side of
(80) is found to be 1/17x54.

Hence we exactly have

11/17 = (1/2) + (1/6) – (1/54) – (1/918) …(81)

which is the required Vedic expansion of the type (73) but is quite different from
(72) in which only positive unit fractions are used. Both have their own merit and
so also (79) which has smaller numbers.

Afzal Ahmad69 has used the above minimality method implied in expansion
of the type (73) in connection with approximating simple surds. He has successfully
shown that the well known sƒulba value (38) of √2 follows by applying this Vedic
principle. By this principle, he extended the sƒulba value to

√2 = 1 + (1/3) + (1/3.4) – 1/(3.4.34) – 1/(3.4.34.1154) –
1/(3.4.34.1154.1331714) …(82)

Moreover, he has supplied a theoretical proof of the Vedic principle and
added many details.70

When the above principle is used to approximate √3, we get71

√3 = 2 – (1/4) – 1/(4.14) – 1/(4.14.194) …(83)

This is quite different from (39) which Datta derived by using the method
he used for √2. In this connection an important point may be mentioned. The
‘Vedic Principle’ approximation (83) yields, by taking 1,2,3 and all 4 terms,
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the values

√3 = 2/1, 7/4, 97/56, and 18817/10864 respectively. Each of these
fractions may be denoted by y/x by picking up numerator of denominator, it will
be found that in each case (x,y) is a solution of the famous varga-prakr. ti equation

Nx2 + 1 = y2 for N = 3 …(84)

In case of (82) (i.e. N = 2), this equation is not satisfied by first two
approximations (1/1 and 4/3) but is satisfied by other approximations 17/12,
577/408, 665857/470832, etc. As the pair (2,3) is a solution of (84) with N =
2, the first three terms in (82) can also be replaced by

1 +(1/2) – 1/(2.6), or 3/2 – 1/(2.6)

However, this will not be strictly according to the conditions of the principle
of (73). The choice of 3/2 (in place of 4/3) violates minimality.

The problem of expanding any arbitrary positive number N in the form
(73) was considered by J.H. Lambert72 in 1770 such that the series should
converge as rapidly as possible. Expansions in terms of continued fractions were
also developed in ancient and medieval times. In addition to unit fractions, the
sexagesimal (or astronomical) fractions were used in expansions.

8. MISCELLANEOUS

The Earth is spherical, yet due to its large radius, a small region on it look
plane. Similarly in a relatively big circle, small arcs of it will look as straight lines.
The traditional Brahma Siddha–nta (Sƒa–kalya) I. 93 says73

vr. ttasya s.an.n.avatyam. sƒo dan.d.avat

“The 96th part of a circle is (straight) like a rod.”

That is, in a circle of radius R and circumference C, the small arc s
measuring C/96 or 3°45′ (=h) in angular units, is taken equal in length to the
straight chord AB approximately (Fig. 5). Since FA is small here, the sine-chord
BF or R sin h is also taken equal to arc s (= h in angular units) empirically. In
ancient Indian trigonometry many rules and tables are based on this initial
assumption.

The A–ryabhat. i
–ya is supposed to be the historically first work of the

dated-type (pauras.eya) which has a sine table for Sinus totus R = 3438′ and
tabular interval h = 90°/24 = 225 minutes. Actually, instead of the 24 tabular Sines
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Sn = R sin nh, n = 1,2,3, …(85)

A– ryabhat.a gives their 24 Sine Differences

Dn = Sn – Sn-1 (So being zero) …(86)

From this we have

Sn+1 = Sn + Dn+1 …(87)

The numerical values of Dn are (A–ryabhat. i
–ya, I. 10)

225, 224, 222, 219, 215,…..37, 22, 7 …(88)

A cryptic-type short rule using which the set (88) seems to have been
obtained is found in the work (II.12) and may be presented as follows:

D1 = S1 = 225

D2 = D1 – (D1/ D1) = 224

D3 = D2 – (D1/ D1 + D2/ D1) = 222 etc.

Fig. 5
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In general

( )
n

n 1 n n 1
1

D D D / D+ = −∑ …(89)

= Dn – Sn/S1 …(90)

Using (89), Ayyangar74 has already worked out the set (88) and has
explained many discrepancies.

The exact mathematical form of (89) as given by Ni–lakan. t.ha Somayaji (c.
1500) is 75

Dn+1 = Dn – Sn.( D1- D2)/ D1 …(91)

For the factor (D1- D2)/ D1, A– ryabhat.a took 1/225, but its exact
mathematical expression (independent of R)) is

2 (1-cos h) = 1/233.53, for h = 225′ …(92)

Bhaskara II in his Jyotpatti (verses 19-20) has given the following values76

S1 = R sin h = 225 – (1/7)

and (R cos h)/R = 1 – (1/467)

Using cos h from these, the denominator in (92) will be found to be 233.5
which is quite near the closer accurate value mentioned there, Ni–lakan. t.ha also
gives the same value 233.5 while his commentator Sƒan.kara Va–riar gives the still
better value as77

233 + 32/60

A technique to improve empirically obtained certain rough results was that
of asakr. ta-karma (repetitive process) or iteration. An ancient Indian case may be
cited in this context. For finding the value of Sine for any intermediary argumental
value x = ph + θ, which lies between pth and (p+ 1)th tabular values, the linear
interpolation rule gives

R sin x = R sin ph + [R sin (ph+h) – R sin ph].(θ/h) …(93)

= Sp + (θ/h). Dp+1 …(94)

where Dp+1 is the current (bhogya) tabular difference.

For better result, Brahmagupta has given an expression, Dt, based on
second order finite differences, to be used in place od Dp+1  in (94) as follows
(in present notation)
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Dt = (1/2) (Dp + Dp+1) – (θ/2h).(Dp - Dp+1) …(95)

This is called bhogyam or true tabulr difference for any. Now for the
inverse interpolation, that is, for finding θ when R sin x is given, we have, from
(94) after replacing Dp+1 by Dt,

θ = [R sin x – R sin ph].h/Dt 96

But, since itself is unknown, we cannot find Dt from (95). So, Brahmagupta
prescribes what is called the asakr. ta-karma or iteration in his Khan. d.a
Kha–dyaka78. By taking Dp+1 in place of Dt in (96) we get the first approximation
θ1 (of θ). Putting this θ1 in (95) we get an initial value of Dt which we use in (96)
to find a better value θ2. By using θ2 in (95) we get a better value of Dt which
will yield still better value of θ (say θ3) from (96). And so on.

Example: Find the angle whose R-sine is 61 from Brahmagupta’s following small
table (R = 150, h = 15°)

Angle : 15° 30° 45° 60° 75° 90°
Sine : 39 75 106 130 145 150= R
Sine-difference : 39=D1 36 31 24 15 5=D6

Here the given Sine value 61 lies between S1 = 39 and S2 = 75. So the
angle lies between 15° and 30° and p = 1

By linear interpolation rule (94) or by (96) with Dt replaced by
Dp+1 = D2 = 36 here, we get initial value

θ1 = (61- 39) 15/36 = 55/6

Using this for θ in (95) we have

Dt = (1/2) (39+36) – [55/(6 x 30)] (39-36) = 439/12

By putting this in (96), the better value of θ is obtained as

θ = θ2 = (61-39). (15 x 12/439) = 9.02 nearly.

With this value of θ, the required angle is

X = ph + θ2 = 15 + 9.02 = 24.02° = 24° 1′.2.

If we do one more iteration i.e. put θ2 in (95) and then put the resulting
better Dt in (96), we will get the still better value of θ, namely 9.017 degrees. This
leads us to the accurate answer x = 24 0′ 6′′ nearly which is almost equal to
correct value that is almost equal to 23°59′45′′.
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There is an important point in the context here. The direct method of
finding will be to put Dt from (95) into (96) and solve the resulting quadratic
equation in θ.  This algebraic method is called bi–jakarma.79 In the case of above
example, the quadradic equation will be

3300
(375 )

θ =
−θ

whose relevant one root will be θ = 9.017 nearly which is same as the
value of θ3 found above.

Later on the iteration method was used in computing sine of A/3 and
A/5 from given sin A.80

A very peculiar empirical rule for finding the sine of any angle quickly is
found in Mun‚ jala’s Laghu Ma–nasa (932 AD), II.2, as follows81

catustryekaghna ra–sƒyaikyam.  bahukot.yoh.  kala–m. sƒaka–h.
“The sum of factors 4, 3, 1 for the (respective three) signs represents the

degrees and minutes of the sine and cosine”.

That is, 4°4′, (4+3)° (4+3)′, and (4+3+1)° (4+3+1)′ are the sines of 30°,
60° and 90° respectively, the last one 8°8′ being the sinus totus or radius.

Example (i): Sin 24° =  (4×24/30)° (4×24/30)′ = 3°5′12′′, by taking
proportional parts in the first sign in which 24° lies.

Example (ii): Find Sine of 75°36′ by Mun‚ ja–la’s rule. Here 75°36′ lies
in the 3rd sign, covering first two signs fully. So the sum of factors will be

= 4 + 3 + 1 × (15°36′)/30° = 7.52

Hence the required Sine = (7.52)° (7.52)′ = 7°38′43.2′′

the correct value being (8°8′). sin (75°36′) = 7°52′40′′.

Rationale of the Rule: The sines of 30, 60, 90 degrees are as

(1/2): (√3/2):1, i.e. as (1/2) : (7/8) : 1

by taking the approximation √3 = 7/4 for which see the equation (83) in
the last section. Thus the three sines are in the proportion 4:7:8 and their differences
as 4:3:1 as taken by Mun‚ ja–la. The rule is rough but so simple.82
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