ENLARGEMENT OF VEDIS IN THE ŚULBASŪTRAS

Padmavati Taneja and Nidhi Handa*

(Received 2 December 2009; revised 1 April 2010)

The paper highlights the great works of Baudhāyana Āpastamba and Kātyāyana in the field of construction and enlargement of Vedis.

Key words: Prakarma, Puruṣas, Samāsavidhi, Yajña

Introduction

In the early vedic period, people performed ritual activities by the execution of yajña. For the accomplishment of these yajnas, they need to construct certain sacrificial altars and for the precise construction of these complex altars they had to attain some specific geometrical methods. These methods are written in the form of aphorisms or sūtras, and are found in the sulbasūtras. In this way from the sulbasūtras we get a glimpse of the knowledge of geometry, which the Vedic people had.

The śulbasūtras, which therefore represents the old and traditional material with further elaboration of vedic mathematics, generally classified as the part of kalpa or śrauta-sūtras or are separate. Though the names of several śulbasūtras are known, the śulbasūtras of Baudhāyana, Āpastamba and Kātyāyana are the most representative texts available to us.

Further it has been observed that for the performance of different rituals they need to construct distinct Vedis, which differ in shapes and sizes from one another by a specified amount. For the success of these sacrificial rituals the altars should be of very accurate measurements, thus mathematical accuracy was seen to be of the utmost importance at that time. Hence they derived and used some

[^0]significant methods for the attainment of enlarged or contracted vedis. They affix the size of the altar according to the size (length) of the performer of the yajña, thus they called the word puruṣa, as the unit of measurement. Similarly añgula, aratni, padas, prādeśa, akṣa and other units of measurements, were used in making altars.

They were very accurate in their measurement that with the help of only a sulba (or cord) they not only made the altar as per size but also carried out the proportion to enlarge or contract the size of their vedis, according to the requirement. This paper presents the various methods and equations involved in the enlargement of vedis and fire-altars.

1. Vedis and Agnis

A vedi is constructed on a definite raised area on which the sacrifice is to be performed and on which persons performing the ceremony namely the sacrificer, the hotā, the adhvaryu, the rtvik and others are to be seated. Some of the main vedis include the mahāvedi, aśvamedha, paitrkī, the uttara and the śautrāmaṇi.

Vedi is a raised altar, which is made by bricks for keeping the fire. The fire-altars were of two types, the nitya (or perpetual) and the kāmya (or optional). The kāmya agnis intended for wish fulfillment, included the śyenacit, kañkacit, droṇacit, praugacit, alajacit and so on.

Areas of Different Vedis

The specific methods for the construction of these vedis and their areas have been given in Baudhāyana, Āpastamba and Kātyāyana śulbasūtras. From these, we find the methods of construction of these vedis by using one cord (ekarajjuvidhi) and by using two cords (dvirajjuvidhi). Areas of different vedis are as follows:

Mahāvedi

From Āpastamba Śulbasūtra we find that Mahāvedi is an isosceles trapezium having face 24, base 30 and altitude 36 padas (Fig. 1). Hence its area will be:

$$
\begin{aligned}
A_{M} & =36 \times \frac{(24+30)}{2} \\
& =36 \times 27 \\
& =972 \text { sq. padas }
\end{aligned}
$$

Fig. 1. Area of mahāvedi
Thus area of mahāvedi $\left(\mathrm{A}_{\mathrm{M}}\right)$ is 972 square padas.
From Āpastamba Śllbasūtra, we get the following sloka which specify the area of Mahāvedi:

v'Vfoble vai in gl aegotifa

vk 'lqi= $\mathbf{8 3}$

'The area of Mahāvedi is 1000-28 i.e. 972 square padas.'

Aśvamedha Vedi

The Aśvamedha vedi covers an area of 1944 sq. padas. This is double of the size of Mahāvedi. From Āpastamba Śulbasūtra we find hints for the construction of similar isosceles trapezium of area 1944 sq. padas for the Aśvamedha vedi. Its area will be as follows:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{A}} & =36 \sqrt{ } 2 \times 1 / 2(24 \sqrt{ } 2+30 \sqrt{ } 2) \text { sq. puruṣas } \\
& =1944 \text { sq. puruṣas }
\end{aligned}
$$

where $\mathrm{A}_{\mathrm{A}}=$ Area of aśvamedha vedi

Fig. 2. Aśvamedha vedi (Area of enlarged vedi)
About the area of aśvamedha vedi we get the following sloka from Āpastamba Sulbasūtra
f\}riok oflturie' oeds fokkr reA vk 'lqi: $\mathbf{8 6}$
'Area of the altar for Aśvamedha is double the area of Saumikivedi (Mahāvedi) i.e. 1944 sq. padas.'

Śauträmaṇiki Vedi

Now the area of the Sautrāmaṇikī vedi is one-third of the area of the Mahāvedi. It is also in the form of an isosceles trapezium having face $24 / \sqrt{ } 3$ or $8 \sqrt{3}$, base $30 / \sqrt{3}$ or $10 \sqrt{3}$, and altitude $36 / \sqrt{3}$ or $12 \sqrt{ }$, and has an area 324 sq. padas. The area of Śautrāmaṇikī vedi $\left(\mathrm{A}_{\mathrm{s}}\right)$ can be calculated as follows:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{S}} & =1 / 2(24 / \sqrt{ } 3+30 / \sqrt{ } 3) \times 36 / \sqrt{ } 3 \\
& =27 / \sqrt{ } 3 \times 36 / \sqrt{ } 3 \\
& =972 / 3 \\
& =324 \text { sq. padas }
\end{aligned}
$$

From $\overline{A s} l$ and $B s ́ l .1 .88$ we found the following verse

\#k priperfu inklifulleef. ldh obpa

'The area of Śautrāmaṇikī vedi is $(1 / 3$ of mahāvedi $=1 / 3 \times 972=324)$ 324 square padas.'

Paitrkī Vedi

According to Baudhāyana, the area of Paitrkī vedi $\left(\mathrm{A}_{\mathrm{P}}\right)$ is one-ninth of the area of Mahāvedi.

Area of Paitrkī vedi $=1 / 9$ the area of Mahāvedi.
$\mathrm{A}_{\mathrm{p}}=1 / 9 \mathrm{~A}_{\mathrm{m}}$
$A_{P}=1 / 9 \times(972)$
$=108$ sq. padas
Hence area of paitrkī vedi is 108 sq. padas.
About the area of paitrkī vedi, we find the following sloka from Bśl
 cl5 'lq1-82
'The altar for the Pityyajña is to be formed with the third part, of the side of the Mahävedi, so that its area will be equal to the ninth part of the Mahāvedi".
(Bśl 1.82)

Uttara Vedi

The uttara vedi, according to Baudhāyana is a square pit of side 10 padas. Hence the area of Uttara vedi is 100 sq. padas.
$\mathrm{A}_{\mathrm{U}} \quad=(10)$
$=100$ sq. padas
Where $\mathrm{A}_{\mathrm{U}}=$ area of uttara vedi
We get nothing much about uttara vedi from Āpastamba and Kātyāyana śulbasūtras.

After studying thoroughly about these main vedis, we found the following relation between their areas:

$$
\mathrm{A}_{\mathrm{M}}=3 \mathrm{~A}_{\mathrm{S}}=\mathrm{A}_{\mathrm{A}} / 2=9 \mathrm{~A}_{\mathrm{P}}=9.72 \mathrm{~A}_{\mathrm{U}}
$$

Hence it is clear from the above relation that the areas of all the vedis are in proportion to each other. Thus if we know the area of only the mahāvedi we can derive the area of any of the above vedi by using this relation. For instance to make aśvamedha vedi they used the method of enlargement of mahavedi, because aśvamedha vedi is double in area of mahāvedi.

2. Enlargement

It has been observed that in the sacrificial rituals of the early Hindus it is often necessary to construct a vedi differing in area from another by a specified amount. For instance, to make Aśvamedha vedi they enlarged the size of Mahā vedi. The specific methods adopted by them for the enlargement of vedis are described here.

2.1 Methods of Enlargement of Vedis in Early Period

Earliest evidences of the enlargement of vedis are found from Śatapatha Brāhmaṇa. From this we found that they enlarge the size of their vedis by increasing the length of the unit of measurement while keeping the shape (of the enlarged vedi) similar to the original one.

To construct a vedi 14 or $14 / 7$ times as large as the mahāvedi, and which will be similar to it, Śatapatha Brähmaṇa says :

If one wants to double the size of mahāvedi without changing its magnitude then operations are implied in following way: ${ }^{1}$

He measures (by means of) a cord 36 prakramas long, folds it into 7 equal parts ;of these three parts he adds to the east-west line and leave the rest. Similarly he measures 30 prakramas and 24 prakramas and folds them both (30 and 24) into 7 equal parts of these three parts he adds to the hind (transverse line) and throws out 4. This then is the alternative measurement of the (enlarged) vedi.

The measurement for enlarged vedi is as follows:

$$
\begin{aligned}
\text { Face } & =3 / 7 \text { of } 24+24 \\
& =(3 / 7 \times 24+24)=24(3 / 7+1) \\
& =24(10 / 7) \text { padas }
\end{aligned}
$$

$$
\begin{aligned}
\text { base } & =3 / 7 \text { of } 30+30 \\
& =30(3 / 7+1) \\
& =30(10 / 7) \text { padas } \\
\text { altitude } & =3 / 7 \text { of } 36+36 \\
& =36(3 / 7+1) \\
& =36(10 / 7) \text { padas }
\end{aligned}
$$

Thus the area of enlarged vedi using the above measurement will be

$$
\begin{aligned}
& =36(10 / 7) \times \frac{\{24(10 / 7)+30(10 / 7)\}}{2} \\
& =36(10 / 7) \times 54 / 2(10 / 7) \\
& =36 \times 27(10 / 7)^{2} \\
& =972(100 / 49) \\
& =972 \times 2.04
\end{aligned}
$$

Thus it is clear that the area of new enlarged vedi is approximately double of mahāvedi, where all the constituent sides received increment in equal proportions. This double of mahāvedi is Aśvamedha vedi.

2.2 Methods of enlargement of Vedis in Sulbasūtras

Vedic Hindus adopted some traditional methods for the enlargement of vedis, as they have employed for the construction of original vedi, only they replace the unit of measurement of the vedi by $\downarrow \mathrm{N}$ times. And hence they obtained new enlarged vedi, which is n-times, the original one. This will be clear from the succeeding instances:

For enlargement of Mahāvedi or to double its size they adopt the following method:

According to Ācarya Āpastamba the methods of construction of the new enlarged isosceles trapezium for the aśvamedha vedi will be the same as that of the given isosceles trapezium but here " $\sqrt{ } 2$ of a prakramas should be taken in the place of one prakrama therein ". Baudhāyana also has given the same method (vide p. 178). ${ }^{1}$

The Śautrāmaniki vedi, according to Baudhāyana, may be a square of 18 padas or an isosceles trapezium of area one-third of the area of mahāvedi, but he had not given any method for its construction. Āpastamba also made use of this method in the contraction of vedis. He constructed it by using $1 / \sqrt{3}$ of the units used in the mahāvedi (vide p. 178).

2.3 Methods of Enlargement of Vedis Leading to the Quadratic Equation

The first plan of enlargement of a figure in which all the constituent parts are affected in equal proportions leads to the quadratic equation of the type ${ }^{1}$
$a x^{2}=c$
And the second plan leads to the complete quadratic equation
$a x^{2}+b x=c$
let x denote the length of enlarged unit of puruṣa and m denote the total increment in area. Then in the case of the enlargement of the isosceles trapezium i.e. mahāvedi on the $1^{\text {st }}$ plan, we shall have

$$
\begin{aligned}
36 \times \mathbf{X}(24 \mathrm{x}+30 \mathrm{x}) / 2 & =36 \mathbf{X}(24+30) / 2+\mathrm{m} \\
36 \times \mathbf{X}(54 \mathrm{x}) / 2 & =36 \mathbf{X} 54 / 2+\mathrm{m} \\
36 \times \mathbf{x ~ 2 7 x} & =36 \mathbf{X} 27+\mathrm{m} \\
972 \mathrm{x}^{2} & =972+\mathrm{m} \\
\mathrm{x}^{2} & =1+\mathrm{m} / 972 \\
\mathrm{x} & =\sqrt{ }(1+\mathrm{m} / 972)
\end{aligned}
$$

or

If $m=972(n-1)$ so that the area of the enlarged trapezium is n-times its original area we get $\mathrm{x}=\sqrt{ } \mathrm{n}$ as given in the śulba.

Similarly for the enlargement of aśvamedha vedi we have

$$
\begin{aligned}
36 \sqrt{ } 2 \times \mathbf{X}(24 \sqrt{ } 2 \times+30 \sqrt{ } 2 \mathrm{x}) / 2 & =36 \sqrt{ } 2 \mathbf{X}(24 \sqrt{ } 2+30 \sqrt{ } 2) / 2 \\
36 \sqrt{ } 2 \times \mathbf{X}(54 \sqrt{ } 2 \mathrm{x}) / 2 & =36 \sqrt{ } 2 \mathbf{X}(54 \sqrt{ } 2) / 2+\mathrm{m} \\
(36 \mathbf{X} 54)(\sqrt{ } 2 \mathbf{X} \sqrt{ } 2) \mathrm{x}^{2} & =(36 \mathbf{X} 54)(\sqrt{ } 2 \mathbf{X} \sqrt{ } 2)+\mathrm{m} \\
1944 \mathrm{x}^{2} & =1944+\mathrm{m} \\
\mathrm{x}^{2} & =1+\mathrm{m} / 1944
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mathrm{x}=\sqrt{ }(1+\mathrm{m} / 1944) \\
& \mathrm{x}=\sqrt{\mathrm{n}} \quad \text { if } \mathrm{m}=1944(\mathrm{n}-1)
\end{aligned}
$$

In this way we see that the area of enlarged trapezium is n-times its original area.

Now it is clear to us that why vedic people used $\sqrt{ } 2$ to double the size of any vedi and $\sqrt{ } 3$ to triple the size of any vedi, because the area of enlarged figure is equal to n-times its original area, and the sides of enlarged vedi is equal to V_{n} times the sides of original one.

2.4 Equations Involved in the Enlargement of Vedis

Thus from above we get the following equations involved in the enlargement of vedis.

The rules of enlargement of mahāvedi leads to the equation
$972 \mathrm{x}^{2}=972+\mathrm{m}$
And the rules of enlargement of Aśvamedha vedi lead to the equation
$1944 \mathrm{x}^{2}=1944+\mathrm{m}$
Where $\mathrm{x}=$ side of small squares which will be used to draw the vedi $\mathrm{m}=$ no. of squares which will increase with increase in area
Thus we find that the geometrical construction described here are of considerable algebraic significance. They indeed form the seed of the Hindu geometrical algebra whose developed form and effect we found from the Bījagaṇita of Bhāskara II (born 1114 AD). The quadratic equations involved in the enlargement of mahāvedi and Aśvamedha vedi shows that the seeds of quadratic equations are embedded in the rules and constructions of Sulbasūtras.

From equation of enlargement of mahāvedi we have

$$
972 x^{2}=972+m
$$

Fig. 3. Diagram of mahāvedi
In this way we found that it is a mathematical fact that, only when m will be a multiple of 972 we get exact values of x .

2.5(a) Enlargement of Fire-Altar

Above we have read about the enlargement of vedis. Enlargement has been observed in the case of fire-altars also. For the fulfillment of any desire they start their yajña from the fire-altar of area $71 / 2$ sq puruṣa. Once their wish is fulfilled, they enlarged the size of fire-altar by 1 square purusa for holding another yajña. Similarly they enlarge the size of fire-altar by one square at each construction and this continues upto $1011 / 2$ sq. purușa. Thus at the time of first construction the fire-altar should have an area of $71 / 2$ sq. purușas. At the second construction its area shall have to be $81 / 2$ sq. at the third construction $9(1 / 2)$ sq., this process continues upto $1011 / 2$ sq. puruṣas. ${ }^{6}$

Baudhāyana gave the following methods for the geometrical operations applied in this method of construction:

At first is drawn a square of an area equal to p sq. purusas, whose side is equal to $\sqrt{ }$ p purusa. Divide horizontal side into 3 equal parts and vertical side into 5 equal parts. After drawing crosswise lines as shown in the diagram we get 15 rectangles, which are equal in area.Two of the rectangular portions are then combined together with the help of samāsavidhi. This portion is again added to a unit sq. puruṣa so as to form a third square. So the resulting square is [1+(2/ 15)] p long. On constructing an altar taking this length as unit we get the required figure of area $71 / 2[1+(2 / 15) p]$.

Hence the area of enlarged fire-altar $=71 / 2[1+(2 / 15) p]$
or [$71 / 2]$)
And its unit will be $=1+(2 / 15)$ p
Baudhāyana gives the side of a square (2/15)[71/2+p] sq. puruṣas (where p=1 sq. puruṣa) ${ }^{6}$ Āpastamba and Kãtyãyana (ksl 5.5) also have given the same values as that of Baudhāyana.

Baudhāyana suggested an another method of dividing the original square into 15 equal parts, which is as follows:

First of all a square of area $71 / 2$ sq. puruṣa is drawn. Now dividing it into 15 equal rectangles whose one side is equal to that of the side of the square of $71 / 2$ sq. purusa area and other side is one-fifteenth the length of the side of the square. ${ }^{5}$

Thus the area of each rectangle $=1 / 15 \mathbf{X} 71 / 2=1 / 2$ sq. puruṣa
On combining the above area of two rectangles $=1 / 2+1 / 2=1$ sq. puruśa
Adding this area to the given square $=71 / 2+1=81 / 2$ sq. purus.a
We get new fire-altar of area $81 / 2$ sq. puruṣa.

Similarly to obtain the square of $91 / 2$ sq. purusa area convert four numbers of these rectangles into one square of 2 sq. puruṣa area and by adding this square first square one can obtain a square of $91 / 2$ sq. puruṣa area. This can be shown as:

On combining the area of four rectangles $=1 / 2+1 / 2+1 / 2+1 / 2=2 \mathrm{sq}$. puruṣa

Adding this area to the given square $=71 / 2+2=91 / 2$ sq. puruṣa
In this way they obtain a new fire-altar of area $91 / 2$ sq. puruṣa.
This procedure continues up to a fire-altar of area $101 \frac{1}{2}$ sq. purus.a.

2.5(b) Enlargement of Fire-altar also Lead to the Quadratic Equation

Here we will discuss the enlargement in the case of falcon shaped firealtar.

First Plan: Considering x is the enlarged unit in puruṣa and m the total increment in area for the enlargement of the falcon shaped fire-altar on the first plan.

It can be written in the form of a quadratic equation as follows:

$$
\begin{aligned}
\text { Body }+2 \text { wings + tail } & =71 / 2+\mathrm{m} \\
(2 \mathrm{x} \mathbf{X} 2 \mathrm{x})+2 \mathrm{x}(\mathrm{x}+\mathrm{x} / 5)+\mathrm{x}(\mathrm{x}+\mathrm{x} / 10) & =71 / 2+\mathrm{m} \\
4 \mathrm{x}^{2}+12 / 5 \mathrm{x}^{2}+(11 / 10) \mathrm{x}^{2} & =71 / 2+\mathrm{m} \\
15 / 2 \mathrm{x}^{2} & =71 / 2+\mathrm{m} \\
\mathrm{x}^{2} & =1+2 \mathrm{~m} / 15
\end{aligned}
$$

or
if we consider
Then

$$
\begin{aligned}
& \mathrm{x}=\sqrt{ }(1+2 \mathrm{~m} / 15) \\
& \mathrm{n}=1+2 \mathrm{~m} / 15 \\
& \mathrm{x}=V_{\mathrm{n}}
\end{aligned}
$$

It is similar, as we have obtained in the case of enlargement of vedis.
From Śatapatha Brāhmaṇa we found that $\mathrm{m}=94$ for the maximum enlargement of the fire-altar, that is

$$
x^{2}=13+8 / 15=14 \text { (approximately) }
$$

Second Plan: The rules of enlargement of the syenaciti leads to the equation ${ }^{3}$
or

$$
\begin{aligned}
7 x^{2}+(x / 2) & =71 / 2+m \\
7 x^{2}+x & =71 / 2+m
\end{aligned}
$$

Multiplying both sides by 7 and completing the square on the left hand side

$$
(7 x+1 / 4)^{2}=841 / 16+7 m
$$

Taking square-root on both side

$$
\begin{aligned}
(7 x+1 / 4) & =\sqrt{ }(841 / 16+7 m) \\
x & =1 / 28\{\sqrt{ }(841+112 m)-1\} \\
x & =1 / 28\{29(1+56 m / 841)-1\} \\
x & =1+2 m / 29
\end{aligned}
$$

On squaring and neglecting higher powers of m we get

$$
x^{2}=1+4 m / 29 \text { (approximately) }
$$

Syenaciti, the most ancient and primitive form of the "fire-altar for the sacrifices to attain special requirement", was in the form of a falcon.

The remains of the most striking altar, the śyenaciti still survive at Kausambi (near Allahabad).

From the above illustration it is quite clear that the construction of enlarged altars according to the second plan does undoubtedly depend preliminary on the solution of the complete quadratic equation

$$
a x^{2}+b x=c
$$

Conclusion

It is very clear now that in the early vedic period mathematics was brought into the service of both secular and ritual activities. Indeed, Śulbasūtras laid the foundation of modern geometry, arithmetic and algebra, which has been further flourished, by our Indian mathematicians and scholars.

References

1. Datta, Bibhutibhusan, The Science of the Sulba, Univ. of Calcutta, 1991, pp. 154-165.
2. Parkhe, M.S., Agnihotra, The Vedic Solution for Present Day Problems, Vaidika Samśodhana Manḍala, Poona, 1982
3. Gupta, R.C., Ancient India’s Contribution to Mathematics, Bull. International Council of Math. in Developing Countries, 1.3 (1987) 9.
4. Khadilkar, S.D., Kātyāyana Śulbasūtras, Vaidika Samśodhana Manḍala, Poona, 1974, pp.40-57.
5. Kulkarni, R.P., Geometry according to súlbasūtras, Vaidika Samśodhana Mandala, Pune, 1983, pp 79-84.
6. Sen, S.N. \& Bag, A.K., The sulbasūtras of Baudhāyana, Āpastamba , Kātyāyana and Mānava, Indian National Science Academy, New Delhi, 1983, pp. 175-181, 237-240.
7. Arora, V.K. \& Handa, Nidhi, Directions \& Construction in Śulba, J. Natur Phys. Sci., 18.2 (2004) 89-26.

[^0]: *Gurukula Kangri Vishwavidyalaya, Jwalapur, Haridwar. e-mail: pwtaneja@gmail.com

