MADHYAMĀNAYANAPRAKĀRAḤ: A HITHERTO UNKNOWN MANUSCRIPT ASCRIBED TO MĀDHAVA

U. K. V. Sarma, Venketeswara Pai, Dinesh Mohan Joshi
and K. Ramasubramanian*

Abstract

It is generally believed that only two works of Mādhava, namely Veñāaroha and Sphutacandrāpti are extant today. However, it seems a few of his small tracts have also survived. The present article deals with one such small tract entitled 'Madhyamānayanaprakārah'' ('the procedure for obtaining the mean') found among the K. V. Sarma collection of manuscripts. Starting with a graphic description of the geometrical construction involved in the manda-saṃskāra, the manuscript proceeds to describe in great detail the concept of viparitakarna. Along with the formula for the viparītakarna, it also presents a detailed discussion on its application to bring about a simplification - that enables an astronomer to avoid the strenuous and persevering task of performing an iterative process-in the computation of aviśstta-manda-karna. Finally it concludes with the description of the procedure for the computation of the madhyamagraha (mean longitude of a planet) from the manda-sphuta-graha (longitude of the planet corrected for eccentricity), which indeed explains the choice of the title Madhyamānayanaprakāra.

Keywords: madhyama, manda-sphuṭa, viparīta-karṇa, aviśisṭa-manda-karna

1 Introduction

The Kerala school of astronomy pioneered by Mādhava (c. 1340-1420) of Sanigamagrāma seems to have blazed a trial in the study of a branch of mathematics

[^0]that goes by the name of analysis today. His major contributions include not only the discovery of the infinite series for π, but also several fast convergent approximations to it. Unfortunately, we do not have any manuscript attributed to Mādhava that contains verses presenting the above series. It is only through the quotations and citations made the successors of Mādhava, we come to know that it was Mādhava who discovered the infinite series for π as well as the power series for the sine and cosine functions, which were re-invented in the West three centuries later.

Mādhava's contributions to astronomy are not as well known as his contributions to mathematics. It is generally believed that only two works of him, namely Veṇvāroha and Sphuṭacandrāpti ${ }^{1}$ —both related to the computation of Moon's positions - are extant today. However, K. V. Sarma ascribes one more work on astronomy entitled Agaṇitagrahacāra to Mādhava, which is yet to see the light of the day. Besides editing and publishing several manuscripts, the renowned indologist Sarma, has also painstakingly collected paper transcripts of a plenty of palmleaf manuscripts, that are in possession of various oriental manuscript libraries.

All these transcripts, as well as his personal collection of thousands of books are currently preserved in Sree Sarada Education Society and Research Centre. ${ }^{2}$ Among this collection, recently we came across a couple of short tracts in Sanskrit prose that have been identified by Sarma as due to Mādhava. One such tract entitled 'Madhyamānayanaprakārah' which literally means 'the procedure for obtaining the mean', has been chosen for study in the present article. Here, besides explaining the technical content of the manuscript in the light of modern mathematical language, we also present an edited version of the text along with English translation.

The article is divided into six sections including the present one on introduction. Sections 2 and 3 present the details of the manuscript material employed and the scheme adopted in preparing an edited version of the text. While section 4 is devoted to explain the content of the mūla-ślokas (the original verses on which a commentary is being authored) using modern mathematical notations, section 5 presents the edited text along with English translation. In the last and the final section we give detailed explanatory notes on the manuscript material

[^1]by dividing it into various subsections that seemed convenient and appropriate.

2 The Manuscript material

The edition of the text Madhyamānayanaprakāra presented below is based on the lonely paper transcript of the orginial palmleaf manuscript in the possession of Indian Office Library, London. The paper transcript, in four pages (19-22) found among the K. V. Sarma manuscript collection and bears the number KVS 354-C. It may be noted on the first page of the transcript (see Figure 1), that in the top-left-corner there is a marking that mentions the number IO 6301, Ms. \# 16-18.

Figure 1: The first few lines of the first page of the manuscript
From this noting (in pencil) made by Sarma, we understand that the original manuscript is with the Library of India Office, London, and that this material is in three folios (16-18). More details about this manuscript have been provided by A. B. Keith in the catalogue prepared by him^{3} wherein it has been mentioned that the manuscript is on $8 \frac{3}{8}^{\prime \prime} \times 1 \frac{5}{8}^{\prime \prime}$ talipat (palmleaves) and that it in Malayalam script.

3 Editorial note

While studying the manuscript (KVS 354-C), which is in Devanāgarī script as seen from Figure 1, it was quite evident to us that the readings in certain

[^2]places were definitely fautly. As an illustration we present a couple of examples. In one instance, a string of words was simply repeating (see Figure 2).

```
म ग० क्यादावृण घान च कहत्वा वर्ण त्रिज्या कम्यक्य।
```



```
बर्गेंश्या कूच्ये, करे श्रुटकीटिकक्ष मू-
कलर्यदिवण इसन चा कृत्वा वर्याज्या क्यक्ये।
```

Figure 2: Clip of the manuscript where a string of words get repeated.
As it is pretty obvious that this is due to scribal error, in our version of the edited text this was dropped out. In yet another place (see the fourth line of the clip of the manuscript shown in Figure 3, whose typed version is given below), it was noted that a string of characters were missing from a compound word.

तदर्धं मन्दोचोनमा ल्नब्धं अविशिष्टभुजाफलम्।

With reasonable working knowledge in Sanskrit it should not be difficult to make out that there is obviously some error in the second and the third wordsthough fixing the error requires the knowledge of the subject as well as intelligent guess work. After pondering over the sentence, keeping the context in mind, it became evident to us that the reading should be

तदर्धं मन्दोचोनमध्यमाल्लब्ं अविशिष्टभुजाफलम्।

Figure 3: Clip of the manuscript where a few letters are found to be missing.
While presenting an edited version of the text, to the best or our ability we have tried to fix the errors and present a correct version of the original. In doing so,
the reading found in the manuscript had to emended at places. Though we have been very careful and judicious in emending the text, for the benefit of scholars to judge for themselves, we have presented the readings found in the manuscript in the form of footnotes with the exception of one type of emendation. On a few places the dandas ${ }^{4}$ in the manuscript were found to be misplaced and hence had to be removed and inserted in certain other places. Such insertion and deletion of dandas have been done silently, where it seemed appropriate to us.

Before we present the edited text and the translation, we offer a brief explanation of the verses that form the $m \bar{u} l a^{5}$ of the manuscript and also discuss on the authorship of the same.

4 The mūla verses

The manuscript essentially presents a detailed commentary on two verses commencing with 'vistrti' and 'arkendu'. In fact, this has been clearly stated in the very opening sentence of the manuscript:

```
`vistrtī`tyādi| 'arkendvor'ityādi| anayoh ślokadvayayoh yuktipradar-
śanāya ...
```

[The verse] that commences with vistriti. [The verse] that commences with arkendvoh. In order to present the rationale behind the [content] of these two verses, ...

Though these two verses happen to be part of the second chapter of the celebrated work Tantrasañgraha of Nīlakaṇ̣̣ha Somayājī̀, it turns out that Nīlakaṇṭha is not the author of them. Neither is there a mention about the author of the $m \bar{u} l a$ verses anywhere in the text of the manuscript itself. However, the quotations made by Nīlakaṇtha-with due acknowledgement to the authors whom he is quoting-in his works Tantrasangraha, ${ }^{6}$ Siddhāntadarpaṇa and Āryabhaț̄̄yabhāsya enable us to identify the author of the mūla verses to be Mādhava.

[^3]
4.1 About the authorship

Nilakaṇṭha in his Tantrasangraha, ${ }^{7}$ soon after quoting the verse vistrti states:

इति वा कर्णः साध्यः मान्दे सकृदेव माधवप्रोतःः

Or, the karna is to be obtained only once [in this way] in the manda process as enunciated by Mādhava.

In the Nyāyabhāga of his Siddh $\bar{a} n t a-d a r p a n ̣ a-v y \bar{a} k h y \bar{a}^{8}$ (auto-commentary on Siddhānta-darpana), in the context of explaining how the problem of mutual dependency involved in the computation of karna and the radius of the mandavrtta can be circumvented, Nīlakaṇ̣ha observes:

स्ववृत्तकलाप्रमितस्य कर्णस्य सदेव त्रिज्यातुल्यत्वात् तेन मध्यकक्ष्याव्यासार्धानयने कर्णानयनविपरीतकर्म कार्यम्। तच माधवेनोक्तम् - विस्तृतिदल ...

Since the karna measured in terms of the minutes of its own circle is [taken to be] equal to trijy \bar{a}, in order to compute the radius of the kaksyāmandala (the deferent circle), we have to adopt a process that is [exactly] the reverse of the process employed in finding the karna. And that has been stated by Mādhava [thus] - vistrtit ...

In his magnum opus $\bar{A} r y a b h a t ̣ ̂ ̄ y a-b h a ̄ s ̣ y a, ~ w h i l e ~ p r e s e n t i n g ~ a ~ d e t a i l e d ~ c o m m e n-~$ tary (that runs to more than 20 pages) on the five verses ${ }^{9}$ of A ryabhata that describe the geometrical picture of planetary motion, Nilakaṇṭha says:

स्फुटे(न) मध्यमानयने सकृत्कर्म अन्यादृशं माधवोत्तमपि श्रुतम् - अर्केन्द्ठोः ...,

In obtaining the mean from the true, the one-step process enunciated by Mādhava is also heard - 'arkendvoh....'

These acknowledgements made by Nilakaṇṭha clearly settle the issue regarding the authorship of the mūla verses and leave no room for ambiguity, whatsoever. This, however, is not the case with respect to the prose commentary in the manuscript. Our ascription of it to Mādhava is solely based on the noting made by Sarma - just next to the title (see Figure 1).

[^4]
4.2 Explanation of the verse 'vistrti ...'

The verse commencing with 'vistrti' presents the formula enunciated by Mādhava for finding the avisisțta-manda-karna - the iterated hypotenuse associated with the manda-saṃskāra. At this stage, it would be useful to include a brief note on avisisṭa-manda-karna as well as procedure for the computation of the mandasphuta a^{10} in order to make the discussion more edifying. This would also enable the reader to have a better appreciation of the substantial simplification in computation achieved by Mādhava in obtaining aviśisṭa-manda-karna without having to resort to the conventional interative process.

4.2.1 Calculation of manda-sphuta

The procedure for obtaining the manda-sphuṭa from the mean longitude (madhyama) of the planet prescribed in the Indian astronomical texts can be understood with the help of Figure 4. Here, $\theta_{0}=\Gamma \hat{O} P_{0}$ represents the longitude of the mean planet (madhyama-graha, P_{0}), $\theta_{0}=\Gamma \hat{O} U$ the longitude of mandocca (apogee or aphelion) and $\theta_{m s}=\Gamma \hat{O} P$ the longitude of the manda-sphuta which is to be determined from θ_{0}. It can be easily seen that

$$
\begin{align*}
\theta_{m s} & =\Gamma \hat{O} P \\
& =\Gamma \hat{O} P_{0}-P \hat{O} P_{0} \\
& =\theta_{0}-\Delta \theta \tag{1}
\end{align*}
$$

Since the mean longitude of the planet θ_{0} is known, the manda-sphuta $\theta_{m s}$ is obtained by simply subtracting $\Delta \theta$ from the madhyama. In the figure, $P_{0} P=r$ and $O P_{0}=R$ represent the radii of the epicycle and deferent circle respectively. Considering the right-angled triangle $O P Q$, we have

$$
\begin{align*}
K=O P & =\sqrt{O Q^{2}+O P^{2}} \\
& =\sqrt{\left(O P_{0}+P_{0} Q\right)^{2}+O P^{2}} \\
& =\sqrt{\left\{R+r \cos \left(\theta_{0}-\theta_{m}\right)\right\}^{2}+r^{2} \sin ^{2}\left(\theta_{0}-\theta_{m}\right)} . \tag{2}
\end{align*}
$$

Also

$$
\begin{align*}
K \sin \Delta \theta & =P Q \\
& =r \sin \left(\theta_{0}-\theta_{m}\right) \tag{3}
\end{align*}
$$

[^5]

Figure 4: Geometrical construction underlying the rule for obtaining the manda-sphuta from the madhyama using the epicycle approach.

Multiplying the above by R and dividing by K we have

$$
\begin{equation*}
R \sin \Delta \theta=\frac{r}{K} R \sin \left(\theta_{0}-\theta_{m}\right) \tag{4}
\end{equation*}
$$

According to the geometrical picture of planetary motion given by Bhāskara I (c. 629), the radius of the epicycle manda-nīcocca-vrtta (r) employed in the the manda process is not a constant. It varies continuously in consonance with the hypotenuse, the manda-karna (K), in such a way that their ratio is always maintained constant and is equal to the ratio of the mean epicycle radius $\left(r_{0}\right)$-whose value is specified in the texts-to the radius of the deferent circle (R). Thus, according to Bhāskara, as far as the manda process is concerned, the motion of the planet on the epicycle is such that the following equation is always satisfied:

$$
\begin{equation*}
\frac{r}{K}=\frac{r_{0}}{R} . \tag{5}
\end{equation*}
$$

Thus the relation (4) reduces to

$$
\begin{equation*}
R \sin \Delta \theta=\frac{r_{0}}{R} R \sin \left(\theta_{0}-\theta_{m}\right) \tag{6}
\end{equation*}
$$

where r_{0} is the mean or tabulated value of the radius of the manda epicycle.

4.2.2 Bhāskara's method for obtaining the aviśisṭa-manda-karna

It may be noted that in (5), RHS is the ratio of two fixed values, namely the mean epicycle radius and the trijy \bar{a}. This, however is not the case with respect to quantities appearing in the LHS. Here, both the numerator and the denominator are variables. Hence the question arises, as to how one can obtain the values of r and K at any given instant, though the ratio is always a constant. For this, Bhāskara prescribes an iterative procedure called asakrt-karma, by which both are simultaneously obtained.

Figure 5: The variation of the radius of the manda epicycle with the mandakarna.

We explain this with the help of Figure 5. Here P_{0} represents the mean planet around which an epicycle of radius r_{0} is drawn. The point P_{1} on the epicycle is chosen such that $P P_{1}$ is parallel to the direction of the mandocca, $O U$. Now, the first hypotenuse (sakrt-karna) is found from r_{0} using the relation

$$
\begin{equation*}
O P_{1}=K_{1}=\left[\left(R \sin \left(\theta_{0}-\theta_{m}\right)\right)^{2}+\left(R \cos \left(\theta_{0}-\theta_{m}\right)+r_{0}\right)^{2}\right]^{\frac{1}{2}} . \tag{7}
\end{equation*}
$$

From K_{1}, using (5), we get the next approximation to the radius $r_{1}=\frac{r_{0}}{R} K_{1}$. Then, from r_{1} we get the next approximation to the karna,

$$
\begin{equation*}
K_{2}=\left[\left\{R \sin \left(\theta_{0}-\theta_{m}\right)\right\}^{2}+\left\{R \cos \left(\theta_{0}-\theta_{m}\right)+r_{1}\right\}^{2}\right]^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

and from that we get $r_{2}=\frac{r_{0}}{R} K_{2}$. The process is repeated till the radii and the karṇas do not change (aviśeṣa). The term aviśeṣa means 'not distinct'. In
the present context it means that the successive karnas are not distinct from each other. That is, $K_{i+1} \approx K_{i}=K$. If this is satisfied, then $r_{i+1} \approx r_{i}=r$. Consequently, the equation giving the manda-correction (4) becomes

$$
\begin{equation*}
R \sin \Delta \theta=\frac{r}{K} R \sin \left(\theta_{0}-\theta_{m}\right)=\frac{r_{0}}{R} R \sin \left(\theta_{0}-\theta_{m}\right) \tag{9}
\end{equation*}
$$

Thus the computation of $\Delta \theta$ - known as the mandaphala, that is to be applied to the madhyama to get the manda-sphuta-involves only the mean epicycle radius and the value of the trijy \bar{a} and not the value of the manda-karna. It can be shown that the iterated manda-karna is actually given (in the limit) by $O P$ in Figure 5 , where the point P is obtained as follows. ${ }^{11}$ Consider a point $O^{\prime \prime}$ at a distance of r_{0} from O along the direction of mandocca $O U$ and draw $O^{\prime \prime} P_{1}$ so that it meets the concentric at Q. Then produce $O Q$ to meet the extension of $P_{0} P_{1}$ at P.

Though there is no need to evaluate the karna to compute $\Delta \theta$, the mandakarna K is needed in other calculations. For instance, in eclipse computation we need to find the true distance of the Sun or Moon. Similarly, if we have to find the latitude of the planet, we need the heliocentric distance of the planet, which is given by aviśista-manda-karṇa (iterated hypotenuse). Needless to say that it would have been an arduous task to determine aviśisṭa-manda-karna by iterative procedure in those days, given that fact that it involves repeated computation of squares and square roots.

To circumvent this difficult exercise of performing an iterative process, Mādhava, by carefully analysing the geometry of the problem came up with a brilliant method for finding the aviśisṭa-manda-karna. This method due to Mādhava involves only one step and hence is usually referred to as sakrt-karma as opposed to the asakrt-karma prescribed by Bhāskara.

4.2.3 Mādhava's method for obtaining the aviśisṭa-manda-karna through sakrt-karma

The verses commencing with vistrti, which as mentioned earlier forms one of the mūla verses of the manuscript, succinctly presents the sakrt-karma method of finding the aviśisṭa-manda-karṇa given by Mādhava.

[^6]विस्तृतिदलदोःफलकृतिवियुतिपदं कोटिफलविहीनयुतम्।
केन्द्रे मृगकर्किगते स खलु विपर्ययकृतो मवेत् कर्णःः
तेन हृता त्रिज्याकृतिः अयनविहितोऽविशेषकर्णः स्यात् ।
The square of the dohphala is subtracted from the square of the trijy \bar{a} and its square root is taken. The kotiphala is added to or subtracted from this depending upon whether the kendra (anomaly) is within six signs beginning from Karki (Cancer) or Mrga (Capricorn). This gives the viparyayakarna. The square of the trijyā divided by this viparyayakarṇa is the aviśesakarṇa (iterated hypotenuse) obtained without any effort [of iteration].

As described in the above verse, Mādhava's method involves finding a new quantity called the viparyayakarna or viparītakarṇa. The term viparītakarna literally means 'inverse hypotenuse', and is nothing but the radius of the kaksyāvrtta when the measure of mandakarna is taken to be equal to the trijy \bar{a}, R.

Figure 6: Determination of the viparītakarna when the kendra is in the first quadrant.

The rationale behind the formula for viparitakarna, presented in this manuscript under study, is also explained in the celebrated Malayalam text Yuktibh $\bar{a} s \bar{a},{ }^{12}$ and can be understood with the help of Figures 5 and 6. In these figures P_{0} and P represent the mean and the true planet respectively. N denotes the foot of a perpendicular drawn from the true planet P to the line joining the centre of the

[^7]circle and the mean planet. $N P$ is equal to the dohphala. Let the radius of the karnavrtta $O P$ be set equal to the trijyā R. Then the radius of the uccan $\bar{c} c a v r t t a$ $P_{0} P$ is r_{0}, as it is in the measure of the karnavrtta. In this measure, the radius of the kakssyāvertta $O P_{0}=R_{v}$, the viparītakarna, and is given by
\[

$$
\begin{align*}
R_{v} & =O N \pm P_{0} N \\
& =\sqrt{R^{2}-\left(r_{0} \sin \left(\theta_{0}-\theta_{m}\right)\right)^{2}} \pm\left|r_{0} \cos \left(\theta_{0}-\theta_{m}\right)\right| \tag{10}
\end{align*}
$$
\]

Mādhava, besides besides giving an expression for R_{v} in terms of the mean anamoly $\left(\theta_{0}-\theta_{m}\right)$), as in (10), also seems to have provided an an alternative expression for R_{v} in terms of the true anamoly $\left(\theta_{m s}-\theta_{m}\right)$), as follows:

$$
\begin{equation*}
R_{v}=\sqrt{R^{2}+r_{0}^{2}-2 r_{0} R \cos \left(\theta_{m s}-\theta_{m}\right)} \tag{11}
\end{equation*}
$$

This is clear from the triangle $O P_{0} P$, where $O P_{0}=R_{v}, O P=R$ and $P_{0} P O=$ $\theta_{m s}-\theta_{m}$.

In Figure 5, Q is a point where $O^{\prime \prime} P_{1}$ meets the concentric. $O Q$ is produced to meet the extension of $P_{0} P_{1}$ at P. Let T be the point on $O P_{0}$ such that $Q T$ is parallel to $P_{0} P_{1}$. Then it can be shown that $O T=R_{v}$ is the viparītakarna. Since triangles $O Q T$ and $O P P_{0}$ are similar, we have

$$
\begin{align*}
\frac{O P}{O P_{0}}=\frac{O Q}{O T} & =\frac{R}{R_{v}} \\
\text { or, } \quad O P=K & =\frac{R^{2}}{R_{v}} . \tag{12}
\end{align*}
$$

Thus we have obtained an expression for the aviśisṭa-manda-karṇa in terms of the trijy \bar{a} and the viparïtakarna. Once we find R_{v} either using (10) or (11), the avisisṭa-manda-karna K can be calculated using (12) and thereby avoid the iterative process.

4.3 Explanation of the verse 'arkendvoh ...'

The verse commencing with arkendvoh-the second of the two mūla verses commented in the manuscript - outlines the procedure for obtaining the mean positions (madhyama) of the Sun and the Moon from their true positions (mandasphuta). This verse, originally due to Mādhava and quoted by later Kerala astronomers, runs as follows:

अर्केन्द्ठोः स्फुटतो मृदूचरहितात् दोःकोटिजाते फले
 नीत्वा कर्किमृगादितो विनिमयेनानीय कर्णं सकृत् ।
 त्रिज्यादोःफलघाततः श्रुतिहृतं चापीकृतं तत् स्फुटे
 केन्द्रे मेषतुलादिगे धनमृणं तन्मध्यसंसिद्धये ॥ y ? ॥

Subtracting the longitude of their own mandoccas from the true positions of the Sun and the Moon, obtain their doḥphala and koṭiphala. Find the sakrt-karna (one-step hypotenuse) once by interchanging the sign [in the cosine term] depending upon whether the kendra is within the six signs beginning with Karki or Mrga. Multiplying the dohphala and trijy \bar{a}, and dividing this product by the karna [here referred to as śruti], the arc of the result is applied to the true planet to obtain the mean planet. This arc has to be applied positively and negatively depending upon whether the kendra lies within the six signs beginning with Mesa or Tulā respectively.

The term $m r d \bar{u} c c a$ appearing in the first line of the verse is a synonym for mandocca. The sphuta that is referred to here should be understood as mandasphuta, since it has been explicitly mentioned in the verse that the procedure outlined here is applicable only for the Sun and the Moon. ${ }^{13}$ If $\theta_{m s}$ and θ_{m} represent the longitudes of the manda-sphuta and mandocca (of the Sun or the Moon), then their sphuṭa-dohphala and sphuṭa-kotiphala are given by

$$
\begin{align*}
\text { doḥphala } & =r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \\
\text { kotiphala } & =r_{0} \cos \left(\theta_{m s}-\theta_{m}\right) \tag{13}
\end{align*}
$$

where r_{0} represents the radius of the mean epicycle whose values are provided in the text. With these doh and kotiphalas, the sakrt-karna (expression similar to (2), with opposite sign in kotiphala), may be written as

$$
\begin{equation*}
k a r n ̣ a=\left[\left(R-r_{0} \cos \left(\theta_{m s}-\theta_{m}\right)\right)^{2}+\left(r_{0} \sin \left(\theta_{m s}-\theta_{m}\right)\right)^{2}\right]^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

It can be easily seen that the above expression is the same as the expression for the viparīta-karṇa R_{v} given by (11). The first half of the above verse essentially prescribes to obtain the expression for R_{v}. We now proceed to explain the second half of it with the help of Figure 7.

In Figure 7, O is the observer and P_{0} is the mean planet (the Sun or the Moon). The point P represents their true position. The distance $P_{0} P=O O^{\prime}$

[^8]

Figure 7: Obtaining the madhyama (the mean position) from the sphuta (the true position).
represents the radius of the actual variable epicyle that we denote as r. The angles $P_{0} \hat{O} P=O P O^{\prime}=\left(\theta_{m s}-\theta_{m}\right)$. Considering the triangle $O O^{\prime} P$, we draw a perpendicular from O^{\prime} that intersects $O P$ at T. Now, in the triangle $O^{\prime} P T$,

$$
\begin{align*}
O^{\prime} T & =O^{\prime} P \sin \left(O^{\prime} \hat{P} T\right) \\
& =O^{\prime} P \sin \left(P \hat{O} P_{0}\right) \\
& =R \sin \left(\theta_{0}-\theta_{m s}\right) \tag{15}
\end{align*}
$$

Also

$$
\begin{equation*}
O^{\prime} T=r \sin \left(\theta_{m s}-\theta_{m}\right) \tag{16}
\end{equation*}
$$

Equating the above two expressions for $O^{\prime} T$,

$$
\begin{align*}
R \sin \left(\theta_{0}-\theta_{m s}\right) & =r \sin \left(\theta_{m s}-\theta_{m}\right) \\
\text { or } \quad R \sin \left(\theta_{0}-\theta_{m s}\right) & =r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \frac{R}{R_{v}}, \tag{17}
\end{align*}
$$

where we have used (2.135) and (2.153). Hence,

$$
\begin{equation*}
\theta_{0}-\theta_{m s}=(R \sin)^{-1}\left[r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \frac{R}{R_{v}}\right] . \tag{18}
\end{equation*}
$$

Thus the mean planet θ_{0} can be obtained by adding the above difference to the true planet $\theta . \theta_{0}-\theta_{m s}$ is positive when the kendra (anomaly) $\theta_{m s}-\theta_{m}$
is within the six signs beginning with Mesa, viz., $0^{\circ} \leq \theta_{m s}-\theta_{m} \leq 180^{\circ}$, and negative when the kendra is within the six signs beginning with Tul \bar{a}, viz., $180^{\circ} \leq \theta_{m s}-\theta_{m} \leq 360^{\circ}$.

Having briefly explained the content of the verse, we now proceed to discuss it in greater detail in the light of the edifying commentary authored by Nilakaṇṭa on it in his Āryabhațīya-bhāsya. As the commentary is quite elaborate, runs to more than two pages, we only present excerpts from it. The excerpts have been chosen primarily to highlight some of special features pointed out be Nīlakanṭha, particularly with respect to the distinction that must be maintained in applying the procedure, outlined by the above verse, for obtaining the manda-sphuta from the śīghra-sphuṭa of the planets.

4.3.1 Obtaining the manda-sphuṭa from the síghra-sphuṭa

Since the geometrical construction involved in the manda as well as the sizghra process is essentially the same - both just involve a deferent circle and an epicyle, though the significance of them widely varies in the two processesNīlakaṇ̣̣ha, in his Āryabhaṭ̄̄ya-bhāsya, outlines the procedure for obtaining the manda-sphuṭa from the śīghra-sphuṭa.

It is for this reason, it has been prescribed that the arc corresponding to the dohphala-obtained from the Rsine of the difference between the síghra-sphuṭa and síghrocca multiplied by its own circumference (sva-paridhihat $\bar{a} m^{14}$) and divided by either 360 or 80 -should be applied to the síghra-sphuṭa inversely, in order to the manda-sphuṭa from the síghra-sphuṭa.

We may explain the content of the above passage with the help of Figure 5. In this figure, O is the observer, S is the Sun and P any of the three exterior planets Mars, Jupiter or Saturn. $O S=r_{s}$ represents the radius of the ś⿱\zh7𫝀口hra epicycle

[^9]

Figure 8: Obtaining the manda-sphuṭa from the śz̃ghra-sphuṭa.
and $S P=K$ the aviśista-manda-karṇa. The angles $\Gamma \hat{S} P=\theta_{m s}$ and $\Gamma \hat{O} P=\theta$ represent the manda-sphuṭa and síghra-sphuṭa respectively. θ_{s} represents the longitude of śzghrocca which is the same as the longitude of the mean Sun that is known. The objective is to find the $\theta_{m s}$ from θ.

Considering the triangle $O P S$, and applying the sine formula we have

$$
\begin{equation*}
\frac{r_{s}}{\sin \left(\theta_{m s}-\theta\right)}=\frac{K_{s}}{\sin \left(\theta_{m s}-\theta_{s}\right)}=\frac{K}{\sin \left(\theta-\theta_{s}\right)} \tag{19}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\sin \left(\theta_{m s}-\theta\right) & =\frac{r_{s}}{K} \sin \left(\theta-\theta_{s}\right) \\
\text { or, } \quad\left(\theta_{m s}-\theta\right) & =\sin ^{-1}\left(\frac{r_{s}}{K} \sin \left(\theta-\theta_{s}\right)\right) \\
\text { or, } \quad \theta_{m s} & =\theta+\sin ^{-1}\left(\frac{r_{s}}{K} \sin \left(\theta-\theta_{s}\right)\right) . \tag{20}
\end{align*}
$$

Thus the manda-sphuṭa can be obtained from the síghra-sphuṭa using the above relation.

4.3.2 Applicability of the procedure outlined in the verse arkendvoh to other planets

Though by conceding the analogy between the geoemtrical constructions involved in the manda and the sīghra processes, though Nīlakaṇṭa prescribed a procedure for getting the manda-sphuṭa from the sizghra-sphuta, he clearly maintains the distinction between the two. In fact, to avoid any confusion he explicitly points out that the sakrt-karma procedure given for the Sun and the Moon cannot be simply generalized to find the madhyama from the sphuta in the case of the planets Mars, Jupiter and so on. He says: ${ }^{15}$

अर्क्न्दुग्रहणं मौमादीनां निवृत्त्यर्थम्। तेषां दोर्ज्यावशात् परिधिमेदात् ...
Specific mention of the Sun and the Moon is to desist the entry of Mars, etc. For them, since the circumference changes as per dorjy \bar{a},

The justification presented by Nilakaṇṭha as to why the procedure outlined by Mādhava for obtaining the the mean position from the true position using sakrt-karma, is not applicable to the other five planets is quite involved and requires an elaborate explanation. As this does not fall under the scope of the present paper, we skip further discussion on this topic and move on to the next section.

5 The Edited text and translation

The edited version of the text presented below, is identical with the manuscript but for the insertion of numbers before the beginning of the paragraphs. These numbers have been inserted for the purpose of easily identifying the original text with the explanatory notes that has been prepared in four sections. ${ }^{16}$ The sectioning too has been done in manner that seemed most appropriate and convenient for our discussion.
(1) विस्तृतीत्यादि। अर्केन्द्रोरित्यादि। अनयोः श्नोकदृययोर्युत्तिप्रदर्शनाय त्रिज्यातुल्यव्यासार्धं कक्ष्यामण्डलमालिख्य मातृपितृरेखां कृत्वा तत्परिधो रविमध्यमा-

[^10]धिष्ठितप्रदेशं केन्द्रं कृत्वा अविशिष्टान्त्यफलत्रिज्यातुल्येन सूत्रेण उचनीचवृत्तमालिख्य तत्परिधौ मन्दोचदिशि स्फुटग्रहमालिख्य ग्रहाधिष्टितप्रदेशात् कक्ष्यामण्डलकेन्द्रप्रापिणं सूत्रं कुर्यात्। कक्ष्ट्यामण्डलकेन्द्रात् स्ववृत्तगतोघप्रापिणं सूत्र च कुर्यात्। पुनः कक्ष्यामण्डलकेन्द्रमेव केन्द्रं कृत्वा अविशिष्टन्त्यफलस्तेण द्वितीयमप्युचनीचवृत्तमालिखेत्। पुनः पूर्वलिखितोचनीचपरिधे: ${ }^{17}$ कर्णवृत्तपरिधेशे सम्पातद्वयप्रापिणं सूत्रमालिखेत्। तदर्धं मन्दोच्चोनमध्यमाल्लब्बं 18 अविशिष्टमुजाफलम्। पतत्सूत्रमध्यात् मध्यमग्रहप्रापिसूंन अविशिष्टमध्यमकोटिफलम्। पुर्नर्द्वितीयोचन्नीचवृत्तस्य कक्ष्यामण्डलस्य च परिधिसम्पातद्वयप्रापिणं सूत्रं कुर्यात्। तदर्धं मन्दोचोनात् अर्कस्फुटााल्नब्यं अविशिष्टभाफल सूत्रमविशिष्ट्फ़टकोटिफल्। स्फ़टभुजाकोटिफलाम्यों कर्णानयनं त्रिज्यावर्गात् मुजाफलवर्गं विशोध्य मूले ${ }^{9}$ कोटिफलं मृगकर्क्यादितः स्वर्णं कृत्वा साध्यम्। तस्य कर्णस्य पुनरविशेषणं पूर्ववदेव।
(2) एवं साधनचतुष्टये लिखिते तैर्विषमचतुश्रं क्षेत्रं मवति। तत्र मध्यमीद्ववयो: भुजाकोटिफलयोः स्फुटोद्धवयोश्च साधारणं कर्णो मध्यमग्रहात् स्फुटग्रहप्रापिसूत्रम्। एवं क्षेत्र लिखिते कक्ष्यामण्डल स्फुटग्रहप्रापिकर्णसून्रात् ${ }^{20}$ त्रिज्याया आनयनं ${ }^{21}$ निरुप्यम्। तदाथा कर्णवर्गात् मध्यमदोःफलवर्गं विशोध्य यन्मूलं तस्मिन् मध्यमकोटिफलं मृगकर्क्यादावृणं धनं च कृत्वा त्रिज्या ${ }^{22}$ लभ्यते ${ }^{3}{ }^{3}$ कर्ण स्फुटकोटिफलं मृगकर्क्यादावृणं धनं च कृत्वा तदुर्ग्य 24 स्फुटदो:फलवर्गं क्षिप्वा मूलं च त्रिज्या भवति। एवं द्विविधं त्रिज्यानयनमवगम्य पुनर्विपगीतकर्णानयनं निरुप्यते।
(3) विपरीतकर्णस्तु क इति चेत्, कर्ण त्रिज्यातुल्ये सति कियती त्रिज्या इति लब्बा त्रिज्या विपरीतकर्णः। उत्तप्रकारेण तदानयनाय अवशिष्टस्य वृत्तगते मध्यमकोटिभुजाफले स्फ़टकोटिभुजाफले अविशिष्टकर्णं त्रिज्यां च त्रिज्यया हत्वा कर्णन हरंत्। तदानों कर्णस्त्रिज्यातुल्यो मवति। मध्यमकोटिभुजाफले प्रथमं मन्दोचोनमध्यमाल्नब्धयोर्बाहुकोटिज्ययोः परिधिगुणनाशीतिहरणे कृत्वा लब्धाभ्यां भुजाफलकोटिफलाम्यां तुल्ये च मवतः। त्रिज्या, त्रिज्यावर्गं 25 अविशिष्टकर्णन

[^11]हृत्वा लब्देन तुल्या मवति। तद्विपरीतकर्णसंजितोगत्र ज्ञेयम $P 6$ तदर्थं त्रिज्यामूतस्य कर्णस्यं वर्गात्र ${ }^{27}$ मध्यमभुजाफलवर्गमपहाय यन्मूलं तस्मिन् मध्यमकोटिफलं मृगक्क्ज्यादावृण्णं28 धनं कुर्यात्। ततो विपरीतकर्णभूता त्रिज्या ${ }^{29}$ ऊम्यते। अत उतं ‘विस्तृतिदले’त्यादिना। त्रिज्याभूते कर्ण सकृत्कर्मणा स्फुटतो लब्धं कोटिफलं मृगकर्कितः ॠणं धनं च विधाय तद्वर्ग सकृत्कर्मलब्यस्य स्फुटभुजाफलस्य वर्गं क्षिप्वा मूलं च विपरीतकर्णभूता त्रिज्या भवति। अत उतं - 'अकैन्न्वोः स्फ़ुटत' इत्यादिना।
(4) एवं विपरीतकर्ण ज्ञाते अविशेषकर्णानयनाय विपरीतकर्णभूतायां त्रिज्यायां त्रिज्यातुल्यायां जातायां त्रिज्याभूतः कर्णः कियानिति त्रैरशिकम्। तत्र फलस्य इच्छायाश्च त्रिज्या तुल्यत्वात् त्रिज्यावर्गो विपरीतकर्णन माज्यम। लब्यं अविशेषकर्णश्च मवति। अतं उतं - तेन हृता त्रिज्याकृतिरयनविहितोऽविशेषकर्णः स्यात्। - इति।
(5) पवं मध्यमतः स्फ़टतश्च सकृत्कर्मणा अविशेषकर्णलब्धिश्ध मवति। त्रिज्याविशेषकर्णाम्यां त्रैरशिके कर्तव्ये सर्वन्र त्रिज्यास्थाने विपरीतकर्णः, अविशेषकर्णस्थाने त्रिज्यां च कृत्वा कर्म करणीयं भवति। तत्र स्फुटतो मध्यमानयनं ${ }^{30}$ करिष्यते।
(6) एवं कर्णानयने ज्ञाते स्फुटतो मध्यमानयनं निरुप्यते - पूर्वलिखितमविशिष्टवृत्तगतं ${ }^{31}$ स्फुटभुजाफलं कक्ष्यामण्डलकेन्द्रात् मध्यमस्फुटग्रह्रापिसूत्रोगन्तगत्रं ${ }^{32}$ कक्ष्यामण्डलपरिधिगतम् ${ }^{33}$ । अतः अविशिष्टस्फुटभुजाफलमेव मध्यमस्फुटान्तरम। तज्ञानाय सकृत्कर्मलब्धं स्फ़िटभुजाफलमविशेषकर्णन हत्वा त्रिज्यया हर्तव्यम्। अथवा त्रिज्यया हत्वा विपरीतकर्णेन विभज्यापि लभ्यते। लब्धचापं मेषादौ मध्यमसूत्रयोः मध्यमसूत्रस्याग्रगतत्वात् स्फ़टे धनं कार्यम्। तुलादो पुष्ठगतत्वात् ऋणं च कार्यम। अतः - ‘त्रिज्यादो:फलघाततः श्रुतिहृतं चापीकृतं तत्स्फ़टे केन्द्रे मेषतुलादिगे धनमृणं तन्मध्यसंसिद्धये' इत्युक्तम्।
(1) [The verse] that commences with vistrtiti. [The verse] that commences with arkendvoh. In order to present the rationale behind

the [content] of these two verses, having drawn the deferent circle (kaksyā-mandala) with radius equal to the trijy \bar{a}, mark the eastwest line ($m \bar{a} t r-p i t r r e k h a \bar{a}$) in it. Then, having marked the position of the mean Sun on its circumference, draw an epicycle with that as centre and with the radius equal to aviśisṭāntyaphala. Marking the position of the true planet on its circumference along the direction of the apogee (mandocca), draw a line from the location of the planet to the center of the deferent circle. Also draw a line, that reaches the apogee corresponding to that circle from the center of the kaksyā-mandala. Again, with the center of the deferent circle as the center, draw a second epicycle with radius equal to the aviśisṭāntya-phala. Then, draw a line connecting the points of intersection of the circumference of the epicycle that was drawn earlier and the circumference of the karnavrtta. Half of that [line] is aviśista-bhujāphala obtained from the mean Sun diminished by the apogee. The line reaching the mean planet from the center of this line is the avisistakotiphala of the mean planet. Then, draw a line joining the points of intersection of the circumference of the second epicycle and the circumference of the kaksyāmandala. Half of that [line is] avisista-bhujāphala obtained from the true Sun diminished by the apogee. The line reaching the true planet from the middle of this line [is the] avisisțtakotiphala of the true [planet]. The karna is obtained from the true bhuja and kotiphalas by first finding the square root of the difference of the the squares of the bhujāphala and the trijy \bar{a} and applying the kotiphala to that positively or negatively depending upon [whether the kendra is] Mrgā$d i$ or Karkyādi respectively. The iteration of that karṇa is to be done as before.
(2) Thus, the four means (sādhanacatustaya) [namely, the bhuja and the kotiphalas corresponding to the mean and the true planets] when represented, form a quadrilateral of unequal sides (viṣamacaturaśra). In that, the line joining the mean and the true planet, forms the common hypotenuse of the bhuja and the kotiphalas corresponding to the mean and the true $[k e n d r a s]$. Thus, having drawn the figure, now the procedure for obtaining the trijya \bar{a} from the karna, which joins the centre of the kaksyāmandala and the true planet, is to be explained. This is as follows: By applying the madhyama-kotiphala negatively or positively-depending upon whether the kendra is Mrgādi or Karkyādi respectively - to the the square root of the difference of the the squares of the karna and the madhyama-dohphala, trijy \bar{a} is obtained. [Similarly] having applied the true kotiphala to the karna negatively or positively depending upon whether the
kendra is Mrgāadi or Karkyādi respectively, the square of that has to be taken. By adding the square of the sphuta-dohphala to the square of that, and taking the square root, trijy \bar{a} is obtained. Thus, having understood the two ways of obtaining the trijya, we now proceed to explain the procedure for obtaining the inverse hypotenuse.
(3) [If you ask] what viparītakarna is, [we say], when the karna is taken to be equal to the measure of the trijy \bar{a}, then the value of trijy \bar{a} obtained in that measure is the viparītakarna. To obtain that along the lines described above multiply the trijy \bar{a} with itself [and] divide by the karṇa. Then, karna will be equal to the trijy \bar{a}. The bhuja and the kotiphalas [thus obtained] will be equal to the bāhu and the kotijyās obtained earlier by subtracting the apogee from the mean planet, when multiplied by the circumference [of the epicycle] and divided by eighty. It is to be known here, that the quantity obtained by dividing the square of the trijy \bar{a} by the avisisṭtakarna, is the viparītakarna. In order to obtain that, we first find the square root of the difference of the squares of karna taken in the measure of the trijy \bar{a} and the square of madhyamabhujāphala. To the square root of that, the madhyama-kotiphala is applied. negatively or positively depending upon whether the kendra is Mrgāadi or Karkyādi. Now, the viparīta-karna in the measure of trijy \bar{a} is obtained. It is therefore said "vistrtidala" etc. To the karna which is in the measure of trijya, apply the sphuta-kotiphala obtained through sakrt-karma negatively or positively depending upon whnether the kendra is Mrgādi or Karkyādi respectively. To the square of that, add the square of the sphuṭa-bhujāphala [again] obtained through sakrt-karma, and find its square root. The result will be the viparitakarna, in the measure of the trijya. It is therefore said - "arkendvoh sphutataḥ".
(4) Thus having known the viparīta-karna, the rule of three that is to be employed for obtaining the iterated hypotenuse is : If the viparita-karna were to be taken to be equal to the measure of the trijy \bar{a}, then what would be the value of the karna which was previously taken to be equal to the trijy \bar{a}. Since here, the pramannaphala as well as $i c c h \bar{a}$ are equal to the trijy \bar{a}, the square of the trijy \bar{a} has to be divided by the viparīta-karna. The resultant is the iterated hypotenuse. It is therefore said - 'The square of the trijy \bar{a} divided by that [viparyayakarna] is the aviśesakarṇa (iterated hypotenuse) obtained without any effort [of doing iteration]'.
(5) Thus either from the mean or the true the iterated hypotenuse is
obtained through the sakrt-karma. Since the rule of three should be applied using the trijy \bar{a} and the iterated hypotenuse, all the operations have to be executed by replacing trijy \bar{a} with the viparita-karna and the aviśesakarna with the trijyā. Now, the mean [planet] from the true will be obtained.
(6) Thus having known how to find the karna, the procedure for obtaining the mean from the true is now explained. The sphutabhujāphala which lies inside the iterated epicycle drawn earlier, which is essentially equal to the distance of seperation between the lines drawn from the centre of the kaksyā-mandala, is [also] inside the circumference of the kaksyā-mandala. Hence, the avisisṭta-sphuta-bhujāphala is the same as difference between the mean and the true [positions of the planet]. In order to obtain that, the sphutabhujāphala obtained through the sakrt-karma should be multiplied by the iterated hypotenus and divided by the trijy \bar{a}. The same result may also be obtained by multipling by the trijy \bar{a} and dividing by the viparītakarna. If the kendra is Mesādi, then the resulting arc should be applied positively to the true planet, since of the two lines joining the mean and the true [from the centre of the kaksyāmandala], the one joining the mean leads the other. If the kendra is Tulādi, then the arc should be applied negatively since the line joining the mean planet lags behind the other. It is therefore said that - 'Multiplying the dohphala and trijy \bar{a}, and dividing this product by the karna [here referred to as śruti], the arc of the result is applied to the true planet to obtain the mean planet. This arc has to be applied positively and negatively depending upon whether the kendra lies within the six signs beginning with Meṣa or Tulā respectively.'

6 Explanatory notes

Transcending the confines of immediate utility of merely explaining the content of the verses, the commentary in the manuscript gradually develops the background material that would enable the reader to have a fuller appreciation of the content of the mūla. It also attempts to present the rationale behind the procedures outlined in the verses. In what follows, we present the content of the manuscript using modern mathematical notations. For the purpose of convenience we have divided it into four sections.

6.1 Definition of sādhanacatuștaya

The manuscript commences with detailed description of how the geometrical figure needs to be constructed with which the two verses to be commented upon can be understood. The geometrical figure described therein may be depicted as indicated in Figure 9.

Figure 9: The geometrical construction described in the manuscript as a tool to understand the mūla verses.

Here O represents the centre of the deferent circle known as kaksyāmandala, whose radius is R. The mean planet P_{0} is located on this circle, whose longitude is denoted as θ_{0}. The circle centered around P_{0} and with radius r_{0} is called ucca$n \bar{\imath} c a-v r t t a$ (epicycle). A line parallel to the direction of apogee ($O U$) drawn from the P_{0} meets the epicycle at P. This gives the position of the manda-sphuta (the manda corrected planet). Now, the circle centered at O and having a radius $O P=K$, known as karna-vrtta is drawn. This intersects the epicycle at two points, namely P and P^{\prime}. The line $O Q$, which is an extension of the line joining the centre of the deferent circle and the mean planet bisects the line $P P^{\prime}$ at T.

Now considering the $\triangle P P_{0} T$,

$$
P \hat{P}_{0} T=\theta_{0}-\theta_{m},
$$

where θ_{0} and θ_{m} are longitudes of mean planet and apogee respectively. In this triangle which is a right-angled at the vertex T the hypotenuse P_{0} represents the aviśisṭtāntyaphala (r). Thus, we have

$$
\begin{align*}
P T & =r \sin \left(\theta_{0}-\theta_{m}\right) \tag{21}\\
P_{0} T & =r \cos \left(\theta_{0}-\theta_{m}\right) \tag{22}
\end{align*}
$$

The quantities $P T$ and $P_{0} T$, defined in the above equations are referred to as aviśisṭa-madhyama-bhujāphala and aviśisṭa-madhyama-kotiphala respectively.

A section of Figure 9 is blown up and depicted in Figure 10. Here $O P_{0}=R$ represents the trijy \bar{a} and $O P=K$ denotes the manda-karna. The foot of perpendicular drawn from P_{0} to $O P$, intersects the latter at B. In the $\triangle P P_{0} B$, $P_{0} \hat{P} B=\theta_{m s}-\theta_{m}$. Hence,

$$
\begin{align*}
P_{0} B & =r \sin \left(\theta_{m s}-\theta_{m}\right) \tag{23}\\
P B & =r \cos \left(\theta_{m s}-\theta_{m}\right) . \tag{24}
\end{align*}
$$

These two quantities $P_{0} B$ and $P B$ are known as sphutabhuja and sphutakoti respectively. It may be noted that the two triangles constitute a quadrilateral of unequal sides. It is the four sides of this quadrilateral - representing the bhuja and kotic of the madhyama and sphuṭa-kendras - that are referred as sādhanacatuśtaya. Literally the term sadhanacatuṣtaya means "a group consisting of four-means".

Having defined sadhanacatusṭaya, the text presents a formula for the karna $O P$ in terms of the sphuṭabhuja and koṭiphalas. In the $\triangle O P_{0} B$,

$$
\begin{aligned}
O B & =\sqrt{O P_{0}^{2}-P_{0} B^{2}} \\
& =\sqrt{R^{2}-\left(r \sin \left(\theta_{m s}-\theta_{m}\right)\right)^{2}}
\end{aligned}
$$

Also, $O B=O P-B P$. Hence,

$$
\begin{align*}
O P & =\sqrt{R^{2}-\left(r \sin \left(\theta_{m s}-\theta_{m}\right)\right)^{2}}+B P \tag{25}\\
K & =\sqrt{R^{2}-\left(r \sin \left(\theta_{m s}-\theta_{m}\right)\right)^{2}}+r \cos \left(\theta_{m s}-\theta_{m}\right) \tag{26}
\end{align*}
$$

Thus manda-karna can be obtained in terms of trijy \bar{a} and sphuta-kendra.

Figure 10: The sādhana-catuṣtaya employed in finding the manda-karna.

6.2 Obtaining trijy \bar{a} from karna

Having defined a relation to obtain the karna K, in terms of the trijy $\bar{a} R$, the commentary presents two methods by which one can obtain trijy \bar{a} in terms of the karna.

Method 1: Here trijy \bar{a} is obtained in terms of the karna and the madhymab-hujā-kotiphalas. The expression given can be understood with the help of Figure 10. Considering the $\triangle O T P$, we have

$$
\begin{align*}
O T^{2} & =O P^{2}-P T^{2} \\
\text { or } \quad\left(O P_{0}+P_{0} T\right)^{2} & =K^{2}-\left(r \sin \left(\theta_{0}-\theta_{m}\right)\right)^{2} \tag{27}
\end{align*}
$$

Hence,

$$
\begin{align*}
O P_{0} & =\sqrt{K^{2}-\left(r \sin \left(\theta_{0}-\theta_{m}\right)\right)^{2}}-P_{0} T \\
\text { or } \quad R & =\sqrt{K^{2}-\left(r \sin \left(\theta_{0}-\theta_{m}\right)\right)^{2}}-r \cos \left(\theta_{0}-\theta_{m}\right) . \tag{28}
\end{align*}
$$

Method 2: In this method R is found in terms of K and the sphutabhuj \bar{a} kotiphalas. In the $\triangle O P_{0} B$ (see Figure 10),

$$
\begin{align*}
O P_{0}^{2} & =O B^{2}+B P_{0}^{2} \\
\text { or } \quad R^{2} & =(O P-B P)^{2}+\left(r \sin \left(\theta-\theta_{m}\right)\right)^{2} \\
\text { or } \quad R & =\sqrt{\left(K-r \cos \left(\theta-\theta_{m}\right)\right)^{2}+\left(r \sin \left(\theta-\theta_{m}\right)\right)^{2}} .
\end{align*}
$$

6.3 Expression for viparītakarna and its application

The third paragraph of the mūla starts with the definition of viparītakarna and then proceeds to give two different expressions for the same - one in terms of the trijy \bar{a} and the manda-kendra and the other in terms of the trijy \bar{a} and the sphuṭa-kendra. The definition given here may be stated as follows: If the measure of the karna were to be taken to be equal to the trijy $\overrightarrow{a i n}$ a certian scale, then whatever that turns out to be the magnitude of trijy \bar{a} in the same scale is defined as viparīta-karna. Symbolically this may be represented as a problem of rule of three:

$$
\begin{align*}
K & : R \\
R & : R_{v}(?) \\
\text { or } \quad R_{v} & =\left(\frac{R}{K}\right) R \tag{30}
\end{align*}
$$

The two expressions for R_{v} given here are the same as the equations (10) and (11) discussed in section 4.2.3. As a detailed derivation of the two equations are presented there itself, we do not repeat the same here. It would suffice to recount that one of the main purposes for introducing this mathematical device R_{v} is to find K without having to resort to aviśesa-karma. Para (4) essentially states that aviśisṭa-manda-karṇa or aviśesa-karṇa K can be expressed in terms of trijya and viparīta-karna as:

$$
\begin{align*}
\text { aviśesakarṇa } & =\frac{\text { trijy } \bar{a}^{2}}{\text { viparītakarṇa }} \\
\text { or } \quad K & =\frac{R^{2}}{R_{v}} \tag{31}
\end{align*}
$$

In Para (5) it is prescribed that the trijyā and aviśesakarna can be replaced by the viparīta-karna and trijya respectively in all the operations that are to be carried out based on rule of three. That is,

$$
\begin{array}{rll}
K & \longrightarrow & R \\
R & \longrightarrow & R_{v} . \tag{32}
\end{array}
$$

The above prescription can be better appreciated with the help of relations that can be derived from the triangles $O P_{0} P$ and $O T Q$ in the Figure 5. Considering these two triangles and applying the sine formula we have

$$
\begin{align*}
& \frac{R}{\sin \left(\theta_{m s}-\theta_{m}\right)}=\frac{K}{\sin \left(\theta_{0}-\theta_{m}\right)}=\frac{r}{\sin \left(\theta_{0}-\theta_{m s}\right)} \tag{33}\\
& \frac{R_{v}}{\sin \left(\theta_{m s}-\theta_{m}\right)}=\frac{R}{\sin \left(\theta_{0}-\theta_{m}\right)}=\frac{r_{0}}{\sin \left(\theta_{0}-\theta_{m s}\right)} \tag{34}
\end{align*}
$$

From (33) the following equations may be obtained.

$$
\begin{align*}
\sin \left(\theta_{0}-\theta_{m}\right) & =\frac{K}{R} \sin \left(\theta_{m s}-\theta_{m}\right) \tag{35a}\\
\sin \left(\theta_{0}-\theta_{m s}\right) & =\frac{r}{K} \sin \left(\theta_{0}-\theta_{m}\right) \tag{35b}\\
\sin \left(\theta_{0}-\theta_{m s}\right) & =\frac{r}{R} \sin \left(\theta_{m s}-\theta_{m}\right) \tag{35c}
\end{align*}
$$

Similary from (34), we have

$$
\begin{align*}
\sin \left(\theta_{0}-\theta_{m}\right) & =\frac{R}{R_{v}} \sin \left(\theta_{m s}-\theta_{m}\right) \tag{36a}\\
\sin \left(\theta_{0}-\theta_{m s}\right) & =\frac{r_{0}}{R} \sin \left(\theta_{0}-\theta_{m}\right) \tag{36b}\\
\sin \left(\theta_{0}-\theta_{m s}\right) & =\frac{r_{0}}{R_{v}} \sin \left(\theta_{m s}-\theta_{m}\right) \tag{36c}
\end{align*}
$$

It may be observed that LHS, in the pair of three sets of equations presented above, is one and the same. So too is the argument of the sine function in RHS. This only forces us to conclude that multipying factors-in the form of ratios of two quantities - that appear in the RHS must also be the same though they look apparently different. Thus we have

$$
\begin{equation*}
\frac{K}{R}=\frac{R}{R_{v}} ; \quad \frac{r}{K}=\frac{r_{0}}{R} ; \quad \text { and } \quad \frac{r}{R}=\frac{r_{0}}{R_{v}} \tag{37}
\end{equation*}
$$

which only proves the validity of the prescription given in (32).

6.4 Finding madhyama from manda-sphuța

The last section (Para (6)) of the manuscript deliniates the procedure for obtaining the madhyama from the manda-sphuta. In fact the author commences with the declaration:

एवं कर्णानयने ज्ञाते स्फुटतो मध्यमानयनं निरुप्यते -

Thus having known how to find the karna, the procedure for obtaining the mean from the true is now explained.

The karṇa that is being referred to above is the aviśesakarna given by (31). It is said that having known this karna K, it should be multiplied by sphuṭabhujāphala and divided by trijy \bar{a}. The term sphutabhujāphala refers to $r_{0} \sin \left(\theta_{m s}-\theta_{m}\right)$ and hence the prescrition given amounts to finding

$$
\begin{equation*}
\frac{K}{R} r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \tag{38}
\end{equation*}
$$

From (37), this is the same as

$$
\begin{equation*}
\frac{R}{R_{v}} r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \tag{39}
\end{equation*}
$$

Now it can be easily seen that the above expression is the same as the RHS of (36c) but for the multiplying factor trijy $\bar{a} R$. Hence we have,

$$
\begin{equation*}
R \sin \left(\theta_{0}-\theta_{m s}\right)=r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \frac{R}{R_{v}} \tag{40}
\end{equation*}
$$

Or, equivalently

$$
\begin{equation*}
\theta_{0}-\theta_{m s}=(R \sin)^{-1}\left[r_{0} \sin \left(\theta_{m s}-\theta_{m}\right) \frac{R}{R_{v}}\right] \tag{41}
\end{equation*}
$$

from which the madhyama θ_{0} can be obtained, since $\theta_{m s}$ and θ_{m} are already known. It may also be recalled that R_{v} can be obtained in terms of $\theta_{m s}$ and θ_{m} using (11). Thus an elegant procedure ${ }^{34}$ for obtaining the madhyama from manda-sphuta has been described, which explains that title of the manuscript madhyamānayanaprakāra.

Acknowledgments: The authors express their gratitude to Profs. M. D. Srinivas and M. S. Sriram for useful discussions on this topic. They would also like to place on record their sincere thanks to Dalmia Institute for Scientific and Industrial Research for sponsoring Project to trace the Development of Mathematics and Astronomy in India.

[^12]
Bibliography

\{ABB 1931\} Āryabhaț̄̄ya of Āryabhatāāārya with the Mahābhāsya of Nīlakaṇṭha Somasutvan, Part II, Kālakriyāpāda, ed. by Sāmbaśiva Sāstrī, Trivandrum Sanskrit Series 110, Trivandrum 1931.
\{GYB 2008\} Gaṇita-yukti-bhāṣā of Jyesṭhadeva, ed. and tr. by K. V. Sarma with Explanatory Notes by K. Ramasubramanian, M. D. Srinivas and M. S. Sriram, Hindustan Book Agency, New Delhi 2008 (repr. Springer 2009).
\{LS 1979\} Lambanānayane sphutanyāyā̄tideśah by anonymous author, ed. in Gaṇitayuktayah by K. V. Sarma, Hoshiarpur 1979.
\{LVT 1975\} Līlāvat̄̄ of Bhāskarācārya II, with a commentary Kriyākramakarı̄ of Śankara Vāriyar (only up to a portion of Kṣetravyavahāra), ed. by K. V. Sarma, Hoshiarpur 1975.
\{MB 1960\} Mahābhāskarīya of Bhāskara I, ed. and tr. with notes K. S. Shukla, Lucknow 1960.
\{SC 1973\} Sphutacandrāpti of Mādhava, ed. and tr. by K. V. Sarma, Hoshiarpur 1973.
\{SDA 1976\} Siddhantadarpaṇa of Nīlakaṇ̣ha Somayājī, ed. by K. V. Sarma, Madras 1955; ed. with auto-commentary and tr. by K. V. Sarma, Hoshiarpur 1976.
\{TS 1958\} Tantrasañgraha of Nīlakaṇ̣̣ha Somayājī, ed. with Laghuvivrti by S. K. Pillai, Trivandrum 1958.
\{TS 2010\} Tantrasañgraha of Nīlakaṇtha Somayājī̄, tr. with Explanatory Notes by K. Ramasubramanian and M. S. Sriram, Hindustan Book Agency, New Delhi 2011; repr. Springer, London 2011.

[^0]: *Cell for Indian Science and Technology in Sanskrit, Department of Humanities and Social Sciences, IIT Bombay, Mumbai-400 076. Email: kramas@iitb.ac.in

[^1]: ${ }^{1}$ These two texts have been crtitically edited and published by K. V. Sarma.
 ${ }^{2}$ An institution that was founded by Sarma himself, by way of donating his own savings as well as invaluable collection of books and manuscripts, to foster indological studies. The address of this institution, currently renamed as K. V. Sarma Research Foundation is: 2, East Coast Flat, 32, II Main Road, III Cross, Gandhi Nagar, Adyar, Chennai 600020.

[^2]: ${ }^{3}$ A. B. Keith, Catalogue of the Sanskrit and Prakrit manuscripts in the Library of the India Office, vol. 2, Oxford 1935, pp. 774-5, (no. 6301).

[^3]: ${ }^{4}$ This term refers to the vertical bars employed to indicate the end of a sentence particularly while using a Devanāgar̄̄̄ script.
 ${ }^{5}$ The world mūla which literally the 'root' or 'basis', is traditionally employed to refer to the text on which commentary is being written.
 ${ }^{6}$ See for instance, $\{$ TS 1958\}, (II.44).

[^4]: ${ }^{7}$ See \{TS 2010\}, p. 105.
 ${ }^{8}$ \{SDA 1976\}, p. ...
 ${ }^{9}$ Āryabhaṭīya, Kālakriyāpāda, verses 17-21.

[^5]: ${ }^{10}$ The longitude of the planet obtained by applying the manda-samskā$r a$ (equation of centre) to the mean longitude of the planet.

[^6]: ${ }^{11}$ See for instance, the discussion in $\{$ MB 1960 $\}$, pp. 111-9.

[^7]: ${ }^{12}$ See $\{$ GYB 2008\}, pp. 484-6, 635-40.

[^8]: ${ }^{13}$ The reason as to why the domain of applicability is restricted only to the Sun and the Moon, is explained by Nīlakaṇṭa in his Āryabhaṭ $\bar{\imath} y a-b h a ̄ s ̣ a$. We discuss this in the next section.

[^9]: ${ }^{14}$ Since the discussion is on the śĩghra process, the word 'sva' refers to the śīghra.

[^10]: ${ }^{15}$ \{ABB 1931\}, p. 50; This passage is quoted in a different context in $\{\mathbf{L B} 1979\}$ as well.
 ${ }^{16}$ Para (1) forms the first section, Para (2) the second, Para (3)-(5) the third and Para (6) the last.

[^11]: ${ }^{17}$ नीच परिसं
 ${ }^{18}$ मन्दोचोनमा ल्लब्धं
 ${ }^{19}$ मूल
 ${ }^{20}$ प्रापिणं कर्णसूत्रात्
 ${ }^{21}$ आनयनयनं
 ${ }^{22}$ कृत्वा वर्गं त्रिज्या
 ${ }^{23}$ Here the sentence "कर्ण स्फुटकोटिफलं मृगकर्क्यादावृणं धनं च कृत्वा वर्गं त्रिज्या लम्यतेए' appears twice in the manuscript.
 ${ }^{24}$ तद्वर्गगे

[^12]: ${ }^{34}$ which does away with the arduous iterative procedure

