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Abstract

A real number, expressed as decimal string, can be considered as the sum of infinite terms of
rational numbers. Since the cardinality of rational numbers is only , these strings cannot go beyond 
places of decimals. This puts limitation on the result of multiplication of two real numbers decimals
long. The squaring of the decimal string 0.333… and comparing it to the value of 1/9 shows that the
concept of First Approachable Śunya (FAS) must be called upon to explain the limiting value obtained as
answer to this and similar problems. Further, a combinatorial argument shows that the cardinality of real
numbers is = and the first member of the set of real numbers must be the FAS (1/ ). Two
theorems for raising any real number to  are derived and their implication in bolstering of Continuum
Hypothesis is highlighted. Eight-by-ten and five-by-ten Cantor sets are used to understand the real numbers
from 0.000…0 to 0.999…9. Also, more Approachable Śunyas could be conceived based on division of 1
into smallest possible value. The second order Approachable Śunyas could be derived based on
exponentiation (square roots).
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1. Introduction
A decimal string 0.123 can be considered

as the sum of , all of them rational

numbers. What is the maximum number of digits
up to which a decimal string can extend? This is
the same as asking the question: what is the
maximum length of decimal places up to which
any real number between 0 and 1 can go? Consider
the rational representation of real numbers as

, where ax is any digit from 0

to 9. When the number of these terms reaches ,

the denominator reaches . The denominator

of the next term must be . But  + 1 =

 and hence we are forced to conclude that the
maximum number of digits of any real number
between 0 and 1 can only be  and nothing
higher.

When two decimal numbers (e.g. 0.2 and
0.3) are multiplied, their answer adds up the
number of decimal places of the multiplicand and
multiplier. Thus 0.2 × 0.3 = 0.06, and 0.02 × 0.03
= 0.0006. Now what happens when two decimal
strings digits long are multiplied? Obviously

the number of digits of the answer should be +

. But + = and so the answer can only

be digits long. Does it mean that the answer is
truncated to the first ω decimal places – where ω
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is the ordinal of cardinal ? Or does it mean
that the answer is rounded to the first ω decimal
places? Does it put any limitation on the accuracy
of the answer? These issues are examined using
the example of 0.333…

2. Squaring of 0.333…
In an earlier paper (Basant & Panda, 2013),

it was shown that the actual sum of all convergent
geometric series of rational numbers is less than

the ideal sum by , defined as FAS. As shown

in Section 2 of that paper, =  = 3 × 

etc. and so   and so on. It

was therefore shown that  to

be more accurate. In the above paper, the FAS was
arrived at based on the reminder of Left Hand Side
(LHS) – Right Hand Side (RHS) after summation
of terms. It is possible to test the validity of
the theorem of FAS in the squaring of 0.333….

Let us start by first assuming that, 

Squaring both sides, we get

…(1)

Now, a number, whose digits consist of 3s
alone, when squared, can only result in a new
number that ends in 9 (whatever that number may
be). Or we can write the RHS as 0.A9 where A9
is a decimal string of + = digits. Now let

us find the value of LHS. . Here is a

number whose only digits are 1s and so we can
write it as 0.B1, where 0.B1 is a decimal string of

number of 1s. Thus, we can rewrite equation
(1) as 0.B1 = 0.A9. But 1 ≠ 9 and so this identity
obviously is not correct. The implication is that

our assumption   as well as = 

are not accurate enough.

Instead of writing the RHS as 0.A9 it is
possible to find out its exact value. This is given
in Table 1.

Now we can rewrite equation (1) as

…(2)

Here the LHS is  digits long and the RHS is

+ digits long. Even if the RHS is truncated
to ω digits, LHS = 0.111…1 and RHS = 0.111…0.
Thus LHS≠RHS. And so we have a problem.

Table 1: Pattern of (0.333…)2

Decimal No. of decimal (x)2 No. of decimal
string (x) places of (x) places of (x)2

0.3 1 0.09 2
0.33 2 0.1089 4
0.333 3 0.110889 6
0.3333 4 0.11108889 8
0.33333 5 0.1111088889 10

0.333… 0.111…0888…9  + 
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It is not difficult to point out similar examples with
easily understandable patterns.

Example 1

Take  . Squaring both sides, 

(0.666...)2. The possible final digit of RHS is 6.

However LHS =  4, where the last

possible digit can only be 4. But 4 ≠ 6 and so
LHS≠RHS. Or, Table 2 can be used to derive the
exact value of (0.666…)2 :

The relevant equation therefore becomes:

 …(3)

LHS and RHS obviously do not match. Let us look
at another example.

Example 2

  and   . Therefore  

0.666… × 0.333… or , where X8 is some

decimal string. But . Here 8≠2 and

so LHS≠RHS. Or as in the previous example, the
exact value of 0.666… 0.333… can be obtained
from Table 3.

The relevant equation in this case is equivalent
to:

 …(4)

Table 2. Pattern of (0.666…)2

Decimal No. of decimal (x)2 No. of decimal
string (x) places of (x) places of (x)2

0.6 1 0.36 2
0.66 2 0.4356 4
0.666 3 0.443556 6
0.6666 4 0.44435556 8
0.66666 5 0.4444355556 10

0.666… 0.444…3555…6  + 

Table 3: Pattern of 0.666…× 0.333…

Decimal Decimal Sum of decimal (xy) No. of decimal
string (x) string (y) places of (x) + (y) places of (xy)

0.6 0.3 1+1 0.18 2
0.66 0.33 2+2 0.2178 4
0.666 0.333 3+3 0.221778 6
0.6666 0.3333 4+4 0.22217778 8
0.66666 0.33333 5+5 0.2222177778 10

0.666… 0.333…  + 0.222…1777…8  + 
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Here also LHS≠RHS. We can think of yet another
example.

Example 3

Take   and  

Multiplying,   or

, where Y9 is some decimal string. But

. As 1≠9, LHS≠RHS. Here too, the

exact value of 0.0909… × 0.111… can be derived
from the pattern of Table. 4:

Thus the relevant equation turns out to be:

 …(5)

Obviously, LHS and RHS of equations (2) to (5)
do not match. What could be an explanation
for this? Could FAS throw some light on the
situation?

3. Application of First
Approachable Sunya

Let us discuss equation (2). Using
Theorem of FAS (Basant & Panda, 2013) let us

denote  . Now  is the

equivalent reminder and the actual reminder is

. Thus .

Squaring both sides we get

.

But . Thus we have,

 

Or, .

Expanding  on the LHS again, we can write

,

Table 4: Pattern of 0.0909… × 0.111…

Decimal Decimal Sum of decimal (xy) No. of decimal
string (x) string (y) places of (x) + (y) places of (xy)

0.09 0.11 2+2 0.0099 4
0.0909 0.1111 4+4 0.01009899 8
0.090909 0.111111 6+6 0.010100989899 12
0.09090909 0.11111111 8+8 0.0101010098989899 16

0.0909… 0.111…  + 0.0101…009898…99  + 
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Or 

Removing the common term from both sides,

.

Here we must understand the formalism of the

expression . What does mean? It

means 0.0005. Or, in other words when a number
is divided by 10x, it can be expressed as a decimal
string with x digits. Look at Table 5.

0.000…(Say B), where there are  zeros
following the decimal point but preceding z. Now
A is the decimal-part and B is the Śunya-part. Both
are digits long. Using this formalism, LHS

 up to +
places of decimals. Here the colon (:) separates
the Śunya-part from the decimal-part. Further,

 is equivalent

to  =

0.111…:111… up to +  places of decimals.

Thus, when +  places of decimals are
considered, we have LHS = RHS. Once this
identity is established, we can discard the Śunya-
part of the final answer (since it is zero in one
way of reckoning and since + = ) and
retain the decimal-part. Now the answer will be
correct up to decimals.

It can similarly be shown that equations
(3) to (5) mentioned in Examples (1) to (3) can
also be balanced using FAS. Here it is not the

constant form of the FAS, i.e.,  that is used

but the actual reminder of (where IS =
Ideal Sum and r is the common ratio between
adjacent terms of the geometric series) as shown
in Section 3 of the earlier paper (Basant & Panda,
2013). Thus in the case of equations (3) to (5) also,
when +  decimal places are considered, LHS
= RHS. And as in the case of equation (2), we can
then discard the Śunya part and retain the real part
of decimals.

Recounting 1

…Into the court of Emperor Asoka came
three brothers with a strange request. Their father
had bequeathed them 17 cows to be divided among

Table. 5: Pattern of division by powers of 10

Rational Decimal Number of
representation representation decimal places

0.1 1

0.01 2

0.001 3

0.000…1

0.000…01 +1

0.00....0111… +

So if y is any integer then  represents a

decimal string that is  digits long. It can also
be expressed as 0.000…y (say A) which is

decimal places long. Similarly, if 0.z is any

decimal string, then  is equivalent to
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the three in the ratio . They could not do

it on their own and so had come to the Royal Court.
The Emperor looked at the court mathematician
who rose to his feet immediately and pronounced

the solution:  cows for the eldest brother, 

cows for the next brother and  cows for the

youngest one. “  and  and  cows?”,

asked the perplexed Emperor. “Your Majesty, the
calculation gives that solution,” said the
mathematician. “So you want to butcher three
cows to satisfy your calculation?” commented the
annoyed Emperor. “I say your solution is truly
improper. It is even worse than the problem”, he
did not hide his displeasure. He was upset and
retired for the day after directing the brothers to
come the next day.

That night the Emperor prayed to Lord
Buddha to enlighten his understanding. And in his
dream he heard the Divine Voice: “Gift the Royal
Cow”. The Emperor was puzzled, but decided to
obey the command implicitly. So the next day he
gifted the Royal Cow to the startled brothers.

They returned to their homes full of
trepidations. They were convinced that the
Emperor had punished them. For if they did not
maintain the Royal Cow in royal style, then the
Emperor would be displeased and if they maintain
it the way it deserves, then they will go pauper in
no time. It was with a sad heart that they entered
their homes.

Seeing their despondency, the intelligent
and modest wife of the eldest brother hinted to
her husband tangentially: “The Emperor has given
you the Royal Cow with the command to solve
your problem. Not attempting to do so would be
disobeying the royal command.” So the brothers
reluctantly set about dividing the cows.

Now there were 17+1= 18 cows and the
eldest brother got 9 cows, the next one got 6 cows
and the youngest one got 2 cows. 9+6+2 = 17 and
so one cow was left over. Each of them was
intelligent enough not to claim the Royal Cow as
his share.

The same day the three brothers hurried
to the Royal Court to thank the Emperor and return
the Royal Cow…

Ebullient Lilliputians enter the garden to
frolic
But make themselves scarce after
committing the havoc;
Distraught gardener would look at the
decimated entities
And frown at the ‘ghosts of departed
quantities’

 (Berkeley, 1734)…

4. Some Explanations
Some conclusions can be drawn from the

exercise :

1) The statement  is only

approximately correct and this validates the
theorem of FAS that “The actual sum of any
convergent geometric series of rational

numbers (where r < 1;  where n ∈ N; n

>1) is less than its ideal sum by , which is
the First Approachable Śunya” (Basant &
Panda, 2013).

2) When two decimal strings (that are convergent
geometric series) of ℵ0 digits long are
multiplied, the answer is not the truncated
value up to ω digits (As shown using equation:
2 - 5). Further, it can be noticed that when the
initial ω digits are considered, the difference

of LHS – RHS is equal to  as shown in

Table 6. This difference of  is, of course,

equivalent to , the FAS.
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3) Although the portion beyond ω decimal places
is, truly speaking, the Śunya part and is only a
fraction of the FAS (or Zero), it cannot be
discarded at the beginning of the calculation.
It does contribute to the final answer by adding

 to the digit at position ω. On completion

of the multiplication, the Śunya part can be
neglected.

4) It can be seen that acceptance of the identity 1
= 0.999… would lead to the result that 12 =
(0.999…)2 , 13 = (0.999…)3 etc. From the table
below, (0.999…)2 can be shown to be equal to
0.999…8:000…1

The same result can be arrived at using the theorem
of FAS:

…(6)

Similarly, from Table. 8, it can be seen that

(0.999…)3 = 0.999…7:000…2:999…9
 …(7)

This also can be seen using the theorem of FAS as
given below:

Table 6: Pattern of digits up to ω decimal places

Equation LHS (up to RHS (up to LHS – RHS LHS – RHS
No: (ω) decimals) (ω) decimals) (Decimal) (Rational)

(2) 0.111…1 0.111…0 0.000…1

(3) 0.444…4 0.444…3 0.000…1

(4) 0.222…2 0.222…1 0.000…1

(5) 0.0101…01 0.0101…00 0.000…1

Table 7: Pattern of (0.999…)2

Decimal No. of decimal (x)2 No. of decimal
string (x) places of (x) places of (x)2

0.9 1 0.81 2
0.99 2 0.9801 4
0.999 3 0.998001 6
0.9999 4 0.99980001 8
0.99999 5 0.9999800001 10

0.999… 0.999…8000…1  + 
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Table 8: Pattern of (0.999…)3

Decimal No. of decimal (x)3 No. of decimal
string (x) places of (x) places of (x)3

0.9 1 0.729 3
0.99 2 0.970299 6
0.999 3 0.997002999 9
0.9999 4 0.999700029999 12
0.999… 0.999…7000…2999…9 + + 

= 0.999…7:000…2:999…9

Thus, if we accept that 1 = 0.999…, then we
will be hard-pressed to explain the curious
identity 1 = 0.999…8:000…1 =
0.999…7:000…2:999…9 etc.

5) In Section 6 of the earlier paper (Basant &
Panda, 2013) it was argued that if x =
0.999…9, then 10x = 9.999…0 and not
9.999…9. It was mentioned as a case of the
end digit being restrained (as 0) but the middle
or left portion expanding (as string of 9s). A
similar pattern can be seen in the RHS of
equations (2) – (5), while considering the
initial (ω) digits and the next  (i.e., ω+ω)
digits.

Such pattern can be seen in the final rows of
Table 7 and 8 as well as in the RHS of
equations (6) and (7) also.

Table 9: Pattern of restrained end-digits and expanding digit strings

Equation End digit of Expanding End digit of Expanding portion
first  (ω) digits portion of First second  (ω) of second

 (ω) digits digits  (ω) digits

2 0 111… 9 888…
3 3 444… 6 555…
4 1 222… 8 777…
5 00 0101… 99 9898…

5. Cardinality of real numbers as a
permutation

As mentioned in Section 1, any real
number between 0 and 1, represented as a decimal
string can be considered as the sum of rationals

( , where ax is any digit from 0 to 9) and

can thus be only decimals long. Let us first
compute the cardinality of real numbers in the
interval between 0 and 1 using a combinatorial
argument that is more intuitive than the power set
one.

Each of the decimal places of a real
number can be occupied by any of the 10 digits
from 0 to 9. Hence the total number of
permutations of the decimal places is . But

=  and thus cardinality of real numbers or
the cardinality of all possible decimal strings r
such that 0 < r < 1 is . (A similar argument
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was used in Section: 8 of earlier paper (Basant &
Panda, 2013) to show that the number of possible
arrangements of a combination lock with dials,
each with 10 digits from 0 to 9, is = ).
Armed with this insight we can make a list of these

real numbers (r : 0  r < 1) as given in Table:10.

Generation of numbers in Column: 2 of
Table: 10 can be explained this way. The interval
between 1 and 0 is divided into 10 equal parts.

Now each of these parts is    and 101 such

parts can be represented from 0.9 to 0.0. Divide

each of them again by 10. Now each new part is

 and each of the 102 parts can be

represented from 0.99 to 0.00. (If a decimal string
of two places is to be filled up by all permutations
of integers 0 to 9, then 102 such permutations are
possible from 0.00 to 0.99). Now dividing 0.01
again and again by 10, we can make the interval
smaller and smaller. When this process is repeated

 times, we will reach  as the

smallest possible part. Also, there will be
 such parts represented from 0.000…0

to 0.999…9. (it is easy to see that permutations of
integers 0 to 9 for digits would include all the
combinations from 000…0 to 999…9). What
happens if we repeat the process one more time?

We have + 1 = , and so .

Therefore  cannot be further

divided to get smaller values and so the number
of possible decimal strings between 0 and 1 is only

.

From Table 10 it is evident that we are
making a list of the  real numbers. Now
compare this with Cantor’s (Byers, 2007) dazzling
diagonal argument which says that such a list is
impossible to make. However there is no
contradiction since any list can contain items only
up to and not up to , if we proceed through
that list one step at a time, as Cantor meant. Still,
if we proceed through the list in blocks of 10x at a
time such that x = 1,2,3…etc. up to , then it is
evident that after  steps we would reach

.

A different way to express the list of Table:
10 is to say that the real numbers between 0 and 1

consist of the numbers 

etc., up to , where 999…9 is an integer

Table 10: List of Real Numbers

Ordinal Corresponding Rational
number real number representation

1st 0.000…..0

2nd 0.000…..1

3rd 0.000…..2

4th 0.000…..3

5th 0.000…..4

6th 0.000…..5

7th 0.000…..6

8th 0.000…..7

9th 0.000…..8

10th (101) 0.000…..9

100th (102) 0.000....99

1000th (103) 0.000..999

-th 0.999…..9
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digits long. Or we can say that the set of real
numbers between 0 and 1 consist of the natural
numbers (including 0) divided times by 10,

(i.e., by ). It shows that the set of real numbers
is a well ordered one with the least element (apart

from = 0.000...0) as  = 0.000…1, the

FAS. This incidentally justifies the intuition of
Cantor (Foreman & Kanamori, 2010) that “It is
always possible to bring any well-defined set into
the form of a well-ordered set” or that all non-
empty sets must have a least element.

How many real numbers are there between
the points 3.0001 and 3.0002 on the numberline?
These two numbers have 4 decimal places. Add

trailing zeroes to them so that they are now
3.0001000…0 and 3.0002000…0 respectively.
Now 4 +  = , and so the trailing digits
can be arranged in   permutations.
Thus there are  real numbers between 3.0001
and 3.0002 and these range from 3.0001000…0
to 3.0001999…9. Similarly it can easily be seen
that between the points 0.0 and 0.1 on the
numberline there are  real numbers.

This last observation affords us a way to
understand the diagonal argument of Cantor. This
observation is equivalent to saying that if we go
through the numbers listed in Table: 10 starting
from 0.000…0, then we will be covering steps
before reaching 0.1. We would have by now listed

real numbers (r) but it is obvious that numbers
like 0.111…1, 0.222…2, 0.333…3, and of course
0.999…9, which are such that 0.1< r < 1.0) will
not be in that list.

For the  real numbers between 0.0 and
0.1, the first digit after decimal point will be 0.
This will be followed by all permutations of digits
from 000…0 to 999…9. This can be expressed as

0.0x where x is any of the above permutations from
000…0 to 999…9.. Now 0.0x can be put into one-
to-one correspondence with 0.1x, 0.2x etc. up to
0.9x. But 0.1x represents all the  real numbers
between 0.1 and 0.2 and 0.2x represents all the

real numbers between 0.2 and 0.3 etc. It is
therefore evident that all the 10 intervals of 0.1
each between 0.0 and 1.0 contain an equal number
of real numbers, . Thus the cardinality of real
numbers between 0.0 and 1.0 is equal to 10 × 
= , the cardinality of real numbers between 0.0
and 0.1.

Recounting 2

...As shipwrecked Pi Patel (Martel, 2001)
drifted in a tiny lifeboat in the Pacific Ocean, he
was confronted by two sets of problems.

On the one hand, he had to grapple with
the rocking infinite water and reach the shore
safely. But the infinity of the sky seemed to him
to be a greater danger… As the ethereal witches
stirred the cauldron of the sea with bone-white
brooms of lightning, as their derisive laughter rose
to a thunderous crescendo, as the sea seemed to
froth and boil over, as the water seemed to merge
with the sky in a phantasmagoria of doom and as
the hissing waves threatened to shatter the lifeboat
and everything therein, it was indeed herculean
struggle to cling on to one’s life or sanity.

Similarly, at high noon, when the Sun
twitched his whiskers and glared at the sea below
with an electric countenance, then every visible
thing – including tiny wavelets – turned into
mirrors reflecting heat and light. In such blinding
heat and light it was indeed difficult to discern
the boundary of things. Thus during both these
times of cardinality-destroying (multiplicity-
erasing) sea-sky continuum, Pi could hardly
distinguish his own body from the boat or water –
or even worse – Richard Parker.
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Apart from this continuum problem, the
second set of troubles that confronted Pi revolved
around Richard Parker, the tiger on board. Its
hunger had to be appeased at regular intervals and
yet it was growling, “charlatan”, “renegade”,
“corrupter of youth” (Dauben, 1990) etc. and was
always threatening to go for the jugular. Keeping
an alert and safe distance from the tiger and yet
outsmarting it at every instant was the second set
of challenges that Pi faced 24 hours a day.

In the midst of these tremendous tasks, if
Pi hadn’t noticed few interesting algae drifting
under his feet, then O, gentle folks, kindly forgive
him, for he was grappling with existential issues
of the extremest kind…

Armed with axe and inner compass
Pathbreakers wade through bramble and
doubt;
Roadmakers descend with determined
steps
And convert their paths to rigid
pavements…

6. Place-value notation and
countable infinity

An argument similar to the one used in
Section: 5 to determine the number of digits of a
real number can show that the ubiquitous place-
value notation can represent natural numbers only
up to digits. With digits, the value of the

digit on the extreme left is . Now let us
multiply such a number by 10. Therefore the value
of the left-most digit must be .
But , and so the value of the new
number will be the same as the value of old one.
Thus adding digits to a number with digits does
not increase its value and the place-value notation
has validity only up to digits.

The blackhole-cardinal imposes itself on
neighbours
Nothing can get away from its
Dhritarashtra-embrace;

Addition and multiplication cannot cross
the event horizon
Only exponents manage to power-vault
with escape velocity…

It further shows that if we wish to count
up to , – an infinity that is tinier than –
then the efficient place-value-notation-based
numbers (like one hundred, one hundred one…
one thousand, one thousand one etc.) are not going
to take us there. Such numbers will inevitably take
us to =  only. Therefore, to count up to

, we will need a less efficient number name
and notation.

Could changing the base of the place value
system overcome this difficulty? We know that

. Therefore, chang-
ing the base to 2 or 12 or 60 or any finite number
and counting up to infinity will not take us to ;
it will simply take us to only. Hence to count

from 0 to , the counting numbers must be devoid
of any base. Perhaps a system where 100 is
represented by one hundred vertical strokes, and
1000 by one thousand vertical strokes etc. all the
way up to could be imagined. And the names
of these counting numbers should also be distinct
all the way from 0 to . In such a clumsy and
‘baseless’ notation alone can we legitimately say
that the ‘countable infinity’ is .

From this discussion it is evident that the
concept of ‘countable infinity’ depends on how
we count.

7. Different countable infinities
How can we count up to higher cardinals?

Let us look at the numberlines (Figs. 1 & 2).

As is evident, Fig.1 and Fig. 2, represent
the linear and logarithmic numberlines,
respectively. A slightly different way to interpret
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the logarithmic numberline to base 2 is to say that
it is made of the power set of terms on the linear
numberline. Thus corresponding to 2 on the linear
numberline there is 22, its powerset on the
logarithmic numberline and corresponding to -1

on the linear numberline we have , its

powerset on the logarithmic numberline. While
this notion is easy to understand for terms on the
RHS of Fig. 2, the power set of negative integers
is not intuitively plain (“In mathematics you don’t
understand things. You get used to them”)
(Newmann quoted in Zukov, 1984) However, this
procedure affords us a way to generate more
numberlines and possibly more Approachable
Śunyas.

With Devās on one side and Asurās on
the other
The Ocean of Milk was churned;
First came hissing poison, and later
Glories galore and immortality itself…

The next power set-generated numberline
is given in Fig. 3

Further, doing power set operation on the
terms of Fig. 3 results in the next numberline
shown in Fig. 4

The exercise can be continued endlessly
in this manner. Let us construct Table. 11 to look
at these numberlines more closely.

Column 10 of Table 11 give the list of
‘countable infinity’ in each case. Thus in the case
of row 1, we count 1, 2, 3… , and reach  after

steps. Similarly, in case of row 2, we count as
2 (21), 4 (22), 8 (23)… and reach  (ℵ1) –
assuming the Continuum Hypothesis – after

steps. In case of row 3, we proceed as 4 (22),

16 (24), 256 (28)… and reach ℵ2 after steps.
Finally, in case of row 4, the counting sequence is

Fig. 1

Fig. 2

Fig. 4

Fig. 3
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24, 216, 2256 etc. and we reach ℵ3 after ℵ0 steps.
Such counting with ‘exponential footsteps’
continued in a similar manner will take us to higher
and higher cardinals in each case.

With the first step Vāmana measured the
earthly realm
And with the next all other ones;
Where was the place for keeping the
third? –
To honour his word, Mahābali offered the
sphere of his head…

It is not significant that the base chosen
for our exercise is 2. We could as well have chosen
base 10. In row 2, we could have counted as 10
(101), 100 (102), 1000 (103)… and reached 
( ) after steps. In case of row 3, we could have

proceeded as 1010 ( ), 10100 ( ), 101000

( )… and reached ( ) after steps.
Finally, in case of row 4, the counting sequence

could have been , , etc. and we

would have reached  ( ) after steps.

8. Intimation of Approachable Śunyas
Take the interval 0 to 1. Into how many

parts can this interval be divided? Start dividing 1
by the successive values on the RHS of row 1,

Table. 11. We will get the following results: ,

,  etc. and reach after steps. We have

reached a value close to 0 but not absolute 0.
Addition-based increasing of denominator is

ineffective now as . We can perhaps

call  the ‘Zeroth Approachable Śunya’.

Similarly, we can divide 1 into smaller and smaller
parts using successive values on the RHS of row
2. The results obtained in this case would be

 and we would reach  after steps.

Again we have reached another value closer to 0
but not absolute 0. Multiplication-based increasing
of denominator is ineffective now as

. Incidentally this is the

FAS. Changing the base to 10 instead of 2, we

would get the limiting value as , which in

any case is only. Assuming Continuum

Hypothesis3, , and so .

Table 11: Ideal Limits and Reachable Limits of powerset-generated numberlines

Ideal Limit Reachable Few numbers to the Mid Few numbers to the Reachable
(IL) on the limit (RL) left of mid point point right of mid point limit (RL) on
left on the left the right

-∞ - -3 -2 -1 0 1 2 3

0 1 2 4 8

1 2 4 16 256

2 4 16 216 2256
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We can continue this operation of dividing
the interval between 0 and 1 using the successive
terms of row 3. (For easier understanding we will
use base 10 instead of 2). Now the results would

be  etc. After steps we

would reach the value of and there will be

such intervals between 0 and 1. Further
squaring of this number is ineffective as

. Assuming Continuum

Hypothesis, and so .

This is a smaller value than FAS but it is not the
last of the possible Approachable Śunya. We can
proceed in this manner and come up with smaller
and smaller values into which the interval 0 to 1
can be divided. This is one approach to generating
smaller and smaller Approachable Śunya. Putting

it differently, the values  etc.

(assuming Continuum Hypothesis) could be
candidates for the never-ending values of
Approachable Śunyas. And their defining
characteristic would be that these are ‘numbers
whose value cannot be further reduced even if they
are divided by any finite number’.

“Do not come near here; remove your
sandals from your feet, for the place on
which you are standing is holy ground.”

(Exodus 3:5)

9. Zero as a transfinite cardinal
If x is a term in row 1 of Table 11, then the

corresponding term in row 2 is 2x. Since IL of LHS
of row 1 is -∞, we can see that the IL of LHS of
second row must be 2-∞, where ∞ is the
Unapproachable Absolute Infinity. But the IL of
the LHS of the logarithmic numberline is 0
(Unapproachable Absolute Zero). Therefore, we
can say that 0 = 2-∞. Substituting 2-∞ instead of 0
in the linear numberline, we can see why 0 behaves
like a transfinite cardinal in its interactions with
finite numbers (n).

As seen in columns 1 and 2 of Table 12,
the arithmetic of 0 parallels the arithmetic of

except in the case of division. As hinted in

Section 9 of the earlier paper (Basant & Panda,
2013) and as highlighted in Table. 12, arithmetic
of 0 can be better understood if 0 is treated as a

transfinite cardinal. Multiplication by 0 ( )

immediately destroys / modifies the limited
cardinality of finite numbers. Thus, we have (3×0)

Table 12: Arithmetic of Zero

Arithmetic of 2-∞ = Arithmetic of zero Arithmetic of Arithmetic of

with finite numbers with finite numbers 0 with itself  with itself

n + 0 = n 0 + 0 = 0 + = 

n – 0 = n 0 – 0 = 0 - = 

n × 0 = 0 0 × 0 = 0 × = 

 = Undefined ÷ = Undefined
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= (4×0), but it would be more appropriate to state
it as (3×0) = (4×0) = 0. In order to clarify division

by zero, it is better to represent 0 as  in that

operation.
Thousands of raindrops splash into the
stream
The river subsumes their individual irks;
Mighty rivers rush into the sea
The ocean smothers their individual
quirks…

10. Cantor set and the arithmetic of
cardinal division

Cantor set (Byers, 2007) is the set of points
remaining in the interval between 0 and 1 after
middle thirds have been removed repeatedly from
it and its descendant intervals. Thus, in the first

instance the interval  to  is removed and in

the second instance the middle-third of the two

remaining intervals, namely  to  and  to 

are removed. After repeating this process 
times, what is the length of the remaining interval.
This is usually calculated by computing the length
of intervals removed. This length is the sum of
the convergent geometric series

 and its ideal

sum is . Thus the Cantor set is

shown to contain zero length and yet,
paradoxically, it can be shown to contain 
points in it.

Let us look at the Cantor set in terms of
the lengths remaining at the end of  iterations.

At the end of first instance, we have , which is

further reduced to  in the next instance and

in the third instance and so on. What will be

the length remaining after  instances?

Obviously the answer is . What is the value

of , or, its equivalent ?

If the intervals that have been removed add up to

1, then obviously, this value of , which

represents the measure of the intervals remaining,
must be equal to 0. But this obviously is far-fetched

since even  cannot be equal to absolute zero

(0) as shown in various places in Sections: 1 – 5.
How to resolve this contradiction?

At the outset it must be pointed out that
by the Theorem of FAS, the actual sum of a
convergent geometric series is less than the ideal

sum by , so that we can say that the sum of

intervals removed after  steps is not 1 but (1 –

). It is therefore evident that an interval of

 will remain after  iterations have been

gone through. For greater clarity let us construct
the following table to view the intervals remaining.

Thus it can be seen that after  instances,

there will be  intervals of length  still



326 INDIAN JOURNAL OF HISTORY OF SCIENCE

remaining in the Cantor Set. This is equivalent to
stating that the total interval that will remain in
the Cantor Set after  instances will be

, which is equivalent to .

Thus by the Theorem of FAS, we got the

remainder left in the Cantor Set as  and by

the reasoning of Table 14 as . Are these two

values equivalent? Let us find out the value of

. To do so we shall invoke the rules of cardinal

arithmetic, especially cardinal multiplication. If
m and n are two infinite cardinals, then m × n =
max {m,n}. Thus × = . The same result
can be interpreted this way also: in the
multiplication of two infinite cardinals, the
‘higher’ cardinal prevails and the other one is
reduced to 1, the multiplicative identity, so that

× = 1× = .

Similarly, in the division of two transfinite
cardinals also, the ‘higher’ cardinal prevails and

the other one is reduced to 1. Thus .

Using this interpretation, . But

 and so the interval remaining in the

Cantor set after steps is . Thus by both

calculations, the equivalent length of interval
remaining in the Cantor set after  iterations is

. Further it can be noted that this interval of

 contains as many points in them ( as per

the last row of Table 13) as the original interval of
[0,1] (as per Section: 5) from which the Cantor
set was generated.

Let us check this method of cardinal
division on another example.

 and so  must be equal

to . But . How can  be

equal to ? By the interpretation of cardinal
multiplication and division, the ‘smaller cardinal’

in  is reduced to 1 and so we have

.

Just as in the case of multiplication and
division the ‘smaller’ cardinal is reduced to the
multiplicative identity (1), in the case of addition
and subtraction, the ‘smaller’ cardinal is reduced
to 0, the additive identity, so that 

and . This

Table 13: length and number of remaining intervals

Instance No. of intervals Length of each
remaining interval remaining

1 2

2 4

3 23

4 24



HISTORICAL NOTE: APPLICATION OF APPROACHABLE SƒUNYA 327

interpretation holds even in the case of subtraction
so that . Also, 

.

11. Pattern and proof

We have shown by interpretation that

. If this interpretation is correct,

then  must be equivalent to .

But  is equivalent to  and this is

equivalent to . Therefore
the inevitable conclusion follows that .

But interpretation is one thing and rigorous proof
is another. Is there any other way to prove that

and ?

We have,  Therefore, we can say
that

…(12)

Raising all to the power , we have

Now  since 2× = . Further

.

So . But .

The value of  can be explained in another

way also: 

.

Therefore, the inequality (12) raised to the
power is equal to . As the first

and third terms are equal, the middle term also
must be equal, (Cantor–Bernstein–Schroeder
theorem) (Dauben, 1990) and, so . We
have thus proved few results here. One that

; another, that . It further

implies that if x > , then . Therefore
 etc.

Doting Yaśodā who fed him motherly
milk
And crooked Poothana who suckled Him
poisoned milk
Were both elevated to an exalted plane
For they had been touched by the Infinite
Being…

Using similar argument it can be shown

that etc. The enabling

property in these cases will be that 3× = and

4× = etc. Again, as in the case of  stated

above, 

= 2 × 2 × 2 × … =  etc. also.

It must be noted that as we proceed in the
manner of , , etc., the first term of
inequality (12) will be getting closer and closer to
1. We can therefore state the following:

Theorem 1: If k is any real number such that
, where n is any large but finite

natural number such that , then .

What is the result of raising any real
number between 0 and 1 to ( i.e., the value of

, where 0 < k < 1)? Let us write a similar

inequality like (12). Since 

…(13)

Raising all to the power of , we have
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. Since = 2 × , this

is equivalent to . But

as in inequality (12) and so we have

. Therefore ,

since the first and third terms of the inequality are
equal as in the case of (12). Further, we can replace

with   etc. as in inequality (13) and
bring the value of the third term closer and closer
to 1. And as in the previous case, the enabling
property in this case would also be that 3× = ,

4× = etc. We can therefore state the
following:

Theorem 2: If k is any real number such that

, where n is any large but finite

natural number such that , then .

Enemies keep vigil at the border
Narrow is the no-man’s land in between;
Whoever strays into either side
Is captured by the respective side…

12. Proof and Understanding
But proof is one thing and understanding

is another. Therefore let us seek to understand what
is going on here. Thurton (1994) has remarked
with autobiographical candor on the efforts of
mathematicians: “…What we are producing is
human understanding. We have many different
ways to understand and many different processes
that contribute to our understanding. We will be
more satisfied, more productive and happier if we
recognize and focus on this”. And William Bayers
(2007) has put it emphatically: “Mathematics is
about understanding! Proofs are important to the

extent that they help develop an understanding of
some mathematical situation”.

Proof is the tender mango –
Bitter is the approach to the seed;
Understanding is the ripe fruit –
Aah, the juicy way to the nut…

Why is it that ? How is

it that the real numbers begin with 

and continue as , etc.? How to

understand that where 0 < k < 1 ?

To understand these in an even simpler
manner, let us construct a variation of the Cantor

set where we remove the middle  from the

available intervals.

We start with the interval 0 to 1 and are
left with the intervals 0 to 0.1 and 0.9 to 1 after
the first instance (Fig. 5). It can be seen that the

length of each of these remaining intervals is 

of the original interval. We will initially
concentrate only on the extreme left (EL) and
extreme right (ER) intervals. In the next instance,
the intervals on the EL become 0 to 0.01 and the
interval on the ER becomes 0.99 to 1. These

intervals are obviously  of the original

interval. Let us look at the Table: 14 for more
details and clarity:

It can therefore be seen that  intervals

of length  1 will be left in the

Fig. 5
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eight-by-ten Cantor set after  iterations. Thus
in respect to the number of intervals remaining
( ) and the length of those intervals

 the eight-by-ten Cantor set is

equivalent to the one-by-three Cantor set.

Since at each stage we are removing the

portion between  and , the intervals

remaining cannot contain any of the digits 2 to 8.
Further, as the intervals generated at each instance

is  of the previous interval, the decimal

representation of the end points of intervals affords
us an address of these points.

Let us list out the intervals for the first three
iterations.

a) 1st instance: (0.0, 0.1), (0.9,1.0)

b) 2nd instance: (0.00, 0.01), (0.09,0.10), (0.90,
0.91), (0.99,1.00)

c) 3rd instance: (0.000, 0.001), (0.009, 0.010),
(0.090, 0.091), (0.099, 0.100), (0.900, 0.901),
(0.909, 0.910), (0.990, 0.991), (0.999, 1.000)

Let us take any one point, say 0.901. As
the first digit after decimal point is 9, in the first

instance this point is on the right side (between
0.9 and 1.0). The second digit after decimal point
is 0. So this number in the second instance is on
the left hand side (between 0.90 and 0.91) of the
interval generated. In the third instance the digit
is 1 and this says that the point is on the right hand
side of the next generated interval (between 0.900
and 0.901). Using this property it is possible to
list all the numbers at each instance as decimal
representations.

However, a more intuitive approach would
be to represent these numbers as rational numbers
as given below:

a) 1st instance: , 

b) 2nd instance: , ,

, 

c) 3rd instance: , ,

, , ,

, , 

Looking at the above, we can observe the
following.

Table 14: Length of intervals and their number

Instance EL Length of ER Length of No. of Total interval
Interval EL interval Interval ER interval intervals at remaining at

each instance each instance

1 0 to 0.1 0.9 to 1 2

2 0 to 0.01 0.99 to 1 22

3 0 to 0.001 0.999 to 1 23

0 to 0.000…1 0.999…9 to 1
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a) In all instances, the initial nominators remain
unchanged. Only, more nominators are added
as instances increase.

b) The denominators increase as 101, 102, 103 etc.
and the number of intervals increase as 21, 22,
23 etc.

c) The nominators do not contain digits 2 to 8.
Another way of saying this is that after digit 1
must come 9 as the corresponding digit in the
next nominator. Further we can see that
nominators increase by addition. For iteration
3, the increasing nominators are obtained by
addition in the following sequence: 1, 8, 1,
80, 1, 8, 1, 800, 1, 8, 1, 80, 1, 8, 1. This affords
us an algorithmic way to generate the
nominators:

Algorithm:
Step 1: start with 0
Step 2: add 1to get the next nominator
Step 3: convert digit 1(as obtained in Step 2) to 9
to get next nominator
Step 4: repeat steps 2 and 3
Step 5: end when the nominator is equal to
denominator

With the help of the above steps, we can generate
few of the points representing the intervals on the

LHS after ℵ0 instances as below: ,

, , ,

, , ,

 etc.

These are the intervals remaining on the left hand
side. With simple reversal of the algorithmic steps
given above, we can list the points on the RHS
also:

, ,

, ,

, ,

, 

etc.

Here we can notice that all the  intervals are

long and these range from  on

the left to  on the right. Thus we

can understand that  is different

from  just as  is different from

.

Further, we can easily infer that if the 

intervals had not been removed from the original
interval of 0 to 1, then the points remaining in it

would have been , , , , 

etc. up to , where 100…0 is a number ℵ0

digits long. But these are the = real
numbers from 0 and 1 as listed in Table 10 and as
explained in the subsequent paragraphs of Section:
5. Thus by combinatorial argument and by the
eight-by-ten Cantor set analysis, we get the same
list of real numbers for the interval 0 to 1. Further
it can be seen from Column 7 of Table 14 that the
total interval remaining at the end of  instances is

  . Again, from

the same Column 

 (by Theorem 2)
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We started with the interval 0 to1 and

produced  intervals of in  iterations.

What if we had started with an interval of, say

 ?  is the length of EL interval

in row 4 of Table 14 and so the above question is
equivalent to asking: How many rows intervene
between 4 and ? This obviously is – 4 =

. Therefore  iterations have to be gone
through before the interval 0.0001 is reduced to

. And when  iterations have been gone

through,  intervals will be generated. Thus
whether we start with the interval of 1 or 0.0001,

there will be  intervals of  remaining in

the end (Compare this to the permutation-based
argument at the end of Section: 5). We can start

with any small interval , where n is any finite

natural number, and it will contain the same
number of intervals ( ) as the interval 0 to 1

because – n = .

We can even start with an interval of 10 (0
to 10). From this point of view, the interval 0 to 1
is the left hand portion of the first iteration of the
interval 0 to 10. After that the remaining iterations
will go on as in Table. 15. Thus the total number
of iterations gone through will be + 1 = . So
the interval 0 to 10 will contain as many intervals
as the interval 0 to 1 after  iterations. Further,

+ = . Therefore, if we begin with the

interval 0 to also, we will be left with 

intervals of  after  iterations. But as

mentioned in Section: 6,  =  is the upper
limit of the countable numbers with place value
notation. And so we can see that whether we start
with the whole of the numberline or a tiny length
of it and subject it to eight-by-ten Cantor set

iteration, we will get  intervals of in

steps.

To understand the generation of real
numbers in an even easier manner, we can
construct another variation of the Cantor set. This
time we divide the interval 0 to 1 into 10 equal
parts and remove the alternate parts such that the
remaining intervals are as shown in Fig.6.

Each of the 5 remaining intervals is also
subjected to division by 10 and removal of
alternate parts. The outcome of this exercise after
such iterations, is given in Table. 15.

It is easy to see that intervals remaining in
the five-by-ten Cantor set can be derived similar
to the intervals remaining in the eight-by-ten
Cantor set. These are,

a) 1st instance: , , ,

, .

b) 2nd instance: , ,

, ,  etc.

c) th (w) instance: ,

, , ,

 and so on.

Fig. 6
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Table 15: Length and Number of intervals remaining in Five-by-ten Cantor set

Instance EL Interval Length of No. of intervals Total length of interval
EL interval remaining at remaining at each

each instance instance (column 3 × 4)

1 0 to 0.1 5

2 0 to 0.01 52

3 0 to 0.001 53

0 to 0.000…1

But the points representing the intervals, as
obtained at the th (ω) instance, are the real
numbers as given in column 3 of Table 10.

Incidentally, this five-by-ten Cantor set is a graphic
illustration of the paradox of Zeno. We start with

interval 0 to 1, then remove  of it. Now the

remaining portion is . Next we remove

 of this remaining portion as .

In the next instance the portion removed is

 of the original interval and so on up to

. The sum of parts so removed adds up

to , ideally, though

by the Theorem of FAS, the actual sum of the

series is . As the last row of Table.15
shows, even after the removal of the ideal sum of

1, there will be  intervals of length 

still remaining in the original interval (0 to 1) and

these will be , ,

, , ,

,  etc. with a total length

of   

(by Theorem 2).
Telescope aids as eye-tight tool
To observe the distant and faint
But acts as self-worn blinkers
Against obvious lateral truths…

The mansion of mathematics is built
Using granite blocks of rigour;
Its foundation is axiomatically anchored
In molten magma of faith…

13. Theorems: 1 & 2 and the
Continuum Hypothesis

Simply put, the Continuum Hypothesis
asserts that there is no infinite cardinal p such that

. Cantor (Byers, 2007) believed in it
but could not resolve it either way – whether it
was true or false. It was Kurt Godel (Byers, 2007)
who showed in 1940 that the hypothesis cannot
be disproved in the standard axiomatic set theory.
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In 1963 Paul Cohen (Byers, 2007) showed that
the hypothesis could not be proved from the same
set of axioms either. So the Continuum Hypothesis
is generally held to be independent of the axioms
of set theory.

However, using cardinal arithmetic, we
can explore whether any infinite cardinal p can
possibly exist between  and . Addition
cannot be a tool to reach p since it cannot cross

 as + 1 =  and + = . Similarly
multiplication (repeated addition) also cannot
reach p since it too cannot cross  as × 2 =

and ×  = . The other operation capable

of taking us across  is exponentiation (repeated
multiplication). Here we may note that 2 raised to
any finite number b cannot produce an infinite
cardinal since 2b can only be finite. When b
becomes , the smallest infinite cardinal, then

we get .

We would therefore be justified in thinking
that perhaps a real number less than 2 when raised
to the power of  would produce the infinite
cardinal p. However Theorems 1 and 2 disprove
this. Any real number between 1 and , when

raised to  is equal to  and any real number

between 0 and 1, when raised to  is equal to

. And  is equal to 1 only. Therefore, our

efforts to go past  using exponentiation of real
numbers between 1 and 2 would only result in

 and nothing short of that.

Counting stars in the Milky Way
The spacefarer journeys forth;
Other stars are in other galaxies
There are no stars in between…

Thus Theorems 1 and 2 bolster the hunch
of Cantor that there cannot be any infinite cardinal
p such that .

We can try tetration (repeated
exponentiation). Though this operation will take
us beyond  and is therefore not pertinent to the
question at hand, it could have a bearing on the
generalized continuum hypothesis.

.

Also,  

 .

We can therefore state the following
inequality

…(14)

where n is any large but finite natural number such
that  and k is some real number.

We will now raise all the three terms to
the power of . Incidentally, raising any number

k >1 to the power of  is equivalent to tetration
of that number since . Also,
raising any number k to the power of  is
equivalent to exponentiation or repeated
multiplication of that number as

. Thus we have

. As , where
n is any large but finite natural number, we have

. Since

 and , we

have . As the first and third terms
are equal, the middle term must also be equal and
so .
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Theorem 3: If k is any real number such that
, where n is any large but finite

natural number such that , then .

Similarly, select k such that 

…(15)

Raising all to , . As

in the case of derivation of Theorem 3,

 and , where n is any

large but finite natural number. Therefore the

present inequality reduces to .

Again, as the first and last terms are equal, the
middle term of the inequality too must be equal
and so we have:

Theorem 4: If k is any real number such that

, where n is any large but finite

natural number such that , then .

Theorems 3 and 4 show that tetration of
any number between 1 and 2 will only produce

 and not any infinite cardinal between 

and . Deriving such theorems for higher and
higher infinite cardinals should not be difficult and
such results would strengthen the claim of
generalized continuum hypothesis that between
one infinite cardinal  and its powerset , there
cannot be any infinite cardinal q such that

.

Ants carry rice in bits and grains;
There are no containers in their world…
Farmers carry their harvest in bundles;

Few spilled grains are not reckoned by
them…
Factory counts its production in tons;
There are no half-filled bags in its tally…
Ship carries its cargo in containers;
There are no odd-size boxes in its world…

14. The quantum world of numbers
At various places in this paper it has been

shown that FAS cannot be discarded as nothing.
In fact it has been shown to be of significance in
many calculations. But at various places in the
earlier paper it was contented that the FAS could
be defined as a kind of zero. Aren’t these two
stands opposite and contradictory?

It must be mentioned that we are entering
the quantum world of numbers where the
contradictory must be accepted as complementary
aspects of the same reality. Wave and particle are
contradictory at the level of sea and sand but
complementary at the level of photons and
electrons. Similarly, Sunyas can be either nothing
or a thing of value depending on the context.

Add a spoonful of salt to its licking tongue
And the ocean ignores your labored
affront;
Add a spoonful more salt to his favourite
dish
And the husband is likely to froth and
fume…

When the zeroth sunya is a measurable
quantity
The First Approachable Śunya is a mere
nothing;
When the natural numbers are taken into
reckoning
All the Śunyas are reduced to nothing…

When the race-track circumference is an
exact measure
The diameter is a hazy string of decimals;
When the centre-fixing diameter is an
exact measure
The circumference is an endless decimal
that is closed…
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Bohr: Not one move of the nectar-thief
bee
Shall be known in advance;
Einstein: Not one flower in the garden
Shall be left unpollinated…

Jostling like motley crowd at carnival
Digits of golden ratio stretch forth;
Filing out like pilgrims from a shrine
Digits of its continued fraction descend…

Not one step of the Butter-Thief Child
Could be known in advance;
Yet not one household of the Gopis
Was bereft of the thrill of His pranks…

15. More numberlines and
Approachable Śunyas

It is interesting to note from Table. 11 that
power set of negative numbers are rational
numbers and power set of rational numbers are
irrational numbers.

Another interesting fact about Table. 11 is
that each row has a distinctive operation that
produces the terms of that numberline. Thus, given
one term of a numberline, we can produce the other
terms by this operation. In the case of linear
numberline this is addition. Given any number on
this numberline, we can produce the numbers to
the right and left of it by addition / subtraction.
Similarly, on the logarithmic numberline, the
distinctive operation is multiplication / division
and for irrational numbers it is exponentiation
(square / square root) and so on.

Teachers deliver course content
In sedate linear scale;
Students burn the midnight oil
At turbocharged logarithmic scale…

His opponent walked the distance
With silent measured steps;
Zeno wove his paradoxes
In leaping logarithmic scale;

Draupadi dreaded with trepidation
One sari minus one sari is zero;
Dussasana realized with perspiration
Infinity minus infinity is still infinity…

However many numberlines are generated
by the powerset operation, there will always be
some difference between RL and IL on both RHS
and LHS of Table. 11. Could the difference
between RL and IL in the LHS (Column I – column
2) be a clue to more Approachable Sunyas?

In the derivation of Theorem 2, we used
the terms , ,  etc. to get to the smallest
value close to 1 that can be reached by subjecting
2 to the repeated operation of exponentiation in

the sequence , , … . The limit of this is

obviously  or . Now,  is a value very

close to 1 but it is not the closest. We could have
carried out the exponentiation of 2 in the sequence

, , ….,  also. This is the same as

taking the square root of 2, then taking the square
root of that answer and continuing in that manner.

Also, it can be seen that , , ,…. ,

are the LHS of Row 3 of Table 11 with its ideal
limit as 1. Assuming the Continuum Hypothesis,

 and so . We have now derived

two values (  and ) which are close to 1,

but not equal to it. So the difference of these values
from 1 could be also considered as Approachable
Sunyas. And thus we have the first two of these

new Sunyas as  and . It may be

noted that as explained in Section: 8, , ,

 etc. are candidates for Approachable Sunyas

of the first order.

So the second order of Approachable
Śunyas would consist of raising 2 to the value of
the first order Approachable Śunyas and
subtracting 1 from it.
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We can therefore list the first and second
order Approachable Sunyas (Table 16):

Can there be third order Approachable
Śunyas? And a fourth, and so on…

Just as there are endless transfinite cardinals on
the way to Unapproachable Absolute Infinity, there
will be endless Approachable Śunyas on the way
to Unapproachable Absolute Zero. “Hitherto shalt
thou come, but no further…” (Job 38:11). Nothing,
is impossible!

Whatever, the length of rope
That Yaśodā could gather with
determination,
The same just was not sufficient
To go around the tiny waist of Child
Ka…
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Table 16: Approachable Sunyas of first and second order

First order Deriving Second order Deriving
Approachable Śunyas principle Approachable Śunyas principle

Division Exponentiation
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