METHODS OF INTERPOLATION IN INDIAN ASTRONOMY

Nidhi Handa and Padmavati Taneja*

(Received 01 May 2012; revised 05 September 2014)

Abstract

Āryabhaṭa I (476 AD), Brahmagupta (598 AD), Bhāskara II (1114AD) and others have discussed methods of interpolation for evaluating values of trigonometric functions. However Brahmagupta is credited for using second-difference interpolation formula to evaluate various values of Hindu trigonometric functions. The main purpose of this paper is to present a brief account of the work done on interpolation by Brahmagupta in his astronomical work Khandakhādyaka. Further we give a remark on its probable impact on other cultural areas.

Key words: Bhogyakhaṇ̣da, Gatakhaṇḍa, Jyā, Sphuṭabhogyakhaṇ̣̣a, Vikalā

1. Introduction

Construction of tabular R-sines and difference and interpolated functional values corresponding to intervening values of the argument, for their use in various astronomical determination, have been found to be common in India from very early centuries of AD (Chatterjee, 1970). The Indian astronomer Āryabhaṭa I (476 AD) used the first order finite difference to calculate tabular sine-differences. From his composition Āryabhațīya II, we obtain a rule for finding tabular sine-differences equivalent to the relation (Gupta, 1969)

$$
\Delta^{2} \operatorname{Sin} \mathrm{x}=-\mathrm{k} \sin \mathrm{x}
$$

Later mathematicians and astronomers used more proficient methods in search of more and more accurate result.

In seventh century AD, Brahmagupta made use of second difference interpolation for calculation of correct Bhogyakhanda probably for the first time in the history of mathematics (Chatterjee, 1970). He made remarkable
achievements in the field of mathematics and astronomy which proved as guidance for several succeeding astronomers and mathematicians. In this paper an attempt has been made to bring out to light the improved rule of interpolation by using second difference given by Brahmagupta in his astronomical treatise Khandakhādyaka and its further elucidation by later mathematicians as Bhāskarācārya and Govindasvāmi.

2. Āryabhaṭa's Use of Interpolation Formula

From the classical age of Indian mathematics Āryabhaṭa was the first in the line of great mathematicians and astronomers (Wikipedia). He is credited for discovering the sine-function and for giving the table of sine-differences (Ramasubramanian, 2010). Āryabhaṭa's table of sine is a table of the first differences of the values of trigonometric sine expressed in arc minute. In his composition Āryabhatīya, he gave a method for computation of R sines geometrically, which yielded a table of

[^0]24 R Sine-differences at intervals of 225 (Joseph, 2009).

From his Āryabhaṭīya we found the following verse enunciating the method of linear proportion for obtaining tabular sine-difference (Sharma \& Shukla, 1976; Singh, 2010)

प्रथमाच्यापज्यार्धाधैरूनं खंडितं द्वितीयार्ध।
तत्प्रथमज्यार्धा शसैत्यैस्त्यै रूनानि शेषाणि।।
(Gaṇitapāda 12)
The first R sine divided by it gives the quotient (q). Now to obtain the second sine first sine is added to the same (i.e. the first sine) and diminished by the quotient. Similarly other Sines are obtained by successively subtracting the sum of the entire quotient from the first sine and adding the result successively to the last of the already obtained Sines.

In modern notations
The first $j y \bar{a}^{*}=j y \bar{a} 225=225$ (as 8th part of $30^{\circ}=3 \frac{3}{4}^{\circ}=225$)

Or $\mathrm{d}_{1}=\mathrm{R} \sin \theta=\mathrm{R} \theta=225$

$$
\mathrm{d}_{2}=\mathrm{R} \sin \theta+\mathrm{R} \sin \theta-\frac{\mathrm{R} \sin \theta}{\mathrm{R} \sin \theta}
$$

$$
=\mathrm{d}_{1}+225-\mathrm{q}_{1} \quad\left(\text { where } \mathrm{q}_{1}=\frac{225}{225}\right)
$$

$$
=225+225-\frac{225}{225}
$$

$$
=449
$$

$$
\mathrm{d}_{3}=\mathrm{d}_{2}+225-\left(\mathrm{q}_{1}+\mathrm{q}\right)
$$

Hence $d_{n}=d_{n}-1+225-\left(q_{1}+q_{2}+\ldots+q_{n}\right)$

$$
\mathrm{n}=1,2, \ldots 24
$$

It can be summarized as $d_{n}=d_{n}-1+d_{1}-q_{t}$
(* Here Jy \bar{a} is the radius multiplied by modern sine)

From Sūryasiddhanta (c. 400 AD), an earlier text than Āryabhatīya, we also find the same formula along with a list of 24 R sines (Chatterjee, 1970; Sharma \& Shukla, 1976; Srinivasiengar, 1967). Hence it is a matter of contemplation that whether Āryabhaṭa himself constructed his table of sine or borrowed its idea from Sūryasiddhānta.
Āryabhaṭa constructed his table of Sines taking r (radius) $=3438$
(As circumference of a circle $=360^{\circ}=360 \times 60=$ 21600 minute

Radius of a circle $=\frac{21600}{2 \pi}=\frac{21600}{2(3.14)}=3438^{\prime}$
His table shows only the Sines of multiple of $3 \frac{3}{4}$. For finding the Sines of other angles between 0° and 90° he made use of the method of interpolation i.e. by applying the method of proportion to the difference (Singh, 2010). His Sine table is as follows (Mallaya, 2000 and Singh, 2010):

Table 1. Sine Table

No.	Angle	Āryabhata's $\boldsymbol{J} \boldsymbol{y} \overline{\boldsymbol{a}}$ Or Hindu Sine	Modern $\mathbf{3 4 3 8} \times(\operatorname{Sin} \boldsymbol{\theta})$
1.	$3^{\circ} 45$	225	224.85
2.	$7^{\circ} 20$	449	448.95
3.	$11^{\circ} 15$	671	670.72
4.	$15^{\circ} 0$	890	889.82
5.	$18^{\circ} 45$	1105	1105.01
6.	$22^{\circ} 30$	1315	1315.05
7.	$26^{\circ} 15$	1520	1520.58
8.	$30^{\circ} 0$	1719	1719.00
9.	$33^{\circ} 45$	1910	1910.05
10.	$37^{\circ} 30$	2093	2092.09
11.	$41^{\circ} 15$	2267	2266.08
12.	$45^{\circ} 0$	2431	2431.01
13.	$48^{\circ} 45$	2585	2584.08
14.	$5^{\circ} 30$	2728	2727.55
15.	$56^{\circ} 15$	2859	2858.55
			Contd...

No.	Angle	Āryabhata's $\boldsymbol{J y} \overline{\boldsymbol{a}}$ Or Hindu Sine	Modern $\mathbf{3 4 3 8} \times(\operatorname{Sin} \boldsymbol{\theta})$
16.	$60^{\circ} 0$	2978	2977.04
17.	$63^{\circ} 45$	3084	3083.45
18.	$67^{\circ} 30$	3177	3176.06
19.	$71^{\circ} 15$	3256	3255.75
20.	$75^{\circ} 0$	3321	3320.85
21.	$78^{\circ} 45$	3372	3371.95
22.	$82^{\circ} 30$	3409	3408.75
23.	$86^{\circ} 15$	3431	3430.85
24.	$90^{\circ} 0$	3438	3438

Hence it is clear that Āryabhata made use of the interpolation formula for finding the sine values and after him another eminent scholar Brahmagupta extended his interpolation formula up to second difference interpolation formula.

3. Brahmagupta's Interpolation Formula

Brahmagupta (598 AD) was a great mathematical prodigy born in Bhinmal city in the state of Rajasthan of Northwest India. He was the son of Jiṣnugupta. His achievements and contributions glorified the Indian mathematics and astronomy. He made use of mathematics and algebra in predicting astronomical events. (Wikipedia).

His two principle works are Brāhmasphuṭa Siddhānta and Khanḍakhādyaka. Khaṇdakhādyaka is an expository book on astronomy, which consists of mainly two parts Pūrvakhaṇ̣akhādyaka and Uttarakhaṇdakhādyaka. In the Uttarakhanḍakhādyaka part of his book he had discussed many innovative ideas for the calculation of natakāla, mandaparidhi and sïghraparidhi, which are especially useful for the calculation of an eclipse. His description of the motions of the planets and stars were based mainly on mathematical calculation to a degree that had not been achieved by earlier astronomers. But the most glorious innovation was that he calculated correct Bhogyakhaṇda by the method of
interpolation, using the second difference - for the first time in the history of mathematics (Chatterjee, 1970).

3.1 Interpolation formula for equal intervals

In his astronomical treatise Khaṇdakhādyaka he had given the table of Sines and interpolation formula for finding the values of Sines at different intervals. From Uttarakhaṇdakhādyaka, we get the improved rule of interpolation by using the second difference.

In Uttarakhaṇ̣dakhādyaka, he termed the correct tabular difference by the name Sphutabhogyakhanda and also gave the methods of finding it for calculating Jyā, Utkramajyā, Krānti and Mandaphala. To evaluate Sphuṭabhogyakhanda, he multiplied the Vikala by half the difference of the Gatakhand \bar{a} (GK) and the Bhogyakhanda (BK) and divides the product by 900 . Now this result is either added or subtracted from half the sum of $G K$ and $B K$ accordingly as this half sum is less or greater than the $B K$. In each case we get the required Sphutabhogyakhanda (Chatterjee, 1970). [Here Vikala is the remainder left after subtracting as many tabular differences of Jyās etc. as possible]

To explain this procedure following example is taken from Varuna's commentary.

Find Jyā 2 signs $28^{\circ} 57^{\prime} 44^{\prime \prime}$

$$
2 \text { signs } 28^{\circ} 57^{\prime} 44^{\prime \prime}=5 \times 900^{\prime}+837^{\prime} 44^{\prime \prime}
$$

Hence we see that five differences or khanḍās 39, 36, 31, 24, 15 have been passed. The next Khanḍ $\bar{a} 5$ is Bhogyakhanda, 15 is Gatakhanda (refer Table 2) and 837'44' is Vikala (Chatterjee, 1970).

Sphutabhogyakhaṇda $=$
(Half the sum of $G K$ and $B K) \pm$
(Half the difference of $G K$ and $B K$) \times Vikala 900

$$
\begin{aligned}
& =\frac{15+5}{2} \pm \frac{\left(\frac{15-5}{2}\right)\left(837^{\prime} 444^{\prime \prime}\right)}{900} \\
& =10 \pm \frac{837^{\prime} 44^{\prime \prime}}{180}
\end{aligned}
$$

Hence the required jyā can be calculated as follows:

The required $J y \bar{a}=\frac{\text { Vikala }(\text { Sphuttabhogyakhaṇda })}{900}$

+ Khaṇdas passed
$=\frac{\left(837^{\prime} 44^{\prime \prime}\right)\left(10 \pm \frac{837^{\prime} 44^{\prime \prime}}{180}\right)}{900}+39+36+31+24+15$
$=\frac{(837.73)\left(10 \pm \frac{837.73}{180}\right)}{900}+145$ (as $44^{\prime \prime}=0.73$
min)
$=4.976+145=149.976$
From Uttarakhaṇ̣dakhādyaka (UKK) we obtain the following ssloka also which describes the Brahmagupta's interpolation rule for equal intervals (Gupta, 1969 and Sharma, 1189).

गतभोग्य खाण्डकान्तरदलविकलवधात् शतैर्नवाभिराप्या।
तदयुतिदल युतोन भोंग्याद्नधिवां भोग्यम्।

UKK IX. 8

Multiply half the difference of the tabular difference (d_{t}) and the difference to be passed over $\left(d_{t}+1\right)$ by the residual arc (θ in minutes) and divide by 900 minutes (h). The result is added to or subtracted from half the sum (of d_{t} and $\mathrm{d}_{\mathrm{t}}+1$) according to whether this half sum is less than or greater than the tabular difference to be crossed. Hence obtained result is the true functional difference to be crossed (Rao, 1994)

UKK 8

In modern notations it can be shown as:
$\mathrm{d}=\frac{1}{2}\left(\mathrm{~d}_{\mathrm{t}}+\mathrm{d}_{\mathrm{t}+1}\right) \pm \frac{1}{2}\left(\mathrm{~d}_{\mathrm{t}}-\mathrm{d}_{\mathrm{t}+1}\right) \frac{\theta}{\mathrm{h}}$
accordingly as $d_{t}<d_{t+1}$ or $d_{t}>d_{t+1}$
keeping $\theta=n h$ and using (1) in (2), and
$f(x+\theta)=f(x)+\frac{\theta}{h} d$
we get
$\mathrm{f}(\mathrm{x}+\mathrm{nh})=\mathrm{f}(\mathrm{x})+\frac{\mathrm{n}}{2}\{\Delta \mathrm{f}(\mathrm{x}-\mathrm{h})+\Delta \mathrm{f}(\mathrm{x})\}+\frac{\mathrm{n}}{2} \Delta^{2} \mathrm{f}(\mathrm{x}-\mathrm{h})$
This formula is similar to the NewtonStirling formula up to the second difference term (Gupta, 1979).

For table of Sines, we get the following śloka from his manuscript Khaṇ̣akhādyaka (Chatterjee, 1970).

त्रिंशत सनवरसेन्दुजिन (तिथि) विषयागृहार्द्ध चापाना अर्द्धज्या खण्डानि ज्या भुक्तैक्यं सभोम्यफलम् ।।

$$
\text { KK I. } 3
$$

Thirty increased severally by $9,6,1$ and 24,15 and 5 are the tabular differences of Sines at intervals of half a sine. For any arc the 'sine' is the sum of the parts passed over increased by the proportional part of the tabular difference to be passed over.

It can be expressed in tabular form as follows

Table 2. Brahmagupta's table of Sines

S. No.	Angle (in degrees)	Sine	Sine-differences	
		First Difference	Second Difference	
1.	0	0	39	
2.	15	39		-3
3.	30	75	36	-5
4.	45	106	31	-7
5.	60	130	24	-9
6.	75	145	15	-10
7.	90	150	5	

Using above table we can find the value of $\mathrm{R} \sin 57^{\circ}$ with the help of following procedure:
$57^{\circ}=3420 \mathrm{~min}=900 \times 3+720$
$\mathrm{h}=15^{\circ}=15 \times 60=900 \mathrm{~min}$
From table it is clear that three of the tabular differences are considered as passed over: the last one being $31\left(d_{t}\right)$ and the one to be passed over is $24\left(d_{t+1}\right)$ and we see that $d_{t}>d_{t+1}$

Hence from equation (1) true tabular difference is

$$
\mathrm{d}=\frac{24+31}{2}-\frac{720}{900} \times\left(\frac{31-24}{2}\right)
$$

Hence

$$
\begin{aligned}
\mathrm{R} \sin 57^{\circ} & =106+\frac{720}{900}\left[\frac{24+31}{2}-\frac{720}{900} \times\left(\frac{31-24}{2}\right)\right] \\
& =106+\frac{720}{900}\left[\frac{55}{2}-\frac{28}{10}\right] \\
& =106+\frac{8}{10}[24.7]=106+19.7 \\
& =125.76
\end{aligned}
$$

Similarly we can also find the value of R $\sin 67^{\circ}$ by using the same procedure:

$$
67^{\circ}=4020 \mathrm{~min}=900 \times 4+420
$$

Here 24 is $\left(d_{t}\right)$ and15 is $\left(d_{t+1}\right)$ and we see that $d_{t}>$ $\mathrm{d}_{\mathrm{t}+1}$

Hence from equation (1) true tabular difference is

$$
\mathrm{d}=\frac{15+24}{2}-\frac{420}{900} \times\left(\frac{24-15}{2}\right)
$$

Hence
$R \sin 67^{\circ}=130+\frac{420}{900}\left[\frac{15+24}{2}-\frac{420}{900} \times\left(\frac{24-15}{2}\right)\right]$

$$
=130+\frac{7}{5}[17.4]=130+\frac{121.8}{15}=138.12
$$

Its modern value is 138.08 , which is very nearer to the value as has been calculated by Brahmagupta's Interpolation formula.
From Table (1) we have the value of

$$
R \sin 56^{\circ} 15^{\prime}=2859
$$

and $\mathrm{R} \sin 60^{\circ} 0^{\prime}=2978$
Hence we see the difference in the two given intervals is

$$
3^{\circ} 45^{\prime} \text { or } 225^{\prime}=119 \text { for } 1=119
$$

$$
\text { For } 1^{\prime}=\frac{119}{225}
$$

$$
\text { or } 45^{\prime}=\frac{119}{225} \times 45^{\prime}=23.26
$$

Thus $\mathrm{R} \sin 57^{\circ}=\mathrm{R} \sin 56^{\circ} 15+45$

$$
=2859+23.26=2882 \text { (appr.) }
$$

where $\mathrm{R}=3438$ hence 3438

$$
\operatorname{Sin} 57^{\circ}=2882 \operatorname{Sin} 57^{\circ}=0.8373
$$

if we consider $\mathrm{R}=150$ then we have the value of $R \operatorname{Sin} 57^{\circ}$ as

$$
\begin{aligned}
R \sin 57^{\circ} & =150 \times 0.8373 \\
& =125.74 \text { (appr.) }
\end{aligned}
$$

Similarly the value of $R \sin 67^{\circ}$ (for $R=3438$) by using Āryabhaṭa's table is

$$
\begin{aligned}
& R \sin 67^{\circ} 30=3177 \\
& R \sin 71^{\circ} 15=3256
\end{aligned}
$$

The difference in the two given intervals is $225=$ 79

$$
1^{\prime}=\frac{79}{225}
$$

$$
30^{\prime}=\frac{79}{225} \times 30^{\prime}=10.53
$$

$\mathrm{R} \sin 67^{\circ}=3177-10.53=3166.47$ (when $\mathrm{R}=$ 3438)

$$
\operatorname{Sin} 67^{\circ}=0.9210
$$

when $\mathrm{R}=150$ then

$$
R \sin 67^{\circ}=138.15 \text { (appr.) }
$$

Now we evaluate these values by modern methods [Mallayya, 2000]

$$
\operatorname{Sin} 57^{\circ}=0.8387 \text { (appr.) }
$$

when $\mathrm{R}=150$ then

$$
\begin{aligned}
& R \sin 57^{\circ}=150 \times 0.8387=125.8 \text { (appr.) } \\
& \operatorname{Sin} 67^{\circ}=0.9205 \text { (appr.) }
\end{aligned}
$$

when $\mathrm{R}=150$ then

$$
R \sin 67^{\circ}=150 \times 0.9205=138.08 \text { (appr.) }
$$

Other values are listed in the table 3.
On comparing the different values of R $\sin \theta$ we obtain the following table which represents the different values of $\mathrm{R} \sin \theta$ at different intervals as calculated by two different methods, first by using Āryabhaṭa's table and second by using Brahmagupta's Interpolation formula. Moreover these values are then compared with the values of $\mathrm{R} \sin \theta$ calculated by modern methods and we see that the variations are a little.

Comparing Āryabhaṭa's Rsine values and Brahmagupta's Rsine values with modern values of R sinè, we found that there is striking similarity between the results obtained by different methods.

3.2 Interpolation formula for unequal intervals

From his manuscript Khandakhādyaka we also find the use of interpolation formula in finding any intermediate value when the given data is at unequal intervals. He also made use of it in computing the gatiphala (change in the equation) correspond to any given gati (change in anomaly) when the tabulated values of the gatiphala (गतिफल) are at unequal intervals (Gupta,1969).

From this astronomical treatise we obtain the relevant couplet for finding the true functional difference to be passed over

भुक्त गति फलांश गुणा भोग्य गतिर्भुक्त गति हृता लब्धम्।
भुक्तः गतेः फल भागास्तद् भोग्य फलान्तरार्ध हतम्।।
विकलं भोग्य गति हृतं लब्धेनोनाधिकं फलैक्यार्धम्। भोग्य फलादधिकोनं तद् भोग्य फलं स्फुटं भवति।।
(Khaṇ̣̣a Khādyaka, IX, 12-13, etc.)
On dividing the product of last gatiphala $\left(\mathrm{D}_{\mathrm{p}}\right)(\mathrm{in}$ degrees) and current gati $\left(\mathrm{h}_{\mathrm{p}+1}\right)$ by the last gati $\left(\mathrm{h}_{\mathrm{p}}\right)$; we obtain the "adjusted" last gatiphala (d_{p}). Multiply half the difference of the "adjusted" last gatiphala and the current gatiphala by the residual arc and divide by the current gati. The new result is added or subtracted from half the sum of the "adjusted" last gatiphala and the current gatiphala accordingly whether this half sum is less or more than the current gatiphala. The final result is the true current gatiphala $\left(\mathrm{D}_{\mathrm{t}}\right)$ i.e. true functional difference to be passed cover (Gupta,19692).

Table 3

S. No.	Arc $\boldsymbol{\theta}$ (deg.)	Value of Rsin日 as Calculated from ARryabhata's table $\mathbf{R}=\mathbf{1 5 0}$	Value of Rsin日 as calculated by using Brahmagupta's Interpolation formula $\mathbf{R}=\mathbf{1 5 0}$	Value of Rsine as calculated by modern methods $\mathbf{R}=\mathbf{1 5 0}$
1.	37°	90.25	90.08	90.272
2.	47°	109.64	109.61	109.703
3.	57°	125.74	125.76	125.8
4.	67°	138.15	138.12	138.08
5.	77°	146.08	146.24	146.26
6.	87°	149.77	149.80	149.79

In modern notation it can be shown as:

$$
\begin{gathered}
d_{p}=D_{P}\left(\frac{h_{P+1}}{h_{P}}\right) \\
\text { or } \quad D_{t}=\frac{1}{2}\left(d_{p}+d_{p+1}\right) \pm \frac{1}{2}\left(d_{p}-d_{P+1}\right) \frac{\theta}{h_{P+1}}
\end{gathered}
$$

addition or subtraction can be taken accordingly as $\frac{1}{2}\left(d_{p}+d_{p+1}\right)$ is less or greater than d_{p+1} i.e. accordingly as d_{p} is less or greater than d_{p+1}. To obtain desired result

$$
\mathrm{f}(\mathrm{x}+\theta)=\mathrm{f}(\mathrm{x})+\frac{\theta}{\mathrm{h}_{\mathrm{P}+1}} \mathrm{D}
$$

where $x=a_{p}=h_{1}+h_{2}+\ldots$.

$$
f(x)=D_{1}+D_{2}+\ldots+D_{p}
$$

In particular case when the intervals are equal

$$
\text { i.e. } h_{p}=h_{p+1}
$$

We will have $d_{p}=D_{p}$
Then the rule will takes the form of its earlier rule that is for equal intervals.

Muniśvara in seventeenth century AD attempted to modify Brahmagupta's Interpolation formula in order to obtain more accurate results. It has been lucidly explained by R. C. Gupta (1979).

4. Bhāskara II Form of Interpolation Formula

Bhāskara II (b. 1114 AD), a renowned mathematician of twelfth century, is well known for his compositions Līl $\bar{a} v a t \bar{l}$, Bījagaṇita and Siddhānta- Śiromaṇi He had computed the interpolation formula for finding the tabular difference which is same as had been computed by Brahmagupta, only he used $\mathrm{h}=10^{\circ}$ instead of $\mathrm{h}=15^{\circ}(=900)$ (Gupta, 1969).

Bhāskara II gave the following relevant couplet in the Grahaganita part of his SiddhāntaŚiromani,

यातैष्ययोः खण्डकयोर्विशेष:
शेषांश निघ्नो नखहृत् तदूनम।
युतं गतैष्यैक्य दलं स्फुटं स्यात्
क्रमोत्क्रमज्या करणेडत्र भोग्यम्।|16||
(Siddhānta-Śiromaṇi II (Spastādhikāra), 16)
(Shastri, 1957)
The difference of the tabular difference passed over and tabular difference to be passed over is multiplied by the residual $\operatorname{arc} \theta$ and divided by 20. In case of sine this result is subtracted from half the sum of tabular difference passed over $\left(D_{p}\right)$ and tabular difference to be passed over $\left(\mathrm{D}_{\mathrm{P}+1}\right)$ and in case of versed sine this result is added to the sum of D_{p} and D_{P+1}. Here D_{p} is the tabular difference passed over and D_{P+1} is the tabular difference to be passed over.

That is $D_{t}=\frac{1}{2}\left(D_{P}+D_{P+1}\right) \pm \frac{1}{2}\left(D_{P} \sim D_{P+1}\right) \frac{\theta}{10}$
For computing sine and versed sine we have to take the negative and positive sign respectively.

The tabular differences at the end and beginning of the current intervals are $\left(D_{p+1}\right)$ and $\frac{1}{2}\left(D_{p}+D_{p+1}\right)$ respectively. Then the correction will be (Gupta, 1969).

$$
=\left\{\frac{1}{2}\left(\mathrm{D}_{\mathrm{p}}+\mathrm{D}_{\mathrm{p}+1}\right) \sim \mathrm{D}_{\mathrm{p}+1}\right\} \frac{\theta}{10}=\frac{\theta}{20}\left(\mathrm{D}_{\mathrm{P}}-\mathrm{D}_{\mathrm{P}+1}\right)
$$

Combining it with $\frac{1}{2}\left(D_{p}+D_{P+1}\right)$ we get the required D_{t}.

As tabular difference (apacaya) for sine and increase (upacaya) in case of versed sine, thus we have to add or subtract the correction term (Gupta, 1969).

Hence

$$
D_{t}=\frac{1}{2}\left(D_{P}+D_{P+1}\right) \pm \frac{\theta}{20}\left(D_{P} \sim D_{P+1}\right)
$$

is the required expression for the 'true' Bhogyakhaṇa D_{t}.

5. Govindasvāmi’s Rules for

Intrepolation

Govindasvāmi (c.800-850) was an astronomer of Kerala whose most famous treatise was a commentary on the Mahābhāskrīya of Bhāskara I(Mallaya,2008). Bhāskara I wrote the Mahābhāskrīya in about 600 AD and in 830 AD Govindasvāmi wrote commentary on it by the name Bhāsya. One of the most interesting aspects of the commentary however is Govindasvāmi s construction of the sine-table. Indian mathematicians and astronomers constructed sinetable with great precision. In his commentary Bhāsya he enunciated a set of particular rules of making second order interpolation to compute the intermediary functional values. Different formulas had been laid down for different argument intervals. The relevant text from his commentary is as follows:

गच्छद्यात गुणान्तराहत वपुर्यातैष्यदिष्वासनच्छे-
दाभ्यास समूह कार्मुक कृति प्राप्तात्, त्रिभिस्ताडितात्।
वैदे: षड्भिरवाप्तमन्त्य गुणजे राश्यो: क्रमाद्, अन्त्यभे
गन्तव्याहत वर्तमान गुणजाच्चापाप्तमेकादिभिः।।
अन्त्यादुत्क्रमतः क्रमेण विषमै: विशषैः क्षिपेद्
भङ्वत्वाप्तं, यदि मौर्विका विधिरयं मख्याः क्रमाद्
वर्तते।
शोध्यं व्युत्क्रमतस्तथाकृत—फलं ..
(Govindasvāmi's commentary on Mahābhāskrīya) (Shastri, 1957)

For first and second term, multiply the difference of the last and the current sine- difference i.e. (D_{p} $-D_{p+1}$) by the two parts of the elemental arc h (made by any intermediary point on it). Now multiply it by three and divide by the square of the elemental arc (Gupta, 1969).

Now for the first term divide the so obtained result by four and by six for the second term.
According to these rules, we have
(Suppose first quadrant has 24 equal divisions)
First term

$$
\mathrm{E}=\frac{1}{4} \frac{3 \theta(\mathrm{~h}-\theta)}{\mathrm{h}^{2}}\left(\mathrm{D}_{\mathrm{P}}-\mathrm{D}_{\mathrm{P}+1}\right) \text { when } \mathrm{p}=1 \text { to } 7
$$

For second term
$\mathrm{E}=\frac{1}{6} \frac{3 \theta(\mathrm{~h}-\theta)}{\mathrm{h}^{2}}\left(\mathrm{D}_{\mathrm{P}}-\mathrm{D}_{\mathrm{P}+1}\right)$ when $\mathrm{p}=8$ to 15
For the third term, multiply the linearly proportional part of the current sine- difference by remaining part of the elemental arc. Hence

Third term

$$
\mathrm{E}=\left(\frac{\mathrm{h}-\theta}{\mathrm{h}}\right) \frac{\theta}{\mathrm{h}} \mathrm{D}_{\mathrm{P}+1}\left(\frac{1}{47-2 \mathrm{P}}\right) \text { when } \mathrm{p}=16 \text { to } 23
$$

On dividing the so obtained result by the odd numbers 1,3 , 5 etc. accordingly as the current sine difference is first, second, third when counted from the end in the reversed order.

The final result thus obtained is added to one portion of the current sine- difference to obtain the Bhogyaphala (true sine-difference)

$$
\mathrm{R} \sin (\mathrm{x}+\theta)-\mathrm{R} \sin \mathrm{x}=\frac{\theta}{\mathrm{h}} \cdot \mathrm{D}_{\mathrm{P}+1}+\mathrm{E}
$$

By the ordinary first order linear interpolation we obtain $\frac{\theta}{\mathrm{h}}$. $\mathrm{D}_{\mathrm{P}+1}$, and E is the term got by second order interpolation.

These are the rules of computing sinedifference for direct sines. Apply the rules in the reversed order in case of versed sine and the above corrections are to be subtracted from the respective differences (got by linear interpolation).

Using as the finite difference operation and $\mathrm{h}^{\text {th }}$ step-length, the rule for the second rāsi (30 to 60) may be put as:
$\mathrm{f}(\mathrm{x}+\mathrm{nh})=\mathrm{f}(\mathrm{x})+\mathrm{n} \Delta \mathrm{f}(\mathrm{x})+\frac{\mathrm{n}(\mathrm{n}-1)}{2}\{\Delta \mathrm{f}(\mathrm{x})-\Delta \mathrm{f}(\mathrm{x}-\mathrm{h})\}$
It is the modern form of Govindasvāmi's rule and is a particular form of the general NewtonGauss interpolation formula to the second-order (Rao, 1994). It is equivalent to that of Brahmagupta's interpolation rule for equal knots.

6. Conclusion

Indian mathematicians carried out a constant search at least from the time of Āryabhaṭa I (b. 476 AD); for accurate method of interpolation especially in respect of sine-values for intermediate angles. Moreover for the accurate computation of the motion of celestial bodies requires more sophisticated interpolation technique than just first order. Hence Brahmagupta (b. 598 AD) used a second difference interpolation formula, which was rediscovered nearly a thousand years later and termed as NewtonStirling formula.

Hence we can see that the work of Āryabhaṭa and Brahmagupta on interpolation technique proved as fertile soil for further exploration. Preceding mathematicians like Bhāskara II, Govindasvāmi, Mādhava worked on it and further Newton, Gauss, Gregory and Bessel etc. extended this up to nth difference term, which is used in many advanced astronomical researches. Scientists became able to acquire immense information and knowledge about solar and lunar eclipses and movement of stars by using this interpolation technique. In present scenario it is still being searched out.

Acknowledgment

We are especially thankful to Prof. S.L. Singh and Prof. R.C. Gupta for their valuable support in preparing this paper

Bibliography

Aryabhata, From Wikipedia, the free encyclopedia. http:// en.wikipedia.org/wiki/Aryabhata.

Brahmagupta, From Wikipedia, the free encyclopedia. http:/ /wikipedia.org/wiki/Birhmagupta.

Brahmagupta. http://www.answers.com/topic, 2010.
Chatterjee, Bina. (Ed. and Tr.) The Khaṇ̣akhādyaka of Brahmagupta, Pub. Delhi, 1970.

Gupta, R.C. Second Order Interpolation in Indian Mathematics Up To The Fifteenth Century, IJHS, 4.1 \& 2(1969):86-98

Gupta, R.C. Muniśvara's Modification of Brahmagupta’s Rule for Second order Interpolation, IJHS 14 (1979):66-72

Joseph, G.G. A Passage To Infinity, Medieval Indian Mathematics from Kerala and Its Impact, SAGE Publications India Pvt. Ltd., New Delhi, 2009.

Mallayya, V. Madhukar. An Instersting Algorithm for Computation of Sine Tables from the Golsāra of Nīlakaṇṭha Gaṇita Bhārati, 26.1-4 (2000):40-55.

Mallayya, V. Madhukar. Vateśvara’s Trigonometric Tables and the Method, Gaṇita Bhāratī, 30 (2008):61-79

Ramasubramanian, K. The Origin and Growth of Mathematics in India, R. C. Gupta Award Lecture, 21 Oct 2010.

Rao, S.B. Indian Mathematics and Astronomy, Jnana Deep Publications, Bangalore, 1994.

Sastri, T.S. Kuppana. (Editor), Mahābhāskarīya, with the Bhāsya of Govindasvami and super-commentary Siddhāntadīpikā of Parmeśvara, Govt. Oriental MSS Library, Madras, 1957, P. XLXII
Sharma, K.V. and Shukla, K.S. Āryabhattīya of Āryabhaṭa, Critical Edition and Translation with Notes, INSA, New Delhi, 1976

Sharma, R.S. (Ed.), Brāhmasphuṭa-siddhānta, Delhi, Vol.4, ch. XVIII (on Kuṭtaka), 1189.

Singh, S.L., Solving the equation Nx2+1 = Y2, Paper presented at 'National Meet on History of Mathematical Sciences', Delhi, 2010.

Srinivasiengar, C.N. The History of Ancient Indian Mathematics, The World Press Pvt. Ltd., Calcutta, 1967.

[^0]: *Department of Mathematics, Gurukula Kangri Vishwavidyalaya, Haridwar - 249404, Email: nidhi_6744@yahoo.co

