Early System of Naksatras, Calendar and Antiquity of Vedic \& Harappan Traditions

A K Bag*
(Received 01 February, 2015)

Abstract

The fixation of time for Fire-worships and rites was of prime importance in the Vedic traditions. The apparent movement of the Sun, Moon, and a Zodiacal system along the path of the Sun/Moon with nakṣatras (asterisms or a group of stars) were used to develop a reasonable dependable calendar maintaining a uniformity in observation of nakșatras, from which the antiquity of these early traditions could be fixed up. The Rgvedic tradition recognized the northern and the southern (uttarāyana and daksināayana) motions of the Sun, referred originally to six nakṣatras (raised to 28 or 27) including Aśvinī nakṣatra citing it about 52 times. It recommended the beginning of the Year and a calendric system with the heliacal rising of Aśvinī at the Winter solstice. When Aśvinī was no longer found at Winter solstice because of the anticlockwise motion of the zodiacal nakṣatras due to precision (not known at the time), the Full-moon at Citrā naksatra in opposition to the Sun at Winter solstice was taken into account as a marker for the Yearbeginning, resulting in the counting of the lunar months from Caitra at the Winter solstice during Yajurvedic Saṃhitā time. The same system continued during the Brāhmanic tradition with the exception that it changed the Year-beginning to the New-moon of the month of Mägha (when Sun and Moon were together after 15 days of Full-moon at Maghā nakșatra), resulting in the corroboration of the statement, 'Krttikā nakṣatra rises in the east'. The Vedänga-jyautisa continued the same counting system from the Newmoon, assigning the beginning of Śraviṣṭhā segment of the nakșatras as the beginning of 5-year Yuga at Winter solstice. The antiquity of these Rgvedic, Yajurvedic, Brāhmaṇic and Vedāniga-jyautiṣa traditions may be found by comparing the old and new longitudes of nakșatras and fixed at $6500 \mathrm{BC}, 5000 \mathrm{BC}$, 2500 BC and 1000 BC respectively after corrections due to visibility error. This system of astronomical dating, based on long uniform pattern of observations, are possible in a culture obsessed with satisfactory domestic cultivation and regular worships. The Harappan tradition around c. 2000 BC followed the Yajurvedic tradition of counting of month from the Full-moon in a star in opposition, still prevalent in some parts of North India, unlike New-moon Brāhmanic system in South India. The calendric elements were found to be luni-solar, and in the process, the types of years, months, days, day-lengths, intercalation, seasons, nakṣatras \& nakṣatra space (aṃśa, bhāṃśa), tithis, full-moon \& new-moon in a Yuga, eighteen/ nineteen years' cycle for adjustment of synodic tropical year with lunar year have been explained and discussed.

Key words: Antiquity of Rgvedic, Yajurvedic, Brāhmaṇic, Harappan and Vedāṅga-jyautiṣa traditions, Bhāṃśa, Civil year, Day- length, Eighteen years’ cycle, Five years’ yuga, Intercalation, Jāvādi system, Lunar month, Lunation, Naksatra system, New \& Full-moon calculation, Sidereal year, Solar year, Summer solstice, Tithi, Vedic calendar, Winter solstice.

1. Introduction

Every culture recognized a series of stars, naksatras, along the path of Moon and Sun
(ecliptic / zodiac). Babylonian list given by Weber, Whitney, Thibaut, Hommel varies, while the first three authors recognized twenty four star groups,

[^0]the fourth gave eighteen constellations on the basis of the Mul-Apin series (c. 700 BC), which were ultimately raised to thiry three star groups ${ }^{1}$ or more. Indians on the other hand first recognized six, raised to twenty eight or twenty seven naksatras in the Vedic traditions since antiquity. The twenty-eight stars were also known in Chinese $h s i u^{2}$ and Arabic manāzil ${ }^{3}$ system. Whether Indian, Chinese and the Arabic system of star groups originated from the same source is a matter of investigation. That the Indian nakșatras ${ }^{4}$ conceived as a zodiacal framework is one of the oldest in South Asia. Indians used the motion of Sun and Moon along the zodiac as a workable calendar for worship and agricultural purposes. The Rgvedic statements (R V.X. 85.2) like "Soma (Moon) is stationed in the vicinity of naksatras" suggests that even in this early text the position of Moon in the sky might have been defined by reference to naksatras.

2. Calendric Features of Vedic Traditions and Their Antiquity

2.1. Rgvedic Saṃhitā Tradition

The Rgvedic tradition recognized and worshiped Agni (Fire) as a first great well-wisher,
and even constructed agnicitis (Fire-altars) for daily, monthly, seasonal and other rites invoking wealth, solace and happiness (RV.I.1.1;I.35.1). The Gärhapatya, one of the three primary fire-altars for house holder, is found mentioned in several places (RV.I.15.12; VI.15.19; X.85.27). Obviously, the fixation of time for Fire-worships and rites was of primary importance. The basic features of Rgvedic calendrical elements include Year (Samvatsara as seasonal based on movements of Sun and Moon), Half-years (Uttarāyana, Sun's movement towards north for 6 months starting with the Mahāvrata day at Winter solstice, or Daksināayana, Sun's movement towards south beginning with the Viṣuvrata day at Summer solstice), Yearly period (12 solar months of 30 days each, covering in 360 days or 720 day-nights), three rtus (grouping 4 months together connected to cāturmāsya festival), then raising it to 6 (rtus) each spreading for 2 months. Intercalary or Leap days (atirātra of 4,5 or 6 days were also added at the end of Samvatsara), which are recorded in the Rgveda. The Rgveda has also reference to a few nakṣatras, like Aśvayujau (R.V.I.3.1; III.58.1-9), Pūṣya (RV.I.42.1;VI.54.2), Aghā (or Maghā), Arjunī (or Phalgunī) ($R V . X .85 .13$), suggesting that the prominent naksatras were possibly known as

[^1]a part of the Zodiacal system during the time of Rgveda.

Aśvayujau is referred about fifty two times in the Rgveda, and there are large number of hymns in the Rgveda offered as prayers to Aśvayujau at dawn [R V.V.77.1-2; VII.67.2; VII.71.1 and so on; see also Abhayankar, 1993, pp.5-6; Bhatnagar, 2012, pp.59-62].

Heliacal rising: Rgveda refers to heliacal rising of Aśvayujau at the Winter solstice. Just to cite one example,
....,,,........ putraścarati daksiṇāyāh /
\bar{a} dyotanim vahati śubhraṣāmoṣasah stomo aśvināvajīgah /

RV.III.58.1
'(Aśvinayujau), the son of Dakșināyana, has entered into the Sun, then carries the white dazzled day-maker Sun with it, when the reciter of Aśvayujau are getting assembled before dawn'.

RV.III.58.1
It refers to Aśvayujau or Aśvinī nakṣatra ($\boldsymbol{\beta}$ Arietis) as the son of Daksininayana (South point or Winter solstice) and its heliacal rising with Sun at dawn, an important event for the reciter who had assembled for the observation. It is a special type of ritual connected to a year beginning at the Winter solstice. The ritual was to observe the Heliacal rising (the first sighting) of Aśvinī, when they emerge from behind the Sun on the eastern horizon just before Sunrise. The Aśvins then represented as the southernmost point (Winter solstice).

Yearning for non-visibility of Aśvinī: The Rgveda also records yearning by the worshippers for the event that Aśvinī (Aries) is no longer being seen at the Winter solstice in the early morning, or there was no heliacal rising? This also gives an indication that the Rgvedic tradition went on for a long period of time. A few quotes will be of interest:
kūṣṭho devāvaśvinādyā divo manāvasū/ tacchrrravatho vṛ̣̣aṇvas \bar{u} atrirvāma \bar{a} vivāsati //
$R V$. V. 74.1.
'Where in the heaven are ye today, Gods Aśvins, rich in consistency? Hear this, ye excellent bestowers; Atri invites you to come. Where are they now? Where are the twins, the fumed Nāsatyā, gods in heaven'.

RV. V.74.1.
kuha tyā kuha nu śrutā divi devā nāsatyā / kasmitrā yatatho jane ko vām nadīnām sacā //

RV.V.74.2
'The divine Nāsatya, where are they/ Where are they heard if in heaven/? To what worshipper do you come? Who may be associate of your praises?'

RV. V.74.2.
These are some of the passages which justifies that the Aśvayujau is no longer seen at the Winter solstice with the rise of the Sun. The Rgvedic people did not know what had happened and had no idea that it has moved up anticlockwise due to precession of the equinoxes.

Antiquity of the Rgvedic tradition: It is now known that the equinox has a backward motion (precession of the equinox) at the rate of 50.2 arcs per second per year (or 1 degree in 72 years) which results in slow increase of longitude of the stars with time. It was not known at the time. The Rgvedic people had no idea that the star has moved up due to the precession of the equinoxes and not visible because of Sunlight. That is why there was so much hue and cry. The longitude of Aśvinī (Aries) as on today is about 36°. By comparing the position of Aśvinī at the Winter solstice $\left(270^{\circ}\right)$ during Rgvedic time and present time, there is a longitude difference of $\left(90^{\circ}+36^{\circ}\right)$, i.e. 126°, the time difference being $126^{\circ} \times 72$ or roughly 9000 years from the present or about 7000 years before the beginning of Christian era. Presently, vast amount of high precision data on positions of stars and solar simulation elements have helped to develop Sky Simulation Software by different organizations (NASA, USA, VSOP87 of France and others). From the Planetarium Software (Planetarium Gold, version 2.2 and Stellarium
12.4), it is found that Sky Map matched very well with the time being 19 December 7000 BC at 0735 hrs.(Bhatnagar,A.K. 2012, p.63). Allowing a free eye observation error of 6° to 7° (about 500 years), the time of Rgveda may be taken at c. 6500 $B C^{5}$.

2.2. Yajurvedic Saṃhitā tradition

The Yajurvedic tradition gave a list of 28 and 27 nakșatras along with the deities assigned to them. The Maitrāyan̄̄ (II.13.20), and Atharvaveda Saṃhitās (XIX.7) have maintained the list as twenty eight (including Abhijit nakṣatras), the Taittirīya Sam.(IV.4.10), Kāthaka Sam.(XXXIX,13 (of the Yajurveda Saṃhitā tradition) and a few later Vedic texts including Vedānga Jyautisa (RVJ 15 ; YVJ 17) gave the list as twenty seven.This is perhaps that the Moon appeared to complete one round among the naksatras in more than twenty seven days (27.32 days). Later, the naksatras Abhijit was dropped reducing the number to 27 , because it was found that the period was more closer to 27 days. It was also found that it fits very well with zodiac of 12 rāsis in the zodiacal circumference of 360 degrees, each rāśi being $2 \frac{1}{4}$ nakssatras, and covering an ecliptic space of $13^{0} 20^{\prime}$.
Nakșatra names: The 27 nakṣatra names are listed with magnitudes as given in the Report of the Calendar Reform Committee (Saha and Lahiri, 1955) with yogatārā in bold. 1. Aśvinī (β, γ Arie.), 2. Bharaṇī (35,39,41 Arie.), 3. Kṛtikā (η Tauri),
4. Rohiṇī ($\boldsymbol{\alpha}, \theta, \delta, \varepsilon$ Tauri), 5 . Mrgaśiras ($\boldsymbol{\lambda}, \varphi_{1}, \varphi_{2}$ Orio.), 6. Ārdrā (α Orio.), 7. Punarvasū ($\alpha, \boldsymbol{\beta}$ Gemi.), 8. Puṣya ($v, \boldsymbol{\delta}, \gamma$ Canc.), 9. Āśleṣā ($\varepsilon, \delta, \sigma$, η, ζ, θ Hydr.), 10. Maghā ($\alpha, \eta, \gamma, \xi, \mu, \varepsilon$ Leon.), 11. Pūrvaphalgunī (δ, θ Leon.), 12. Uttaraphalgunī ($\boldsymbol{\beta}, 93$ Leon.), 13. Hastā ($\delta, \gamma, \varepsilon, \alpha, \beta$ Corv.), 14. Citrā (α Virg.), 15. Svātī (α Boot.), 16. Viśākhe ($1, \gamma, \beta, \alpha$ Libr.), 17. Anurādhā (δ, β, π Scorp.), 18. Jyeṣthā (α, σ, τ Scorp.), 19. Mūla ($\lambda, \nu, \kappa, ~ \imath$, θ, η, ξ, μ Scorp.), 20. Pūrvāsādā (δ, ε Sagitt.), 21. Uttarāṣādā (σ, ξ Sagitt.), 22. Śravaṇā (α, β, γ Aquil.), 23. Dhanisṭhā ($\beta, \alpha, \gamma, \delta$ Delphi.), 24. Śataviṣaj ($\boldsymbol{\lambda}$ Aquar.), 25. Pū.Bhadrapadā (α, β Pega.), 26. Utt.Bhadrapadā (γ Pega.), and 27. Revatī (ζ Pisci.).
Search for New Marker with Full-moon at a Naksatras in Opposition and Month names: Due to precession, Aśvinī has gone up and the nakṣatra Revati (ζ Pisci.) appeared near the Winter solstice but was not easily detected for its lower magnitude. This created problem and a search for a new time-marker possibly went on. The absence of a bright marker at the Winter solstice possibly gave an opportunity to spot the bright star Citra ($\boldsymbol{\alpha}$ Virginis) on the opposite side, and it is quite likely that the Full-moon at Citrā nakṣatra near the North point at the Summer solstice (Viṣuva) was taken as the possible marker for starting the year. This new marker with Full-moon in opposite star (opposition) and Sun in Winter solstice was made a reference point, very much needed for worship. The lunar month-names [Caitra,

[^2]Vaiśākha, Jyaiṣṭha, Āṣāda, Śrāvaṇa, Bhādra, Āśvina, Kārtika, Agrahāyanī (Mṛgaśira), Pauṣa, Māgha, and Phālguna,] in all probability were derived from the names of the prominent naksatras (asterisms) after its conjunction with Full-moon is completed with the Sun at Winter Solstice.

Why and how the lunar month names were restricted to only 12 is not clear? Possibly the magnitude or brightness of the main star in the naksatra might be the possible answer. The pūrnimānta (pūrnimā-anta meaning, Full-moon ending— first krṣ̣na-pakṣa followed by suklapaksala was known from the Yajurvedic Saṃhitā time. The amānta (amāvasya-anta, New-moon ending- first bright fortnight- sukla-pakṣa followed by dark fortnight, krṣna-paksa) based on lunar phases was later known from the Brāhmaṇic time, possibly for different reason, to be discussed later.

Caitra month from Winter solstice: Following the Yayurveda Saṃhitā tradition, the counting of Caitra month after the Full-moon in the Citrā naksatras in opposition and Sun at or near the Winter solstice in the circular zodiac came into practice. The Caitrādi month-scheme came into vogue and became popular, both as a marker and year-beginning in the Yajurvedic time. The following passage of the Taittirīya Saṃhitā

Fig. 1. Schematic diagram showing the time of Yajurveda Samhitā (the outer circle represents naksatras and the inner circle lunar months moving in anticlockwise direction showing Full-moon at Citrā and the beginning of Caitra month at Winter solstice). SS, WS denote summer and winter solstices; VE \& AE; vernal \& autumnal equinoxes.
indicates how the counting of Caitra-month started at the Winter solstice after the Full-moon at Citrā naksatra (see Table 1 \& Fig. 1).
tasva ekaiva niryā yat sāmmedhye viṣuvāntasampadyate citrāpūrṇamāse dīkseran mukham vā etat samvatsarasya

Table 1: Lunar months, Naksatras in opposition, and Seasons during Vedic time (rough correspondence)

Lunar/ Seasonal months (Pūrṛimānta system)	Nakṣatras in opposition	Seasons (Rtus)
Caitra / Madhu	Citrā ($13^{\circ} 20^{\prime}$), Svātī ($13^{\circ} 20^{\prime}$), Viśākhe ($3^{\circ} 20^{\prime}$)	
Vaiśākha / Mādhava	Viśākhe (10°), Anurādhā ($13^{\circ} 20^{\prime}$), Jyessmhā ($6^{\circ} 40^{\prime}$)	Spring (Vasanta)
Jaisṭha /Śukra	Jyesț̣ā ($6^{\circ} 40^{\prime}$), Mūlā ($13^{\circ} 20^{\prime}$), P. Āṣādā (10°)	
Āṣāda / Śucī	P. Āṣādā ($3^{\circ} 20^{\prime}$), U. Āṣādā ($13^{\circ} 20^{\prime}$), Śravaṇā (13 ${ }^{\circ} 20^{\prime}$)	Summer (Grīsma)
Śrāvaṇa / Nabha	Dhaniṣ ($13^{\circ} 20^{\prime}$), Śatabhiṣ ($13^{\circ} 20^{\prime}$), P. Bhādra ($3^{\circ} 20^{\prime}$)	
Bhādra / Nabhasya	P. Bhadra (10°), U. Bhadra ($13^{\circ} 20^{\prime}$), Revati ($6^{\circ} 40^{\prime}$)	Rains (Varsā)
Āśvina / İṣa	Revati ($6^{\circ} 40^{\prime}$), Aśvinī ($13^{\circ} 20^{\prime}$), Bharaṇī (10°)	
Kārttika /Ürja	Bharaṇī ($3^{\circ} 20^{\prime}$), Kṛttikā ($13^{\circ} 20^{\prime}$), Rohiṇī ($13^{\circ} 20^{\prime}$)	Autumn (Śarat)
Mārgaśira (Agrahāya)/Saha	Mrgaśīra ($13^{\circ} 20^{\prime}$), Ārdrā ($13^{\circ} 20^{\prime}$), Punarv ($3^{\circ} 20^{\prime}$)	
Pauṣa / Sahasya	Punarv (10°), Puṣya ($13^{\circ} 20^{\prime}$), Āśleṣā ($6^{\circ} 40^{\prime}$)	Dewy (Hemanta)
Māgha / Tapas	Āśleṣā ($6^{\circ} 40^{\prime}$), Maghā ($13^{\circ} 20^{\prime}$), P.Phalg (10°)	
Phālguṇa /Tapasya	P. Phalg ($3^{\circ} 20^{\prime}$), U. Phalg ($13^{\circ} 20^{\prime}$), Hastā ($13^{\circ} 20^{\prime}$)	Winter (Śiśira)

yaccitrāpūrṇamāso mukhat eva samvatsarasya dīksante tasya na kā can niryā bhavati caturahe purastāt paurnamāsai dīkseran.'

Tait.S.VII.4.8.2
'There is only one restriction that when Citra Full-moon is seen at the Visuvan (Summer solstice) it is the mouth of the year (Samvatsara). They should consecrate themselves on the Full-moon month of Caitra, the Full-moon at Citra is the beginning of the Year, verily they consecrate themselves grasping the year at the beginning with no restrictions; they should consecrate themselves from the four days onwards before the Full-moon'. Tait. S.VII.4.8.2.

This testifies that the Yajurveda Samhit \bar{a} tradition followed the P $\bar{u} r n i m a \bar{n} t a$ system and the New year starts with month of Caitra at Winter solstice with the rising of the Sun. The schematic diagram also shows that Aśvinī nakṣatra has moved away and phase of Revati has started. It happened when there is a precision of at least 14^{0} (1000 years) from the time of Rgveda (c. 7000 BC). During Yajurveda (Taittirīya Saṃhitā) time, the system of calendar for the worship appears to have used Citra naksatra (α Virginis) in Full-moon opposite to the Sun with month of Caitrā beginning at the Winter solstice as reference point. The date is verified to be 19 December $\mathbf{6 0 0 0}$ BC on the basis of Sky Map (Bhatnagar, 2012, p.65).Allowing an observation error, the date of Yajurveda Saṃhitā time may be at c. 5500 BC.

2.3. Brāhmaṇa and Harappan Features and Times

During the Brāhmanic period, the month as well as nakșatras get shifted in anti-clockwise direction and raised further due to precession, and a New-moon takes place at the Winter solstice, and the year-beginning started with the New-moon at the Winter solstice during this phase. This possibly is the beginning of both Full-moon and New-moon reckoning of New Year among different groups of people.

Māgha Month New-moon at the Winter solstice: By the time of Brāhmaṇa, the New moon of Māgha (the Sun and Moon are together with Maghā naksatras in the opposite side) was taken as the Year-beginning when the northward journey of the Sun began from the Winter solstice (See Fig. 2).
sa vai māghasya amāvasyāyām upavasatya udanna āvartyasyan upa ime vasanti prāyaṇīyena atirātreṇa.

Kauṣ. Br. XIX. 3
'On the New-moon of Māgha he (Sun) rests, being about to turn northwards; these also rest,being about to sacrifice with the introductory atirātra...."

Kauṣ Br..XIX.3; tr Keith 1920.
This indicates that the year beginning at Winter solstice started with the New- moon instead of Full-moon at Maghā ($\boldsymbol{\alpha}$ Leon.). It was possible because of the precession (anti-clockwise movement of the zodiac nakṣatras not known at the time). However, the lunar month reckoning after Full-moon in a naksatras with the Sun in opposition, as in the Saṃhita period, is still continued. New-moon and Full-moon were just reference points. It may be noted that the Newmoon in a month always takes place 15 days before or after the Full-moon. A few quotes from Brāhmaṇa texts justifying the New-moon counting and corroborating other information will be of interest.

Śat. Br.XI1.1.1.7
'He may lay down the fires on the Newmoon which falls in the (month) Vaiśākha, for that coincides with Rohiṇī (asterism)......, indeed, the new- moon is the form of the agnyādheya, let him therefore lay down the fires at New-moon, let him perform the preliminary ceremony
at Full-moon and the initiation ceremony at New-moon'.

Śat. Br.XI.1.1.7; tr Eggeling 1882. etā ha vai prācyai diśo na cyavante / sarvāṇi ha vā'anyani nakṣatrāṇi prācyai diśaścavante tatprācyāmevāsyaitad diśyāhitau bhavatastasmātkrttikā svādadhīta //

Śat.Br.II.1.2.3.
'And again, he (Krttikā) does not move away from eastern quarter, whilst the other asterisms do move from eastern quarter; thus his (two fires) are established in the eastern quarter; for this reason, the fires are set up under the Krttikā’.

Śat Br. II.1.2.3
krttikā prathamam viśākhe uttamam/ tāni devanakṣatrāni / anurādhā prathamam apabharaṇīruttamam /tāni yamanakṣatrāṇi / yāni devanakṣatrāṇi tāni dakșiṇena pariyanti/ yāni yamanakṣatrāṇi tānyuttareṇa /

Tait. Br.I.5.2.
'Kṛttikā are the first and Viśākhe is the last, these are Devanakṣatras; Anurādhā is the first and Apabharani the last, these are Yamanakṣatras. The Devanaksatrass turn from South (to North) and Yama from North (to South)'.

> Tait. Br.I.5.2.

The Māgha New-moon (middle of the Mägha month) at Winter solstice was the reference point when its longitude was roughly 270 degrees. The Māgha Full-moon at Maghā naksatra (α Leon.) in opposition was still the indicator of the end of Mägha month and the beginning of Falguna month. The schematic representation as described fixes the longitude of the Kārttika New-moon (middle of kārtika month) to roughly asigning 0 degree (seen rising exactly in the East). This corroborates the statements that Kṛttikā never deviates from the east, or Krttikā is the first and Viśākhe is the last (14th in opposition).These are features of the Brāhmanic period (Fig. 2). Does it

Fig. 2. Schematic diagram showing the antiquity of the Brāhmaṇa period (outer circle represents naksatras and the inner circle lunar months as usual moving in anticlockwise direction with Māgha New-moon at Winter solstice).
refer to a new system when Kṛttikādi scheme at the vernal equinox is slowly opening up ?
Antiquity of the Brāhmaṇic tradition: Jacobi (1894) and Tilak (1893) have tried to ascertain the date of the Vedas (Brāhmaṇas) on the basis of statements like,' they (Kب̣ttikās) do not move away from eastern quarter..., seven Ṛ̦̦is (Saptarṣi) rise in the north, and they (Krttikās) rise in the east'. This statement was a made in connection with the establishment of ritual fires on the first occasion by a house holder in the section of Agnādhāna. The new house-holder should establish the traditional Gārhapatya and Ahavanīya fires on the day of Kṛttikā, for the presiding deity of Kṛttikā is Agni, and house-holder's fire established in the east brings plenty. Tilak ${ }^{6}$ even gave emphasis in the Krttikā Period on the basis of constellation. Dikshit (1895) was perhaps the first one who

[^3]strongly believed that Krttikās’ rising in the east has a close connection with the date of the Śatapatha Brāhmaṇa. Although this issue has been discussed by many others, it would worthwhile to quote once again Dikshit's actual arguments. Thus, according to S.B.Dikshit (1896, Eng tr 1969, pp.128-29):

> 'The statement about Kṛttikās rising in the east is made in the present tense and they cannot always do so because of the precessional motion of equinoxes. In our time we find them rising to the north of east and they used to rise to its south in 3100 BS (before Śaka). From this it can be inferred that the corresponding portion in Śatapatha Brāhmana was written about 3100 years before the Śaka era.'

Dikshit roughly places the time of Śatapatha Brāhmaṇa on the basis of Kṛttikādi system to about $3000 \mathrm{BC}^{7}$. Weber believed that the time of Krttikā being the first naksatras comes to somewhere between 2780 to 1820 BC. Sengupta (1937, reprint ed,1986, p. 56) suggested that the Vernal equinox near Rohiṇī (α Tauri) and Summer solstice at Pūrva Phalgunī ($\boldsymbol{\delta}$ Leonis) indicate a period close to c. 3000 BC . He further added that the Vernal equinox at Kṛttikā ($\boldsymbol{\eta}$ Tauri) and Summer solstice at Maghā ($\boldsymbol{\alpha}$ Leonis) occurred around 2350 BC. Filliozat (1969, p.125) adduced evidence from the Buddhist texts, in spite of systematic doubts by Thibaut and Whitney, and suggested that these Buddhist references are reminiscent of the ancient era when Krttikā was really on due east. Chakravarty (1987, pp.23-28) accepted the time of Dikshit's argument to 3000 BC. The major counter objection came from Pingree (1989,p.441) who says, "parts of the nakṣatras: Hastā, Viśākhe and perhaps Śravaṇā were also on the equator in 3000 BC and this fact would thereby contradict the claim in the Śatapatha Brāhmaṇa that only Kṛttikās never
swerve from the east add no significance, as attributed by Dikshit". Narahari Achar (2000, pp. $4-9$) has examined Pingree's theory with actual view of the Vedic sky generated by using the software Sky Map version 2.2 corresponding to the latitude of Delhi and concluded that Dikshit's conclusions of 3000 BC were correct. Prasanna (2011, pp.586-89) had however emphasized on the basis of Kausi. Br. (XIX.3) and Śatapatha Brāhmaṇa (XI.1.1.7) that Rohiṇi (α Tauri) marked the Vernal equinox (00) with reference to Mahāvrata (Winter solstice) and Viṣuvrat (Summer solstice) day leading to 3000 BC . It is quite likely that Cāturmāsya and other seasonal festivals were still taking place at Full-moon and the initiation ceremony at New-moon. Allowing an observation error, the antiquity of the Brāhmanic time may be taken as c. 2500 BC.

Harappan Tradition and Antiquity: Four carbon dates of Mohenjo-daro sites are available which are in the range of 2155 BC with plus minus165 BC. The radio-carbon dates available from other cites of Indus valley also testifies to the same period.

That this civilization belong to Brāhmaṇic phase is corroborated by a Mohenjo-daro Seal (M.2430) found in the D.K. area. It records a Fullmoon month counting system in opposition. The Seal is known as 'Seven Sisters Seal' representing Kṛttikā standing at the middle along with his other six sisters at the eastern side of the Seal, and its western side shows 'Krttikā in conjunction with Viśākhe nakșatras'(identified with two branches of a tree).The central place of the Seal shows a festival in progress introducing the month of Agrahāyanī or Mrgaśīrṣa (the shape is 'head of a deer with long horns'or month of Agrahāyanī (two months are synonymous as per Pāninī's Asț $\bar{d} d h y \bar{a} y \bar{l})$ at the end of the Full-moon night. The

[^4]

Fig. 3. Mohenjo-daro seal (M.2430) showing the introduction of Mrgaśīrṣa (Agrahāyanī lunar month) after the Full-moon ending.
seal justifies the fact that the pūrnimānta scheme was still current in north-western and some parts of Rajasthan when Kṛttikā and Viśākhā are in opposition (Kritika month end), and the month of Agrahāyana (or Mrgaśīraṣ) is introduced after the Full moon (Bag, 1985, pp.102-104) (Fig. 3).

This is further strengthened by the fact that both Brāhmanic and Indus valley culture used the burnt bricks for various purposes and belong to the same period. The Śatapatha mythologies about the drying up of of Saraswati river in the story of Videha Mādhava and his priest Gotama Rāhugaṇa (Śat. Br.I.4.1.10-15) would place the text in an age somewhat after the actual drying up of Saraswati around 1900 BC. The hydrological evidence that the Saraswati changed its course is quite suggestive that the myth was correct. A clear reference to the origin of Saraswati in the mountains and that 'it was 40 days journey on horseback from mountains to the place where it is lost in the desert (Pañc. Br. XXV.10.16).

The pūrnimānta scheme is still current in north India. There is also a difference of opinion among the scholars whether amānta or pūrnimānta system was followed in the Brähmanic period. The Fire-altars were also raised both at the New- moon and Full-moon. There is no doubt that lunar-month
names follows from the star names in opposition both in the Saṃhitā and the Brāhmaṇic periods, irrespective of whether it followed pūrnimānta or amānta system as a New Year-begining. The amānta scheme is still found practiced in South India (Andhra Pradesh, Karnataka and Maharashtra).
Mahāvedi, Solar and Civil Year: The Mahāvedi was possibly the main observation altar, having an area larger than any other type of altars. Towards its west side, another altar was, known as Prācīnavaṃśa altar (for homage to old family members) was constructed containing the Dārśikyāpaurṇamāsikī-vedi (Full-moon and Newmoon observation altar). The Mahāvedi had the shape of an isosceles trapezium, and the Taittirīya Saṃhitā says,
> triṃśat padāni paścāt tiraścī, bhavati ṣattrimśat prācī, caturviṃ́ati pūrastāt, tiraści daśa daśa sampadyate/ Tait. S. VI.2.4.5
' 30 padas is the western side (of the Mahāvedi) which is drawn perpendicular (to the prāc $\bar{\imath}$), 36 (padas) is the präc $\bar{\imath}$ (east-west measure), 24 (padas) is the eastern side, the perpendicular line (tiraśc \bar{l}) is accomplished by ten and ten measure (of units)'.

Tait. S. VI.2.4.5.
The measures of Mahāvedi : east 30, west 24, $\operatorname{prā} c \bar{\imath}$ (perpendicular distance) 36 were found in padas, as well as prakramas (1 prakrama $=2$ padas) in different Saṃhitās (Mait.S.III.8.4; Kāṭh.S.XXV.3; Kapi.S.III.8.6). The same measures in prakramas are also given in Śatapatha Brāhmaṇa (Śat.Br.III.5.1.2-6). and in the Śulbasūtras (Bśl.4.3; āśl.5.1-5.7). On the Mahāvedi are found six perpetual fires (Sadafires), two other fires (Āgnidhra and Mārjālīya), one Havirdhāna (for extracting the juice from Soma plant, a great intoxicant,and for its use as havis, as well as drinks), besides small places to collect rubbish (Fig.4). The lay out of Mahāvedi is given in many texts (Bag 1983b, p. 171).

Fig. 4. Lay-out of Mahāvedi; S - Saḍas or Saḍahas having six fire- hearths, M-Mahāvrata Day, V-Viṣuvat day, H Havirdhāna for extracting juice of Soma plant, Āg \& M$\bar{A} g n i d h r a ~ \& ~ M a ̄ r j a ̄ l ı ̄ y a ~ h e a r t h s, ~ U-U t t a r a ~ v e d i) ; ~ a n d ~ o f ~$ Prācīnavamśa (G-Gārhapatya, $\overline{\mathrm{A}}-\bar{a} h a v a n i ̄ y a, ~ D-$ Daksināgni and Dr- Dārśikyāpaurṇamāsikī vedi); Area of Mahāvedi: 972 sq padas (or 2,18,700 sq añg,); Area of Prācīnavaṃśa: 192 sq prakramas (5760 sq ang) or 120 prakramas (3600 sq añg)

There is no doubt that It was a place of perpetual fires and its main focus was to maintain oblations in Saḍa-fires and Havirdhāna which supplies continuous havis obtained from the extracts of soma plants for the fire! The S Sada-fires were the perpetual-fires of Mahāvedi, used perhaps to count the apparent annual motion of the Sun from south to north (6 months, i.e., from Mahāvrata day, the Winter solstice to Viṣuvata day, the Summer-solstice), again from north to south (six months, i.e., from Viṣuvrata to Mahāvrata day) making a complete year cycle. It is quite likely that the name of Mahāvedi is someway related to daily rotation of the Sun from East to West and its annual displacement or declination from North to South.

It is quite likely that Mahāvedi got its name from the Mahāvrata day sacrifice. The six circular Ṣada-agnis or S Saḍa-fires, managed by special priests, are nothing but Sad-aha- (six-day and six-
night) fires starting on Mahāvrata day sacrifice (starting at Winter solstice) continued for a month (30 days) in each fire, and then proceeding towards north reached Viṣuvat day (Summer solstice) after completing worships in six months. The southward journey from Viṣuvata day to Mahāvrata day is completed by the priests after worships of six-Sadfire in another six months. While completing the sacrifices in twelve (12) months (of 360 solar sidereal days),one month each for northern and southern journey,using them as perpetual fires. An intercalation of 6 days (atirātra), two (2) days before \& 3 days after Mahāvrata day, one (1) day on Viṣvat day were also observed, suggesting how the attempts were made to make a compromise between Solar year (of 360 days) and Civil or Seasonal year (of 366 days). In this context, Eggeling's summary of fire ceremonies, as given in the Śatapatha Brāhmaṇa, will be of interest. The Circular design of these Saḍ-agnis may also be the indicator of this annual cycle. The Taittirīya Saṃhitā says,

> 'Those, who knowing thus perform (the rite) of six nights, mount evidently upon the gods. (The right) is of six nights, the seasons are six, the Prrstthās (or Prā $\bar{l} \bar{s}$) are six, verily by the Prssthās they mount the seasons, by the seasons the year, verily in the year they find support'.
> Tait. S.VII.2.1.1-2, Keith's tr

Attempt to intercalation of extra days is also clear in the Vedic literature (see also Vedāniga Yājuṣa- Jyotiṣa, 28). It appears that oblations to fires on Mahāvedi went on without any break, and the ceremony was performed on a suitable ground to the locality. It appears that the purpose of Mahāvedi was to keep observational data of both Solar and Civil years to keep on regular agreement. The Mahāvedi has another adjoining altar known as Prācīnavaṃśa, considered a part of the Mahāvedi, to observe lunar phases on a regular basis side by side with those of the solar and seasonal or civil changes, and to advise the community with suitable measures.

Prācīnavaṃśa, Dārśikyāpaurṇamāsikī-vedi, Lunar Phases, Lunar Months and Years: The Prācīnavaṃśa or Prāgvaṃśa (Rectangular altar of area: 16×12 or 12×10 in prakramas) is constructed traditionally towards the west side of the Mahāvedi, containing three Primary altars (Gāhapatya, Āhavanīya and Dakșiṇāvedi), and the Dārśikyāpaurṇamāsikī-vedi (New- \& Full-moon Observation Altar) in between the primary altars . The construction of Dārśikyā-paurṇamāsikī-vedi in the shape of an isosceles trapezium (face 48 aṅg., base 64 añg., and 96 ang. with curved sides) is not clearly defined, nor definitely understood, even though it was considered an extremely important service for the community. The huge arrangements along with that of Mahāvedi were undoubtedly arranged by kings, rich community leaders.

What is it that the Prācīnavaṃ́́a (altars for hereditary rites), Dārśikyāpaurṇamāsikī-vedi (new- \& full-moon observation altar), and Primary vedis (altars for health and happiness to the family) are placed together? Is it the part of the routine perpetual worships/activities, as it is done in the present day temple! Eggeling, who has translated Śatapatha Brāhmaṇa, has given sufficient hint that it is for special purposes like observation of lunar phases which used to cater the ritual, seasonal and civil activities and for observing other lunar phenomenon. Taking Eggeling's hypothesis as a correct indication, it may be said that the purpose of Dārśiky \bar{a}-paurṇamāsikī-vedi was to observe lunar phases leading to lunar months and years passing through various phases of moon (or tithis) on a regular basis. It appears that the lunar phases were actually counted, and the purpose of constructing the New and Full-moon sacrifice (Dārśikyāpaurṇmāsik̄̄- vedi) along with Prācīnavaṃśa-vedi was not only to count lunar months and years through New-moon and Fullmoon, lunar phases (tithi) and rituals to be performed traditionally for peace, happiness, and atonement of sins. The Śatapatha Brāhmaṇa says,
sa ājiş̣mekah ya evam vidvām trimśatam varṣāṇi yajate tasmādu trimśatmeva varṣāni yajeta/ yaddu dākșāyaṇayajñ̄̄ syādatho api pañsadaśaiva varṣāni yajetātra hyeva sā sampatsampadyate dve hi paurṇmāsau yajate dve amā$v a ̄ s y e ~ a t r o ~$ eva khalu sā sampadvabhati/

Śat. Br.XI.1.2.13.
'He who, knowing this, offers (New and Full-moon sacrifices) for thirty years, becomes one of the race-runners, whence one ought to offer sacrifice for not less than thirty years. But if he is a performer of the Dāksāyana sacrifice, he needs only to offer for fifteen years, for therein that perfection is brought about, since he performs (every month) two Full-moon and two New-moon offerings, and thus that perfection is indeed brought about therein'.

Śat. Br.XI.1.2.13, Keith’s tr.
In this context it is important to note that two types of experts for Dakṣāyana (when Sun moves towards south, i.e. from Summer solstice to Winter solstice) and Uttarāyana sacrifices (when Sun moves towards north, i.e. Winter solstice to Summer solstice) for a period of 6 months each were known. The sacrifices went on continuously for more than 30 years.

2.4. Vedāñga-jautiṣa Tradition

The Vedāniga-jautiṣa of Lagadha and Śulbasūtras of Baudhāyana and Āpastamba are placed in the same phase in the time scale, both traditions occupying the position before Pāṇini.

Time: The time of Vedā̃iga Jyautisa (hereafter $V J$) tradition is known for heliacal rising of Śraviṣ̣hā nakṣatra at the Winter solstice. The details are as follows:

> prapadyete śraviṣ̣̣hādau sūryā candramāsāy udak/
> sārpārdhe daksin̄ārkas tu māgha śrāvanayoḥ sadāh //
> VJ. 19.2.
'When situated at the beginning of the Śraviṣṭhā segment, the Sun and Moon
begin to move north. When they reach the midpoint of Aśleṣā segment, they begin moving south. In case of Sun this happens always in the month of Māgha and Śrāvaṇa respectively'.

This indicates that there is at least a difference of one naksatra space (i.e. 13 degree 20 minuts) or about 1000 years from the Brāhmaṇa time because of the precession of equinoxes. Varāhamihira, both in his Pañcasiddhāntikā and Brhatsamhitā, also noted Winter solstice at three-fourth Uttarāṣādā and Summer solstice at three-fourth Punarvasu having a difference of $13 / 4$ naksatra spaces (23 degree 20 minutes) due to precession which fixes Vedānga Jautisa time about 1680 years earlier from Varāhamihira's time (c. 539 AD). These facts suggest the time of Vedā $\dot{n} g a$ Jyotiṣa between 1400 and 1200 BC (Kuppanna Sastri,1985, p.13). Sengupta confirmed Lagadha's time at about 1370 BC. corroborating more or less the same time for Vedāniga Jyautiṣa. Other scholars (Kak, 1993, p.19.) has, however, referred to same date for Vedāniga Jyautisa and Srauta periods as 1400 BC. Allowing the free eye observation error of 500 hundred years, the time of Vedānga Jyautisa be fixed up to 1000 BC. The same date may be more or less assigned for Śrauta and Śulbasūtras.

3. Yuga \& Types of Years \& other Units

The Vedic Samhitās and Brāhmaṇas tried to make compromises with 5, 6 and 7 years' cycle (yuga). The names of 5-year cycle-Samvatsara, Parivatsara, Idāvatsara, Anuvatsara, and Udvatsara (Vāj S.XXVII.25; Tait S.V.5.7.3-4) are known. The reference to 6-year cycle (Tait Br.III.10.4) i.e. $6 \times 360+$ intercalation of 5 days every year or $30=2190$ days, modern value $6 x 365.24=2191$ days); 7-year cycle in the Śatapatha Brāhmaṇa (IX.1.1.43,IX.3.3.18; see also X4.3.8, X.4.3.19, X.5.4.5) with intercalation of 35 or 36 days $(7 x 360+35=2555$ days, or $7 \times 360+36=2556$ days, the modern value being7x365.24 = 2556.68 days) are also evident
for their synchronizing attempt with tropical or civil year.

The traditions of Rgveda and the other Vedas are very old which recognized also four types of years viz, Solar year (of 360 days or 12 x 30 days), Seasonal/Ritual Civil year (365 / 366 days, or $12 \times 30+5$ or 6 days intercalation), Sidereal Lunar year (324 days or 27 x 12 days,12 days being the successive passages of the Moon between two naksatras, and 351 days or 27 x 13 days), and Synodic Lunar year (Lunation of 354 days or $6 \times 29+6 \times 30$, average being 12x 29.5 days).The Lātyāyana school of Sāmaveda (Nidānasūtra,V.11-12) recognized all these years. The Śatapatha Br (XII.3.2.5) also recognized,

1 year $=360$ days, 1 day $=30$ muhūrtas, 1 muhūrta $=15$ ksipras, 1 ksipra=15 etarhis, 1 etarhi $=15$ idānis, 1 idāni = 15 prānas.

The Vedāniga Jyotiṣa also recognized 5 year cycle and worked out the detailed calendar which became quite popular for several centuries. It also made an impact on Tibetan and Nepalese calendar and translated into Chinese. The relevant verses of $V J$ runs thus,

```
triśatyahnām saṣaț̣aṣtir abdah ṣaṭ ca
rtavo'yane /
māsā dvādaśa sūryāh syuḥ etat pañcaguṇam yugam //
```

VJ.11.1
'one solar year (abda) has 366 ahanas, 6 rtus, 2 ayanas (northward and southward course of the Sun), 12 solar months; 5 years make a yuga'.
Or, in other words, $V J$ has maintained the subdivisions of Year (Samvatsara) and Yuga cycle as follows:

```
1 Year = 2 ayanas
    \(=6\) rtus
    \(=12\) solar months
    \(=366\) civil (sāvana ) days \(=372\) tithis.
1 Yuga = 5 years
```

The VJ (15.1) further says, sāvanenduḥtṛmāsānām sasṭih saikadvisaptikā /
dyutrimśat sāvanāsyārdhah sūryah stṛ̣ām sa paryayaḥ //

VJ.15.3
'There are 60 plus one, two and seven sāvana (61) months, lunar (62) months and sidereal (67) months respectively in a yuga; the solar sidereal cycle has 30 days in a month, $30 ½$ sāvana days.

VJ.15.3
Or, in other words,

$$
\begin{aligned}
1 \text { Yuga }(5 \text { yrs })= & 60 \text { solar months } \\
= & 61 \text { sāvana months }=1830 \\
& \text { sāvana days (civil days }) \\
= & 62 \text { synodic (lunar) months }= \\
& 124 \text { parvas }=1860 \text { tithis } \\
= & 67 \text { sidereal months }=1835 \\
& \text { sidereal days. } \\
= & (5 \times 27) \text { nakșatras } \\
& (1 \text { nakṣatras }=124 \text { bhāṃśas }) .
\end{aligned}
$$

Actually 62 synodic months $=62 \times 29.53=1830$ days;
67 sidereal months $=67 \times 27.32=1830$ days.
Therefore, one yuga was taken as 5×366 days $=$ 1830 civil days.

Babylonian and Egyptian year was of 365 days. Pingree's conjecture that Vedāniga year is similar, is not correct, for there would have created confusions if it had 5x365= 1825 civil days which will make 5 days error in the determination of New and Full moon days. There was no doubt that one yuga of 1830 civil days of $V J$ was based on strong foundation.

Units: The Units as defined with their significance in VJ may be summarized thus:
Solar month (saura- māsa): It is defined here as one-twelfth of a year and is equivalent to 30 days;

Civil days (Sāvana dina): Civil or natural day is from sunrise to sunrise; in a year there are two ayanas (northward or southward), each having 183 days, total being 366 days; for the whole course, the increase or decrease is $183 \times 4 / 61$ nādik $\bar{a} s=12$ nādikās or 6 muhūrtas (VJ.7.1 \& 17.1); 1 sāvana day= 30 muhūrtas (including day and night); day length at equinoxes = 15 muhūrtas,; shortest day at Winter solstice $=12$ muhūrtas; longest day at Summer solstice $=18$ muhūrtas .
Sāvana month: Equivalent to 30 sāvana days.

Synodic month (cāndramāsa) and lunar phases:

One yuga has 62 synodic months or 1860 tithis; in other words, 1 synodic month = 30 tithis (see above). There were 30 phases or tithis in a synodic or lunar month; 15 following Full moon ($p \bar{u} r \underline{n i m} \bar{a}$), presently indicated by K1, K2, K3,.....K15 (Krṣna-pakṣa, dark fortnight), and 15 following New moon (Āmavasyā) indicated by S1,S2,S3....S15 (Śukla pakṣa, bright fortnight).

Lunar day (Tithi): Defined as one-thirtieth of a synodic month(about 29.53 days long); further 10 ayanas cover 62 synodic months, each ayana 6 synodic months (or 12 half months) and 6 tithis; the rule ($V J$ 21.1-3) says that n th equinox in a yuga falls on $6(2 n-1)$ half synodic months and 6(2n-1)/2 tithis.
Intercalary (Adhika) months: There are 62 synodic months, hence it is clear that there are two intercalary months in a yuga of 5 years; i.e after 30 months, an extra (adhika) month is added to complete the half- yuga.

Half synodic month (Paksas or Parvas): Each synodic month has 2 paksas or parvas; in one yuga of 5 years (or in 62 synodic months), one yuga has $62 \times 2=124$ pakșas or parvas (syzygies); each paksa or parva having 15 tithis; each day is divided into 124 parts, which again divided into 4 bhāga or pāda, each pāda being 31 parts.

The verse (VJ.25.1) gives a rule for calculating parvas (or parva-rāsis), which says
that parva rāśi $=[(\mathrm{n}-1) \times 12+\mathrm{m}] 2+1+$ extra 2 (for every 60 parva gone), where $\mathrm{n}=\mathrm{no}$. of years of the yuga referred, and $m=n o$. of months. An example for calculating parva-rāśi before the point of time of starting Anuvatsara Kārttika Bahula Navamī, i.e. when $\mathrm{n}=$ anuvatsara being the $4^{\text {th }}$ year of the yuga=4, $m=$ months $=9$, so parvarāśi $=[(4-1) \times 12+9] \times 2+1+2=93$ (Sastri,1985, p.52).

Kṣaya- or hīna-parvas: A yuga had 1830 (= 61 x 30) days and $1860(=62 \times 30)$ tithis in VJ. Normally, 30 tithis were dropped as ksaya-tithis., and the droping of one tithi in every 61 tithis in a yuga is the answer. However, VJ.23.1 has hinted that a parva-tithi (pūrnima or $a m \bar{a} v a s y \bar{a}$) is to be dropped if it lasts for less than one pāda (31 parts) of a day. Evidently, amāvasyās at the end of 14 even-parvas $(4,8,12,16,20,24,28$, \& 64, $66,70,74,78,82,86)$, and purnimās at the of 16 oddparvas (33,37,41,45,49,53,57,61 \& $95,99,103,107,111,115,119$ and 123), total being 30 , are to be dropped. Various corrections have been offered by different scholars which have led to 15-, 19-, 30-, 95- years yuga cycles.

Season (Rtu): Six ṛtus or seasons in a year are recognized; consecutive r tus occur at an interval of 2 synodic months and 2 tithis, covering 30 rtus in 62 synodic months in a yuga. Each rẹtu covers $\frac{27}{6}$ or $4 \frac{1}{2}$ naksatras, or in other words, the Sun or Moon, moving through $4 \frac{1}{2}$ segments, is related to a r tu (VJ.10.1). In a 5-year yuga, there are 30 rtus and 62 synodic months; $1^{\text {st }} r$ rtu in a yuga is Śiśira and the first r tu-month is Tapas (Tait.S.IV.4.11.1; Väj.S.XIII.25; VJ.10.1), Tapas and Tapasya being the month of Sísira; the consecutive retus occur at an interval of 2 synodic months and 2 tithis; obviously, it says that the $8^{\text {th }} r$ tu falls on $15^{\text {th }}$ tithi which is pūrnima \bar{a} (VJ.22.1).
Naksatra: Number of nakṣatras is 27; each naksatras also conceived as a space of $1 / 27$ th of the stellar zodiac (or ecliptic) or 360° (or an arc
space of $13^{\circ} 20^{\prime}$); the rule (VJ.15.4) however says that the sidereal rising is 1830 and lunar cycles being 67 in a yuga, Moon covers one naksatras space arc in $\frac{1830}{67 \times 27}=\left(1+\frac{7}{603}\right)$ days, and Sun the naksatras space in $\frac{366}{27}=13 \frac{5}{9}$ days; the ecliptic division of 12 rāśis of 30° each.were not known, however, the word 'rāśi' was used in $V J$ (VJ.25.1) in the context of lunar phase but not in connection to ecliptic division.
Bhāp̣śa or Aṃśas: The nakṣatra or asterismal segment is divided into 124 parts, and each part is known as one bhāṃ́a or aṃśa (RVJ18;YVJ.39),or in otherwords, one bhā$\underset{m s ́ a ~(o r ~ a m ̣ s ́ a) ~}{\text { a }}=124^{\text {th }}$ segment of naksatras, or an (hour) angle of naksatra; it is used for calculation of New moon and Full moon in connection to Jāvādi nakṣatras. However, the verse (VJ.27.1) gives a rule to calculate the bhāmśa of Sun and Moon of each naksatras and at the end of a particular parva.

Lunation :One yuga cycle has 62 lunar months (lunations) and 67 sidereal months; 1 lunation = $\frac{67}{62}=\left(1+\frac{5}{62}\right)$ sidereal months .

At New moon, the Moon is with the Sun and the bhāmśas are the same. At Full moon, the Moon is opposite to the Sun i.e. $131 / 2$ naksatras away or 13 nakssatras and 62 bhāṃ́as away. The parva ends with a Full moon, and the sūtra says that the Moon's bhāmśa is found by adding 62.

The Sun, in each yuga of 5 solar years, passes through $27 \times 5=135$ naksatra-segments in 62 synodic months or 124 parvas, so each parva passes through $\frac{135}{124}=1+\frac{11}{124}$ naksatras-segments, i.e at the end of 1 parva, the Sun's bhāmśas is 11, then the Moon's bhāṃśas will be $(11+62)=73$. Obviously, at the end of 93 parvas, Sun passes through $93\left(1+\frac{11}{124}\right)$ or $\left(20+\frac{31}{124}\right)$, i.e. Sun’s bhāṃ́sas with respect to (wrt) naksatras Śraviṣthā $=31$, and Moon's bhāṃśas $=31+62=93$.

Lagna: Lagna at the end of any parva is the rising point of Sun with reference to Śraviṣṭā asterism or zodiac:
Lagna= (bhāṃśa of Sun wrt Śraviș̣̣̂ā x 27)/124. At the end of $93^{\text {rd }}$ parva, the bhāmśa of Sun with reference to Śravișṭā =31; hence the Lagna at the end of $93^{\text {rd }}$ parva $=\frac{31 \times 27}{124}=\left(6+\frac{93}{124}\right)$, i.e 93 bhāmśas of Bharanī; this is the rising point (lagna).
Day Division : 1 day $=30$ muhūrtas (or 24 hours) =60 nādikās (1 nādikā= 24 minutes) =603 kalās (1 nādik $\bar{a}=101 / 20$ kalās); 1 kal $\bar{a}=124$ kāsth hās; 1 $k \bar{a} s t h \bar{a}(V J .7 .1)=5$ gurvaksaras or 10 mātrās. For nādik \bar{a} measure, discussion on Clepsydra may also be seen.
Tithi \& Naksatra: In a 5-year yuga cycle, there were 10 ayanas in 62 synodic months, so one ayana had 6 synodic months and 6 tithis, so every $7^{\text {th }}$ tithi comes in the beginning of the solstices. TheVJ says :

> 'The $1^{\text {st }}, 7^{\text {th }}$ and $13^{\text {th }}$ tithis of the bright fortnight and the $4^{\text {th }}$ and $10^{\text {th }}$ of the dark fortnight are at the beginnings of the first five ayanas. These occur twice' (i.e.these five are to be repeated for the next five ayanas.

VJ.20.1.
'The naksatras at the beginning of the ayanas are Śraviṣthā, Citrā, Ārdrā, Pūrva Proṣthapadā, Anurādhā, Aśleṣā, Aśvinī, Pūrvāṣādā, Uttaraphālgunī and Rohiṇı’
[VJ.20.2].

4. Day Length

Day-length measurement of diurnal variation in time is an extremely important element. Instruments like Clepsydra and Shadow instruments were possibly used. The Commentator Somākara recognized Clepsydra of $V J$ used a copper vessel (tāmraghaṭa) (vide Sudhākara Dvivedī's ed), where as, Fleet suggested that it may be earthern water-jar, kumbha-ghata and the size may be to the extent of a droṇa (=200 palas). As regards category, whether it is out-flow or inflow type, Dikshit, Fleet and Sarma recommended it as an out-flow type but do not clarify how the pressure of the water column in the clepsydra was maintained? Is it by constant in-flow or addition of water from the top?

The day time measure has been specified in $V J$ (see above). How was it measured. It might be by shadow measurements of a gnomon (śanku).
${ }^{8}$ Atharva-jyotiṣa refers to dvādaśäṅgula-śanku (12 añgula gnomon), a jyotiṣa literature attributed to to vedāniga of the Atharvaveda.The Kautilīya Arthaśāstra (AŚ, II.20.39-40, tr by Kangle) used a gnomon of 12 an்g. It gives diurnal shadow in pāruṣi-length; let $\mathrm{g}=12$ añg, $\mathrm{s}=$ shadow length, $\mathrm{t}=$ time of the day elapsed, $\mathrm{d}=$ day length.

Paruṣi-length (s/g)	8	6	3	2	1	$2 / 3$	$1 / 3$	0
Time elapsed (t/d)	$1 / 18$	$1 / 14$	$1 / 8$	$1 / 6$	$1 / 4$	$3 / 10$	$3 / 8$	$1 / 2$
d/2t	9	7	4	3	2	$5 / 3$	$4 / 3$	1

From the table, it may be seen that the formula : $\mathrm{d} / 2 \mathrm{t}=\mathrm{s} / \mathrm{g}+1$.
This is an uncorrected formula for an observer on or near one of the Tropics at Ujjain (latitude $23^{\circ} .7 \mathrm{~N}$) when the Sun is at the zenith (Abraham, 1981,p.216; Ohasi, 1993, p.216). The generalized formula is found to appear in the Pañcasiddhāntik \bar{a} (IV.4849). The Arthśāstra of Kautilya states thus:
āṣāde māsi naṣtacchāyo madhyāhṇo bhavati /ata param śrāvaṇādīnām ṣanmāsānāmhyangulottarā māghàdīnāmhyangulavarā chāyā iti / (AŚ, II.20.41-42).
'In the month of Āṣāda, the midday looses shadow; after that, in the six months beginning with Śrāvana, the shadow (at midday) increases by two angulas in each month, and in six months beginning with Māgha, it decreases by two añgulas in each month'. (AŚ, II.20.41-42).
From the quotation, it is clear that Summer solstice falls in āṣāda month when the midday shadow is zero, and it increases from Śrāvaṇa month, for a gnomon of 12- añgula (Kangle, II, p.140; Shamasastry, p.122).
The measurement of shadow-lengths played a significant role not only for measuring of time, but also latitude of the place and other elements of mathematical astronomy.

So was the problem for measurement of Day-length for Annual variation. The $V J$ records the increase and decrease of night time thus:
gharmavrddhir apām prasthah
kṣapāhrāsa udaggatau /
dakṣine tau voparyāsah
ṣaṇmuhūrtyayanena tu //
VJ.17.1
'The increase of day-time and decrease
of night-time (is the time equivalent of)
one prastha of water (in the clepsydra per
day) during the northward course (of the
Sun). They are in reverse during the
southward course. (The difference is) 6
muhūrtas during an ayana (half year)'.
VJ.17.1
yad uttarasyāyanato gatam
syāche(cche)sam tath \bar{a}
daksinato'yanyasya'/
tadek(a)ṣasṭyā dviguṇam vibhaktam
sadvādaśam syād
divasapramānam//

VJ. 39.1
'The number of days) elapsed in the northward course or remaining in the southward course is doubled, divided by sixty-one, and added to twelve; the result is the length of daytime (in terms of muhūrtas.'
VJ .39.1.
$V J$ suggests that, the day-length (dt) increases from Winter to Summer solstice by 6 muhūrtas, and it suggests a relation:
$\mathrm{D}_{\mathrm{t}}=(12+2 / 61 \mathrm{n})$ muhur ras, n is the number of day after or before the Winter solstice.
 Winter solstice day and 18 muhūrtas at the Summer solstice ($\mathrm{n}=183$), total duration of a year being 366 civil days.. The day and night timelength follow a reverse order during southern journey. The day-time ${ }^{9}$ and night-time maintains a ratio 12:18 i.e 2:3.

5. New-moon and Full-moon in VJ

The Vedāniga Jyotiṣa had followed the system of 27 naksatras with the same names as in earlier Vedic texts for finding the New moon, Full moon. Only difference is that $V J$ took naksatra as 27 equal space or divisions of the ecliptic, and each naksatras segment was divided into 124 parts, each part known as bhāṃśa (i.e. one bhāṃśa $=1 / 124$ th segment of naksatras). It had started the five- year yuga-cycle from the New Moon of Śraviṣthā, as 'zero point' at the Winter solstice. The naksatras in this cycle are are as follows (RVJ.25-28):

1. Dhaniṣṭhā/Śravisṭhā, 2. Śataviṣaj, 3.
(Pū.)Proṣṭhapadās, 4. (Utt).Bhādrapadā,
2. Revatī, 6. Aśvayujau, 7. Bharaṇīs, 8.
Kṛttikā, 9. Rohinī, 10. Mṛgaśr̄ṣa, 11.
Ārdrā, 12. Punarvasū, 13. Puṣya, 14.
Āśleṣā, 15. Maghās, 16. (Pū.) Phalgunī,
3. (Utt.) Phalgunī,18. Hastā, 19. Citrā,
4. Svātī, 21. Viśākhe, 22. Anurādhā, 23.
Jesṭhyā, 24. Mūla, 25. (Pū.)Āṣādās, 26.
(Utt.)Āṣādās, 27. Śravaṇā

VJ started with New-moon at Śravisṭhā naksatra at the Winter solstice, and found other New- and Full-moons in the cycle of 5-years at different nakssatras. No algorithm is however found in the text, Thibaut (Thibaut,1877, pp.42528) and Gondalekar (Gondalekar, 2009, pp.48586) have suggested the logistics thus:

> 1 lunation = $67 / 62$ sidereal months (since one yuga cycle has 62 lunar months (lunations) and 67 sidereal months); in one sidereal month Moon passes through 27 naksatras. So in 1 lunation the Moon passes through $27 \times 67 / 62=29^{22 / 124}$ naksatras.

The separation of successive New (Full) moons is $29{ }^{22 / 124}$ nakssatras, and the separation of a New and Full-moon is half of this, i.e. $14^{73 / 124}$ naksatras each (since, naksatra no $=27$; one nakṣatra $=124$ bhāmśas). Obviously, the New/ Full moon will occur at an interval of 14 naks 73 bhāṃśa x 1,.. x 2, .. $\times 3$ etc, as shown (Table 2).

[^5]Table 2: New- moon and Full- moon of 62 Synodic months with nakṣatra and bhāmśa in the 5- year yuga cycle; nakṣatra no=27, bhāmśa no=124

No	New moon			Full moon		
	naksatra no.	bhāmśa no.	naksatra names	nakṣatra no	bhāmśa no.	naksatra
1.	0	0	Śravisṭhā	14	73	Maghā
2.	2	22	Pū. Prosṭthapāda	16	95	Utt.Phālgunī
3.	4	44	Revatī	18	117	Citrā
4.	6	66	Bharaṇ̂	21	15	Anurādhā
5.	8	88	Rohiṇī	23	37	Mūla
6.	10	110	Ārdrā	25	59	Utt.Āṣādā
7.	13	8	Āśleṣā	0	81	Śravisṭhā
8.	15	30	Pū.Phālgunī	2	103	Pū.Prosṭhapāda
9.	17	52	Hasta	5	1	Asvayujau
10.	19	74	Svātī	7	23	Krıttikā
11.	21	96	Anurādhā	9	45	Mrgaśīrsa
12.	23	118	Mūla	11	67	Punarvasū
13.	26	16	Śravana	13	89	Āśleṣā
14.	1	38	Śataviṣaj	15	111	Pū.Phālgunī
15.	3	60	Utt.Proṣṭhapāda	18	9	Citrā
16.	5	82	Asvayujau	20	31	Viśākhe
17.	7	104	Krttikā	22	53	Jyesṭhā
18.	10	2	Ārdrā	24	75	Pū.āṣādā
19.	12	24	Pusyā	26	97	Śravaṇa
20.	14	46	Maghā	1	119	Śatabhiṣaj
21.	16	68	Utt.Phālgunī	4	17	Revatī
22.	18	90	Citrā	6	39	Bharaṇ̄
23.	20	112	Viśākhe	8	61	Rohinī
24.	23	10	Mūla	10	83	Ārdrā
25.	25	32	Utt.Āṣādā	12	105	Puşa
26.	0	54	Śravisṭhā	15	3	Pū.Phālgunī
27.	2	76	Pū.Prosṭhapadā	17	25	Hasta
28.	4	98	Revatī	19	47	Svātī
29.	6	120	Bharaṇī	21	69	Anurādhā
30.	9	18	Mrgasirirsa	23	91	Mūla
31.	11	40	Punarvasū	25	113	Utt.Āṣādā
32.	13	62	Āśleṣā	1	11	Śatabhiṣaj
33.	15	84	Pū.Phālgunī	3	33	Utt.Proṣṭhapadā
34.	17	106	Hasta	5	55	Asvayujau
35.	20	4	Viśākhe	7	77	Krttikā
36.	22	26	Jyesṭhā	9	99	Mrgaśīrsa
37.	24	48	Pū.Āṣādā	11	121	Punarvasū
38.	26	70	Śravaṇā	14	19	Maghā
39.	01	92	Śatavisaj	16	41	Utt. Phālgunī
40.	3	114	Utt.Proṣṭhapadā	18	63	Citrā
41.	6	12	Bharaṇī	20	85	Viśākhe
42.	8	34	Rohinī	22	107	Jyesṭhā

43.	10	56	Ārdrā	25	5	Utt.Āṣādā
44.	12	78	Pusya	0	27	Śravisṭhā
45.	14	100	Maghā	2	49	Pū.Proṣthapadā
46.	16	122	Utt.Phālgunī	4	71	Revatī
47.	19	20	Svātī	6	93	Bharaṇ̂
48.	21	42	Anurādhā	8	115	Rohinī
49.	23	64	Mūla	11	13	Punarvasū
50.	25	86	Utt.Āṣādā	13	35	Āśleṣā
51.	0	108	Śravisṭhā	15	57	Pū.Phālgunī
52.	3	6	Utt.Prosṭhapadā	17	79	Hasta
53.	5	28	Asvayujau	19	101	Svātī
54.	7	50	Kṛttikā	21	123	Anurādhā
55.	9	72	Mrgas̃irṣa	24	21	Pū.Āṣādā
56.	11	94	Punarvasū	26	43	Śravaṇa
57.	13	116	Āśleṣā	1	65	Śatabhiṣaj
58.	16	14	Utt.Phālgunī	3	87	Utt.Prosṭhapadā
59.	18	36	Citrā	5	109	Asvayujau
60.	20	58	Viśākhe	8	7	Rohinī
61.	22	80	Jyesṭhā	10	29	Ārdrā
62.	24	102	Pū.Āṣādā	12	51	Puṣya

* the letterings in bold indicate the Jāvādi naksatras and their significance may be understood from the next table.

For pin-pointing the New- and Full-moons at the nakṣatras, VJ introduced the Jāvādi (jau + adi) system .VJ introduced an abbreviated list of nakṣatras, where Jau means Aśvayujau or Aśvinī naksatra (RVJ 14;YVJ 18) .

The significance of this arrangement was originally not understood. This becomes evidently clear when the Table 2 is rearranged according to the serial order of their naksatras and bhāmśas starting from Aśvin̄̄ (vide Table 3).Why Aśvinī is not clear. Possibly it was an old system clarified in $V J$.

The list of New- and Full-moons appears at an interval of five naksatras and according to serial number of the Bhāmśas. The main purpose was to find a suitable time for performance. It is true that serious attempts were definitely made to find a theoretical system, but to what extent the system was correct and where they have failed depends on how the priest felt or could make up while performing the sacrifices. Two passages
from the Śatapatha Brāhmaṇa (Śat. Br.IX.1-5) give enough hint about the situation when visibility of the New- and Full moon differed, as was seen in the sky, from the calculated one:
"He observes fast thinking 'to day is the day of New moon' and then the Moon seen in the west and the sacrificer departs from the path of sacrifice" (New moon occurs one day earlier than the calculated date).
"Some people enter upon first when they still see the Moon thinking 'tomorrow he will not rise' and in the morning he rises over again"(New moon is delayed by one day than the calculated date) [See also Eggeling, SBE, pt V,1963, pp.9-10; Chakravarty,1975, p.9].
This shows that the theoretical frame work for determining tithi and naksatras were just made but not always strictly followed. This is obvious since the formulas were drawn on the basis of the mean motions of Sun and Moon.

Table 3: New-moon and Full-moon according to the serial order of bhāmśa on a 5-year yuga cycle (based on above table) or Jävādi nakṣatra. The nakṣatras in the Jāvādi arrangement is given by \mathbf{N} where $\mathrm{B}=\mathrm{N} \bmod 27$.

No	List of New - and Full moons		
	nakṣatra no.	bhāmśa no.	nakṣatra (Jāvādi)
1.	5	1	Aśvayujau, Full moon
2.	10	2	Ārdrā, New moon
3.	15	3	Pū.Phālgunī, Full moon
4.	20	4	Viśākhe, New moon
5.	25	5	Utt.Āṣādā, Full moon
6.	3	6	Utt.Proṣtpadā, New moon
7.	8	7	Rohinī, Full moon
8.	13	8	Āśleṣā, New moon
9.	18	9	Citrā, Full moon
10.	23	10	Mūla, New moon
11.	1	11	Śatabhiṣaj, Full moon
12.	6	12	Bharaṇi, New moon
13.	11	13	Punarvasu, Full moon
14.	16	14	Utt.Phālgunī, New moon
15.	21	15	Anurādhā, Full moon
16.	26	16	Śravaṇā, New moon
17.	4	17	Revatī, Full moon
18.	9	18	Mrgaśīrṣa, New moon
19.	14	19	Maghā, Full moon
20.	19	20	Svātī, New moon
21.	24	21	Pū.Āṣādā, Full moon
22.	2	22	Pū.Proṣṭhapadā, New moon
23.	7	23	Kṛttikā, Full moon
24,	12	24	Pusya, New moon
25.	17	25	Hasta, Full moon
26.	22	26	Jyesț̣hā, New moon
27.	0	27	Śravisṭhā, Full moon

6. Eighteen \& Nineteen-years' cycle

Lunar Phases (18 Years' Cycle!): The Dārśikyāpaurṇmāsikī-vedi leaves enough indication that it was used as an observation altar to observe and count lunar phases, lunar months and lunar years. The Rgveda says,

[^6]ghṛtairastrnan varhirasmā ādiddvotāram nyasādayanta //

> RV.III.9.9
'3339 (or $3000+300+30+9$) devas have been worshiping Agni by turn; bedewed with ghṛta (oil); strewn with sacred grass, and stabilized with sacrifice' RV.III.9.9.

The number has appeared again and again in Rggveda (RV.X.52.6), Taitirīya Brāhmaṇa (Tait. Br. II.7.12.2), and Brahmāṇa Purāna (Brah.P., Pt. I; 23.66-69) and in other works. The passages relating to 3339 has been explained by many scholars in many ways. All these passages have been re-examined again by R.N. Iyengar (IJHS, 2005, pp.140-43). The translation and explanation in most cases does not appear to be meaningful, But there is no doubt that the Rgvedic Sukta (III.3.9), as quoted by Gāthina Viśvāmitra, has Agni as its deity, which from the overall context of the hymn, has got a celestial representation of lunar phases as gods (devas). Since the Rgvedic gods were only 33, K.V.Sarma (IJHS, 20.1-4, 1985, 1-20) indicated that 'the number refers to a period of 30 years consisting of 371 lunar phases in a year', while Kak represented 3339 as 9×371 representing 371 as the number of tithis in a solar year, indicating a nine year cycle of the moon. R.N. Iyengar however suggests on the basis of Brahmāna Purāna that this represents 18 years cycle in which 9×371 represents simply the dark phases in a 18 years cycle. Nothing definite is known. Before we guess for an answer.

The lunar months during Vedic times were known by its fifteen monthly lunar phases each from Amāvasyā to Pūrnimā (Śuklapakṣa) and Pūrṇimā to Amāvasyā (Krṣṇapakṣa). It was also observed that the lunar month (Synodic month) which is the interval of two successive new moon covers in more or less in $291 / 2$ days covering extra 5 or 6 days in mean solar year. Taittīriya Samhit \bar{a} recognized 372 annual lunar phases (tithis).
The Taittirīya Samhitā says,
ṣadaimāsānta sampādyāharuts!̣janti
ṣadhairhi māsānta sampaśyanti,./
$\bar{a} m \bar{a} v \bar{a} s y \bar{a} \quad m a ̄ s a ̄ n t a$
sampādyāharuts!jyyantim āmāvāsyayā hi
māsānta sampaśyanti/ paurṇamāsyā
māsānta sampādyāharutsṛjanti
paurṇamāsyāhi māsānta sampaśyanti /

Tait.S.VII.5.6.1
> 'Having made up the months with six-day periods they leave out a day, for they behold the (lunar) months with six-day periods...Having made up the months by the new-moon night, they leave out a day, for they behold the months by the newmoon night. Having made up the months by the full-moon night, they leave out a day, for they behold the month by the fullmoon night’.

Tait. S.VII.5.6.1.
This indicates that there was a clear effort made in the Taiitiriya Samhit \bar{a} to correspond solar (360 days) and lunar year and lunar phases (372 tithis), having measured with six-day week of the lunar year, irrespective of measuring it from newmoon or full-moon. The Śatapatha Brāhmaṇa also says that 'the preliminary ceremony were performed at the full-moon, but the initiation ceremony took place at the new- moon' (paurṇamāsyāmnvārabheta āmāvāsyāyām dīkseta—Śat.Br.XI.1.1.7). The Rgvedic number of lunar phases was possibly 371 which changed to 372 during later periods fits very well with the 18 year's cycle of the Rgvedic number, for 18 x $371=6678=2 \times 3339$, the number 3339 being the number of the dark-fortnights (Krṣnapaksas), and this number along with brighter-halves makes the complete cycle. The number of darker fort-nights or tithis between two similar lunar eclipses in the cycle are mentioned possibly because soma drinks were widely available as intoxicants and the public were allowed an opportunity for atonement of their sins. The purpose of constructing Mahāvedi (Great Altar) \& Dārśsikyāvedi is indeed very significant
from the context of adjusting solar, civil and lunar calendars and moves towards a unique foundation, if the explanation of Iyengar is taken to be true. Similar 18 years' cycle was also known to the Babylonians, known as Saros cycle ${ }^{10}$.

19 years' cycle: Holay (1994) for the first time reinterpreted some of the verses ($4,8,9,14,15$, \& so) of $R V J$ and suggested that $V J$ followed a 19year cycle.The explanation has been re- examined by Chandra Hari (2004) who has supported this hypothesis. However, this does not appear to be tenable because $V J$ has always maintained a 5year cycle (pañca samvatsara) and no where it has referred to 19-year cycle. Abhayankar, who had a close friendship with Holay, called the method as unconventional, and strongly disagreed with his views expressed and by Chandra Hari. Abhyankar dismissed it as a preconceived notion and superimposed interpretation even if the explanation is extremely ingenuous.
The explanation given by Abhyankar (Abhayankar, 2004, pp.228-29) are as follows:
> 'The Vedānga Jyotiṣa had a luni-solar calendar based on lunar months. It makes use of nominal yuga of 1860 tithis.As the units of angle and time obtained from YVJ is also used in $R V J$, it is obvious that that the two versions compliment each other. The YVJ yuga of 5 years is accepted by Holay, so is RVJ yuga, which is also of 5 years. The yuga concept is nominal, and the 5-year yuga has a year of 372 tithis or 366 days. Lagadha knew that the year contains 371 tithis, and 1860 tithis are covered in 1831 days and not in 1830 days. An extra tithi per year is nominal and good enough for practical purposes of seasons sacrifice. Only there is shift of religious functions with respect to seasona, to be corrected systematically as explainedin section 5 . Such shifts of ± 15 days are allowed even in modern pañcāñga'.

[^7]So Lagadha has provided corrections which make the calendar more accurate by means of 15-, 30- and 95-year cycles (Kak, 1993 p. 29; Abhyankar, 2002, pp.219-20). Further RVJ (vs.12) has followed a 15 year cycle which is also a unique feature of the Vedic calendar and thrown enough light on the evolution of Vedic calendar. Indians were also aware of a 95 years cycle, as shown by Kak (1993), which is also a modified 5-year cycle and it has nothing to do with the Metonic cycle ${ }^{11}$. In order to accommodate 371 tithis in a year, Holay has reduced the number of bhāṃ́sas from 3348 to 3339 in a circle disturbing the unit of the angle, which is unnecessary.

Holay's scheme of the lunar year does not always start with Sun in the Daniṣthā naksatra. What he has done he has gone back to 5-year cycle and modified it by introducing three vatsara year of 12 lunar months in the $16^{\text {th }}, 27^{\text {th }}$, and $38^{\text {th }}$ year. There is no hint of this in the YVJ, some numerical manipulation is done to fit the calendar to the 19 year cycle. As already there is a difference of one naksatra at that point, it was manipulated by Lagadha by making the adjustment at the end of the 15 years period, instead of waiting for 19 years. On the basis of RVJ (vs.5), it is not unlikely that this is adjusted to the second half of the 30 year cycle. Holay also does not explain the reduction of ksaya tithis from 30 to 29 in one yuga. He has also used inconvenient fractions to make yearly adjustment which becomes more simpler at the end of 15 years in a 5 year yuga system. Once discovered, the later astronomer will not leave the 19 year cycle as we find in Jewish and Chinese calendar, but on the other hand, 5 year cycle began
to be continuously used by Jains and other astronomers. Holay's idea, even though it is brilliant, does not appear to be tenable.

7. Concluding Remarks

The idea of naksatras system, Samvatsara (year) of 12 months of 30 days, or 360 mean solar days, six seasons, half-early motion of the Sun (uttarāyana,northward and dakșināyana, southward motions through Solstices), with atirātra (leap days) of 4,5 or 6 days at the end of Samvatsara (Tait.S.VII.1.8) helped Vedic traditions to develop a reasonable calendric framework. The dates and time for sacrifices were fixed from observation of Full / New moon, lunar phases and moon's heliacal or rising time, that is why the construction of Dārśapaurṇamāsikī- vedi was given so much importance.The antiquity of the Rgvedic Saṃhitā, Yajurvedic Saṃhitā, Brāhmaṇic and Jyautiṣa Vedānga traditions is discussed on the position of the nakṣatrass at Winter or Summer solstices, Sun and Moon which are distinct, different and follow a uniformity in patteren .The knowledge of precision of equinoxes for the position of naksatrass which was different in different traditions has been taken into account, not known at the time, and gives a date for each of these traditions. Allowing an open eye observation error of 7 to 8 degrees (about 72 years per degree or possibility of error of 500 years), the corrected antiquity chart for early Vedic traditions are discussed and summarized as follows:

Rgveda Samhitā : c. 6500 BC;
Yajurveda Samhitā : c. 5500 BC;

[^8]
Brāhmanas \& Harappan : c. 2500 BC;
 Vedāñga Jyautiṣa: c. 1000 BC

The Vedic tradition struggled with 5, 6, 7 years yuga- cycles for calendric purposes, but ultimately boils down to 5 years' yuga- cycle. Seasons and synodic months were determined by the position of the Full-moon, but the determination of solstices and equinoxes was neither so season specific nor depends on Sun's position. One sāvana day (civil day) is from sunrise to sunrise in $V J$, so is defined a synodic month as interval between two successive Fullor New-moons, and a sidereal month as time taken by the Moon to complete one circuit relative to the naksatras. What VJ has done, it has reduced the knowledge to a simple rule based on 5 solar years (yuga) $=62$ synodic months (62×29.53 days or 1830.90 days) $=67$ sidereal months (67 x 27.3217 or 1830.55 days). This indicates that 5 solar years has actually 5 x 360 or 1800 mean solar days, 1830.90 civil days, 1830.55 sidereal days. There is of course a lack of synchronization between solar and lunar days, i.e. tropical and synodic years in a yuga, which is due to difference between the length of lunar day and solar day. That is why, it has recommended two extra months or lunations' intercalation (adhikamāsa) to be added at half-yuga and another at yuga-end (YVJ.37). The length 1830 is very fundamental to $V J$, almost all parameters and algorithms of $V J$ are based on this number. It is not naturally occurring number like a month or a year. It may be noted that the sidereal days were never used for civil purposes in ancient India. There is absolutely no doubt that $V J$ made this number to adjust for intercalation scheme. This is similar to the scheme of intercalation adopted by the cāturmāsya-yajña as described in Mait.S.(I.10.8), following from Tait.S.(VII.4.8). Pingree conjectured that the day in the $R V J$ is not the civil day but the sidereal day (Pingree,1973, p.3). This is not correct, for $\operatorname{YVJ}(29 a, b)$ has clearly defined that the number of sidereal days (lit. rising of Śraviṣthā) in a yuga is the number days in a
yuga plus five, referring to yuga having $1830+5$ or 1835 sidereal days. This justifies the statement of $V J$,i.e. 5 years $=1830$ civil days $=1835$ sidereal days, and corroborates the above formula. It has nothing to do with the sidereal days of Āryabhatīya which is based on the rotating theory of the earth. This was indeed a great achiement at such an early phase.

Abbreviations

AAWB-Abhandlungen der Akademie der Wissenschaften zu Berlin; BAS-Bulletin of the Astronomical Society of India; BI-Bibliotheca Indica; AŚ- Arthaśāstra; IA-Indian Antiquary; IJHS-Indian Journal of History of Science (Delhi); JAOS-Journal of the American Oriental Society; JASB- Journal of the Asiatic Society of Bengal (Calcutta); JDL- Journal of the Department of Letters (Calcutta University); JHA-Journal of the History of Astronomy; JNES-Journal of the New Eastern Studies; JRAS-Journal of the Royal Asiatic Society; JUB-Journal of the University of Bombay (Bombay); JWP- Journal of the World Prehistory; RV- Rgveda; RVJ-Vedānga-Jyautisa (Rgvedic recension); YVJ-Vedānga-Jyautiṣa (Yajurvedic recension); VJ-Vedān̄ga-Jyautiṣa; ZDMG-Zeitschrift der deutschen morganlandischen Gesselschaft.

Bibliography

Abhyankar, K.D. Misidentification of Some Indian Nakșatras, IJHS, 26.1 (1991):1-10

Abhyankar, K.D. A Search for the Earliest Vedic Calendar, IJHS, 28.1(1993):1-14.

Abhayankar, K.D. Antiquity of the Vedic Calendar, BAS, 26 (1998):61-66.
Abhyankar, K. D. On two Important Provisions in Vedāṅga Jyotiṣa, IJHS, 37.3 (2002):213-22.

Abhyankar, K.D. 5-year yuga in Vedāñga Jyotiṣa, IJHS, 39.2(2004):227-230.

Abhayankar, K.D. Earliest Vedic Calendar, IJHS, 40.1(2005):1-7.

Abhyankar, K.D. '3339 in the Rgveda', IJHS, 41.3(2006):313-16.

Aitareya Brāhmaṇa-Ed with comm. Vedārthaprakāśa of Sāyanāṣārya by Satyabrata Sāmaśramī,4 Vols, Asiatic Society, Calcutta, 1894-1906; Tr into Eng by A B Keith, Oxford, 1920; rep Delhi,1981.

Āpastamba Śulbasūtra- The Śulbasūtras of Baudhāyana, āpastamba, Kātyāyana and Mānava, Ed by S.N.Sen and A.K.Bag with Eng tr \& notes, Indian National Science Academy, New Delhi, 1983; See also Edition of Damodara Jha with Comm of Kapardi, Karavinda, Sundararaja and Gopal, Koari Madan, 1988.

Atharva Jyotiṣam- Ed by Bhagavad Datta, Panjab Sanskrit Series VI, Lahore, 1924; also ed. by Chotelal Sarma and Omnarayana Dvivedi, Datia, Madhya Pradesh, 1965.

Atharvaveda Saṃhitā-Eng. Tr by W.D.Whitney, Cambridge, 3 Vols Harvard, 1905, rep Delhi, 1971; Ed by R. Roth and W.D.Whitney, Berlin,1924; Ed also by Visvabandhu with the comm of Sāyanacārya, VVR Institute, 4 Vols, Hoshiarpur, 1960-62. tr into Eng also by R T H Griffith as Hymns of the Atharvaveda, 2 Vols, 1894; rep Varanasi, 1968.
Baudhāyana Śulbasūtra-Ed and tr into Eng by S.N.Sen and A.K.Bag, in The śulbasūtras, INSA, New Delhi, 1983.

Bag, A.K. Ancient Indian Scientists and Contribution to Science, Bharatiya Samskriti, Second Volume, pp.409421, Calcutta, 1983 a.
Bag, A.K. The Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and Mānava, ed with Eng tr and Comm (with S.N.Sen), INSA, New Delhi, 1983 b.
Bag, A.K. Origin of the Lunar Zodiac, Scientific and Technological Exchanges between Tndia and Soviet Central Asia, ed. B.V.Subbarayappa, New Delhi, 1985, pp.90-95.

Bag, A.K. Science and Civilisations in India-Harappan Period(3000-1500 BC), Navrang, New Delhi, 1985.
Bag, A.K. Astronomy in Indus Civilization and during Vedic times, History of Astronomy in India, ed S N Sen and K S Shukla, $2^{\text {nd }}$ revised ed, INSA, New Delhi, 2000, pp.135-145.
Bag, A.K. and Sarma, S.R., The Concept of Śūnya, New Delhi, 2003.
Bag, A.K. Genesis of Fire-worships, Fire-altars and Related Mathematical Knowledge in Vedic Traditions of India, 10th Hasi Majumdar Memorial Lecture of the Calcutta University, Science and Culture, 80.1-2 (2014):12-28.

Bhatnagar, A.K. Astronomical Dating of Planetary References in Rgveda and Epics using Planetarium Software, in Historicity of Vedic and Ramayan Eras,eds Saroj Bala andKulbhushan Mishra, pp.5580, I-SERVE Deli Chapter, New Delhi, 2012.
Biot,J.B. Etudes sur l'Astronomie indienne et sur l'Astronomie chinoise, Paris,1862.

Chakravarty, A.K. Origin and Development of Indian Calendrical Science, Indian Studies, Past \& Present, Calcutta, 1975.The system of 'Vedāniga Jyotiṣa Calendar' is discussed in, pp.6-18.
Chandra Hari, K. P. V. Holay's Interpretation of the $R k-$ Jyotiṣa verses on 19-year yuga, IJHS, 39.2 (2004):157176.

Dikshit, Sankar Balakrishna, Bharatiya Jyotish Sastra (1896), Pt.I—Hist of Astronomy during Vedic and Vedanga period, tr into Eng by R V Vaidya, Calcutta, 1969.

Epping, F., Astronomisches aus Babylon, FreibuRg, 1889.
Fleet, J.R., Imaginative yojanas, JRAS, 229-39, 1912.
Gondhalekar, Prabhakar, Vedāniga Jyotisa-Where and When?, IJHS, 43.3(2008a):339-52.
Gondhalekar, Prabhakar, Intercalation in Vedic Texts, IJHS, 43.4 (2008b) 495-514.

Gondhalekar, Prabhakar, The Vedic Nakṣatras-a Reappraisal, IJHS, 44.4(2009):479-496
Gopatha Brāhmaṇa-Ed by D Gaastra, Leiden, 1919.
Gray, L.H., Calendar (Persian) in Encyclopaedia of Religion and Ethics, ed.J. Hastings, Vol.III, Edinburge,190821.

Gupta, S.P. The Indus Saraswaty Civilisation, Origin, Problems and Issues, Pratibha Prakashan, New Delhi, 1996.

Holay, P.V., Vedic Astronomy, Shri Babasaheb Apte Smarak Samitee,Nagpur,1994.

Hommel, Fritz, Uber den Urspring und das Alter der Arabischen Sternammen und insbesondere der Mondstationen, ZDMG, 45 (1891)592-619.

Iyengar, R.N. Eclipse Period Number 3339, IJHS, 40.2(2005):139-54.

Iyengar, R.N. Connections between theVedānga Jyotiṣa and other Vedic Literature, IJHS, 44.3 (2009):57-68.

Jacobi, H. On the Dating of Rgveda, IA, 23(1894):15459.

Kak, S. C. Astronomy of the Śatapatha Brāhmaṇa, IJHS, 28.1 (1993):15-34.

Kak, S.C. The Sun's Orbit in the Brāhmaṇas, IJHS, 33.3 (1998):175-191.

Kāmhaka Samhitā-Ed by Schroeder Von Leopold, 4 Vols, Leipzig, 1909-27.

Kātyāyana Śulbasūtra- Ed with Karka’s Bhāśya and Mahidhara's Vrtti, in KSS, Benaras, 1936; See also the edition and translation by Bag.

Kauṣītaki Brāhmana-Ed Anandasrama Sanskrit Series, Poona, 1911; Tr into Eng by A B Keith, Vide his Rgveda Brāhmanas, 1920; rep Delhi, 1971.
Keith, A.B. Vedic Calendar, JRAS, 627-40, 1914.
Keith, A.B. A History of Sanskrit Literature, London, 1920.
Kenoyer, J.M. Indus Valley Tradition of Pakistan and Western India, JWP, 5 (1991):331-85.
Kochhar, Rajesh, The Vedic People: Their History and Geography, Orient Longman Ltd, Hyderabad, 2000.
Kuppanna Sastry, T.S., Vedāniga Jyotiṣa of Lagadha, in Ṛk and Yājuṣ recensions, Eng tr \& notes with cr ed text by K.V. Sarma, INSA, New Delhi, 1985.

Lal, B.B. The Homeland of Indo-European Languages and Culture: Some Thoughts, Inaugural Address to ICHR Seminar at New Delhi,7-9 Jan (2002):12-13.
Lāmyāyana Śrautasūtra- Ed by Harinarayana Apte, Anandasrama Sanskrit Series, no.53, Poona, 1907.
Macdonell, A.A. A History of the Sanskrit Literature, London, 1905.

Macdonell, A.A. \& Keith, A.B. Vedic Index of Names and Subjects, Vols. I\& II, London, 1912.
Maitrāyanīya Śulbasūtram-Ed with Comm of Śañkara by Damodara Jha, VVR institute, Hoshiarpur, 2001. (Appears as an appendix to Vārāha śrautasūtra).
Mānava Śulbasūtra- ed \& tr into Eng by J.M. Van Gelder, Satapitaka, Vols 19 and 27, New Delhi, 1961-63.(Appears as a part of the Mānava śrautasūtra).

Narahari Achar, B. N. Enigma of the five-year yuga of Vedānga-Jyotiṣa, IJHS, 33.2(1998):101-109.
Narahari Achar, B.N. On the Astronomical basis of the date of Śatapatha Brāhmaṇa: A Re-examination of the Dikshit's Theory, IJHS, 35.1(2000)1-19.

Needham, Joseph, Science and Civilisation in China, Cambridge University Press,Vol.3, 1969, pp.242-253.

Neugebauer, O. The Exact Sciences in Antiquity, $2^{\text {nd }}$ edition, Dover ed, 1969.
Nidānasūtra- Maharshi Vedic University, E-Library, Maharshi University of Management, Vedic Literature Collection

Ohasi, Yukio. Development of Astronomical Observation in Vedic and Post-Vedic India, IJHS, 28.3(1993)185251
Pañcavimśa Brāhmaṇa-Ed with comm of Sāyana by A. Vedāntavāgīśa, Calcutta, 1870-74; Tr into Eng by W. Caland, Calcutta, 1931, rep Calcutta, 1982.

Pingree, David, The Mesopotamian Origin of Early Indian Mathematical Astronomy, JHA, 4(1973):1-12.

Pingree, David. Mulapin and Vedic Astronomy, in Dumu-E_{2}-Dub-ba-a, (ed) Behrens, H.,Loding,D.,and Roth,M., Philadelphia, 1989.
Prasanna, T.R. Ancient Indian Astronomy and the Aryan Invasion Theory, IJHS, 46.4 (2011):573-610.
Rgveda- Ed with comm of Sāyana by Max Muller, 6 Vols, London, 1854-74, rep 1890-92;Tr into Eng by H.H.Wilson, 6 Vols,(1850); rep. Delhi1977; Tr also by R.T.H.Griffith (1896); rep Delhi, 1973.
Saha, M.N. and Lahiri, N.C.,Report of the Calendar Reform Committee, CSIR, New Delhi, 1958.
Sastry, T.S.Kuppanna. Vedānga Jyotiṣa of Lagadha, Indian National Sciece Academy, New Delhi, 1985.
Śatapatha Brāhmana-Ed with comm of Sāyana by A. Weber, Calcutta, 1903; Tr into Eng by Julius Eggeling, Sacred Book of the East,Vols.12,26,41,43,44,1892-1900; rep Motilal Banarasidass, New Delhi, 1969; Ed also with Ratna Dīpikā, Hindi tr by Pt Ganga Prasad Upadhyaya, Introduction in Eng by Satya Prakash, Research Institute of Ancient Scientific Studies, 3 vols, New Delhi, 1967-1970.
Sarma, S.R., The Archaic and Exotic: Studies in the History of Indian Astronomical Instruments, New Delhi, 2008.
Sengupta, P.C. Astronomy in Ancient India, The Cultural Heritage of India, first Published by Ramakrishna Mission, 1937, reprinted in Vol.VI (1986):56-82.

Sengupta, P.C. Solstice Days in Vedic Literature, Journal of the Royal Society of Bengal, Letters, 4(1938):415434.

Sengupta, P.C. Ancient Indian Chronology, Calcutta, 1947.
Shamasastry, R. The Vedic Calendar, IA, 18(1912):26-32, 45-71.

Shamasastry,R. Drapsa, the Vedic Cycle of Eclipses, Mysore, 1938.

Swarup,G., Bag, A.K. and Shukla, K.S. (eds), History of Oriental Astronomy,Cambridge University Press, Cambridge, 1987.
Taittirīya Brāhmaṇa- Ed with Comm of Sāyana by R.L.Mitre, Calcutta, 1859; Ed with Comm. of Sāyana by Hari Narayana Apte, Ānandāśrama Sans Series 37, Poona, 1898.
Taittirı̄ya Samhitā-Ed with the Comm. of Vedārthaprakāśa of Sāyana by Roer and Cowell, 6 Vols, Calcutta, 185499;Tr into Eng by A.B.Keith, Harvard Oriental Series, Nos 18 \& 19, 1914; rep Delhi, 1967.

Thibaut, G. Contributions to the explanation of the Jyotisha Vedāñga, JASB, No.4, 1877, pp.411-437.
Thibaut, G. Babylonian Origin of the Lunar Zodiac, JASB, No. 4 (1894):144-163.

Tilak, B.G. The Orion, Cosmo Pub.Poona, 1983.
Vājasaneȳ̄ Saṃhitā-Ed with comm. by Uvvatacarya by V.L.Sastri, Bombay, 1929; Tr by R.T.H. Griffith, 1899.

Vedāniga Jyotisa of Lagadha- Text ed by K.V.Sarma with Eng tr byT. S. Kupanna Sastry, INSA, New Delhi, 1985.

Weber, A. History of Indian Literature (First German ed), 1852. In p. 21 he makes aconjecture that the lunar
zodiac or the system of lunar asterism of the Arabs, Hindus and Chinese had their origin in Babylon.
Weber, A. Die vedischen Nachrichten von den Naxatra (Mondstationen), Abhand. Der Konigl. Der Wisseenschaften, 2 parts (1860 \& 1862).
Weber, A. (ed), Uber den Vedakalender Namens Jyotisham, AAWB,No.1, 1862,), Berlin, 1862

Whitney, W.D. The Lunar Zodiac, Oriental and Linguistic Essays, 1872-74, p. 351
Whitney, W.D. On the views of Biot and Weber respecting the relations of the Hindu and Chinese system of asterisms, with as addition, on Muller's views respecting the same subject, JAOS, 8(1863):1-94.

Whitney, W.D. Reply to the strictures of Prof Weber...Asterism system of the Hindus, Arabs and Chinese, JAOS, 8(1866):382-398.

Whitney, W.D. On a recent attempt by Jacobi and Tilak to determine on astronomical evidence the date of the earliest Vedic period as 4000 BC, IA, 24(1895):36169.

Winternitz, M., A History of Indian Literature, 3 vols, Calcutta University, 1959; Rep.Motilal Banarasidass, 1963, 1967

Yajurveda-The Text of the White Yajurveda, tr by R.T.H. Griffith (1899), rep Benaras,1976.

[^0]: * Editor, Indian Journal of History of Science, Indian National Science Academy, Bahadur Shah Zafar Marg, New Delhi-110002, E-mail:akbag99@gmail.com

[^1]: ${ }^{1}$ Weber (1860 \& 1862), Whitney (1872-74), Hommel (1891), Thibaut (1894) and other Assyrologists favoured the idea that Babylonian series of normal stars encouraged the origin of Lunar zodiac. Hommel first compiled 24 star groups on the basis of Epping's table from the Babylonian stars, and conjectured that they might refer to 24 stations of the zodiac. There is of course no proof that the series of 24 stations have ever been actually employed.Van der Waerden (1951, p.20) examined the whole issue and found that during the Babylonian period (c.1400-1000 BC) a number of clay tablets with planisphere divided the sky into three zones. The inner zone was meant for northern and circumpolar asterism, the central zone for equatorial asterism, and the outer for asterism for the south of the equator. The months were heliacal. Mul-Apin (c. 700 BC) gave of course 18 constellations more or less along the ecliptic which rose to 33 or more.
 ${ }^{2}$ Needham (1963, p.242) notes that the Chinese had made a reference to four quadrant Hsius appearing in Shang oracle bone ($14^{\text {th }}$ century BC), eight Hsius in the Shih Ching folk songs (9-8 ${ }^{\text {th }}$ century BC), twenty-three in Yueh Ling (Monthly Ordinances of Chou, 850 BC) and a full list of 28 Hsius in the reign of Huai Nan Tzu (150-100 BC). According to Needham, the Chinese Hsiu is as old as that of the Indians.
 ${ }^{3}$ Arabic star groups (Manāzil) might have its origin in Qu'rān. According to Weber (Indische Studien, 3, p.277), the recording of an ancient Harranian festival which followed a 27 day Moon month and observation of the practice of visiting their holy temple and offering food and drink to the Moon-god in the Fihrist, and the close similarity of the Arabic word, manzil (pl.monāzil), and the expression, mazzalloth by king Josias (II, Reg. 23.5) meaning 'zodiacal portrait' are indicative of the Babylonian influence on the Arabic tradition. This does not appear to be meaningful, since Hindus, Chinese and Arabs had acknowledged 28 or 27 star names while the Babylonian series gave only 33 or more.
 ${ }^{4}$ The etymology of naksatras, according to Theodor Aufrecht (Zeit fur vergl. Sprachf., VII, pp.71-72), is nakta-tra meaning night protector. However, term naksatras has always been used to indicate asterisms, stars or star-groups along the Moon or Sun's path.

[^2]: ${ }^{5}$ Rgveda itself refers to Sapta-nadī (I.71.7; VI.7.6.., seven times), Sindhu-nadī and its tributaries (V.53.9; V.61.19; VII.36.6;.., five times, Satadru, Vipās̄ā (six times), Vitastā (one time) and Saraswati (VI.61; VII.5;.. 8 times) as the pre-eminent river of the age flowing from mountains to the sea. Prior to techtonic movement of the Vedic people, according to Kochhar (2000, p. 121), the perennial streams of Sutlej (hundred Paleolithic channels of Śatadru) and Yamuna, both coming from Himalayas, joined and widened the river bed to a constant width of several kilometres to meet Saraswati and made it mighty. The Saraswati is mentioned not only as nadittama \bar{a} (the best of rivers) but also as devīttam \bar{a} (best of goddesses, RV.II.41.16), which indicate that that the region around Saraswati river was the centre of Vedic people.There is also a reference to construction of Fire-altars representing activities of the Vedic people (RV.III.23.4). The land between Saraswati and Drṣadvatī is also cited as most sacred (brahmāvarta) by a later work, Mānava Dharmaśāstra (II.17.19). Gupta (1996, pp.7-10), the well-known archaeologist believes that Indus Valley civilizations is Vedic civilization, and there is only civilizational continuity in the Indus Saraswati area from 5000 BC down to mature phase of Indus Valley civilization and afterwards. Lal (2002, pp.12-13) observed that, "An in depth study of the literary cum archaeological cum hydrological cum radio-carbon evidence duly establishes that Rgveda must antidate c. 2000 BC. By how many centuries, it can be anybody's guess'.

[^3]: ${ }^{6}$ His Vedic Chronology has divided the period into four parts,viz Aditi period (starting with nakṣatras Punarvasū or Aditi),Orion period (starting with nakṣatras Mṛgaśīrṣa or Orion) Kṛttikā period (starting with nakṣatras Kṛttikā) and the Vedāñga Jyautiṣa period, the first three periods beginning with solar nakṣatras at Vernal equinox(21 March according to Gregorian calendar).

[^4]: ${ }^{7}$ Dikshit's observations were based on Sāyana's commentary (c. 1400 AD), which states that the Krttikā nakssatras 'rises in the east'(śuddha prācyam avodyanti). Sāyana's commentaries on Rgveda and Śatapatha Brāhmaṇa were accepted as most authentic and carrier of old religious traditions by almost all western scholars.

[^5]: ${ }^{9}$ The mul-Apin (c.700 BC) had also used a formula $\mathrm{t}=\mathrm{c} / \mathrm{s}$, where $\mathrm{t}=$ time of sunrise/ sunset, $\mathrm{s}=$ shadow length, and $\mathrm{c}=$ constant, i.e. $60(\mathrm{WS}), 75(\mathrm{Eq})$ and $90(\mathrm{SS})$, maintain a 2: 3 ratio of day length at WS and SS.

[^6]: trīni śatā trī sahasrānyagnim triśacca devā nava cāsaparyan laukṣan

[^7]: ${ }^{10}$ The Saros cycle the Babylonian astronomer, c. 290 BC) suggested a period of 223 lunations or 6586 days (18 years cycle, 18 years 11 days, or 18 years 10 days to be precise including four or five years in the interval) for adjustment of synodic and solar years or as the number of lunar and solar eclipse cycle (Neugebauer, 1969, pp.7, 102,116, 140-141)

[^8]: ${ }^{11}$ Athenic scholar Meton (c. 432 BC) adopted a 19-year cycle for adjusting synodic years with tropical years. Moon's phase after 19 synodic years with additional 7 months (235 lunations) recurring on the same day of the tropical year. The arithmetic rule runs thus: Length of the synodic month $=29.5306$ days; Mean length of the synodic year $=12 \times 29.5306=354.3672 ; 19$ synodic years with 7 additional months (235 lunations) $=6939.6910$ days; Mean length of the tropical year= 365.2422 days; 19 tropical years $=19 \times 365.2422=6939.39 .6018$ days. The Metonic cycle was approximated to 6940 days (125 months of 30 days +110 months of 29 days). Seven additional intercalary months were added to the years $3,6,8,11,14,17,19$ to the synodic lunar years to make a compromise with the tropical years.It also gave an average length of tropical year of 365.25 days. The scheme was very successful and it formed the basis of calendar adopted in the Selucid empire (Mesopotamia) and was used in the Jewish calendar and the calendar of the Christian church.

