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Abstract

The core concept of Calculus is motivated by the dynamic examples of astronomy dealing with instanta-
neous velocities of planets. The first attempt at formalisation of these ideas was made during the periods of
Bhāskarācārya and Mādhava and, Isaac Newton and G F Leibniz developing the entire Calculus, and later
Cauchy laying the foundation for modern Calculus based on the rigorous treatment of the concept of limit.

In this paper Bhāskarācārya's algorithm to deal with expressions involving multiples of zero (treated as
infinitesimals) and zero-divisors (zero as divisors), is considered with a brief reference to the similarity
it bears with the ideas of Newton and Leibniz. Bhāskarācārya says that this mathematics is of great use in
Astronomy.1 Therefore, the infinitesimal concepts suggested in his Līlāvatī and implied in his geometric treat-
ment of instantaneous sine-difference equivalent of the differential equation d sin θ = cos θ dθ, (in Leibniz′s
notation) are considered in some detail as given in Ganẹśadaivajña's own commentary (Buddhiviāsinī) and
his commentary (Vāsanābhāsỵa) of Siddhāntaśiromanị.
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1 INTRODUCTION

Though the concept of infinitesimals is a develop-
ment of mathematics of relatively recent times (17th
century) it has its roots in the ancient world of
mathematics in the form of intuitive ideas prevalent
in Greek, Arabic, Chinese and Indian civilizations
among others.

However, these concepts were of primitive na-
ture based on geometric ideas such as:

1. The tangent as a secant in its limiting position
leading to the idea of slope as derivative.

2. The circumference as the limit of the perimeter

of inscribed regular polygon of large number
of sides leading to the idea of π as a limit of a
sequence.

3. The area of a circle as the sum of indefinitely
large number of infinitely small sectors lead-
ing to the idea of integration as a limit of the
sum.

These are static examples. The core concept of
Calculus is motivated by the dynamic examples of
astronomy dealing with instantaneous velocities of
planets. The earliest development of this was dur-
ing the periods of Bhāskarācārya (12th century ce)
andMādhava of Kerala School of Mathematics (14th

∗The author was a Professor of Mathematics and Dean of Science Faculty, Walchand College of Arts and Science, Solapur, Maha-
rashtra. The article is received from his daughter for considering its publication in IJHS after the demise of the author.

1The statement found in Vāsanābhāsỵa of Bhāskara while commenting on verse 47 of Līlāvatī goes as follows: अࡺ गऀणतࡺ Ηहगऀणते
महानुपयोगः।
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century ce) and, Sir Isaac Newton and G F Leibniz
(17th century ce), the founders of Calculus, andmuch
later, D'Alembert and Cauchy, who laid the theoret-
ical foundation for modern Calculus without involv-
ing infinitesimals. The earlier conceptual difficul-
ties of Calculus were due to the controvertial inde-
terminate form 0

0 , which arises, for example, from
the intuitive concept of infinitesimals as explained
below.

2 NEWTON'S NOTIONS OF INFINITESIMALS

Newton calls the variables x and y fluents and
considers them as moving points on a curve, ẋ and
ẏ being rates of motion called fluxions (instanta-
neous velocities). He calls the products ẋo and
ẏo the moments of fluxions (which are in-
stantaneous displacements or increments) where o
is infinitesimally small.2 The limit of the ratio
ẏo

ẋo
of ultimate quantities is what he calls as

ultimate ratio (the so called
dy

dx
). Since the ratio

of fluxions is same as that of moments of fluxions,
in later years there was confusion between these two
terms, and the term fluxion itself was indiscrimi-
nately used to denote the increments Hayes, A trea-
tise on fluxions. For convenience he denotes ẋo sim-
ply by o and ẏo by f(x+o)−f(x), where y = f(x).
The ultimate ratio

ẏo

ẋo
at o = 0 assumes the indeter-

minate form 0
0 .

Different views of infinitesimals

This section compares algorithms of Newton, Leib-
niz, Euler and Cauchy.

Newton's Fluxions: Variables x and y are called

fluents, the time-rates of changes ẋ and ẏ,
the fluxions, and ẋo and ẏo are the moments of
fluxions,3 o being an infinitesimal.

ẏo

ẋo
is called

the ultimate ratio, thereby implying that o
ultimately equals zero,4 and it is denoted by
ẏ

ẋ
, called the derivative. ẏo =

[
ẏ

ẋ

]
ẋo is the

moment of fluxion ẏ.

Leibniz's Differentials: The infinitesimals of the
variables x and y are called the differentials dx
and dy, where dy = f ′(x)dx. One may treat
them as the ultimate (indivisible) things.5
dy

dx
is the quotient of differentials or differen-

tial coefficient as in dy =
[

dy

dx

]
dx. This is

a useful tool where dx ( ̸= 0) is finite though
sufficiently small.

Euler's Differentials: The differential dx can di-
minish indefinitely till it equals6 0.

dy = f(x + dx) − f(x) =
[

dy

dx

]
dx,

where
[

dy

dx

]
can be expressed in the form

f ′(x, 0) dx

dx
= f ′(x, 0) 0

0
,

virtually defined as f ′(x), whereas dy =
f ′(x) dx ̸= 0, for practical calculations in
science.

Cauchy's Limits: A variable h can diminish indef-
initely close enough to 0 called its limit. In
symbols: h < ϵ (> 0) or lim h = 0, or h → 0,

2Zero: The Biography of A Dangerous IdeaSeife, Zero: The Biography of A Dangerous Idea. o is the lowercase omicron, the first
letter o of the Greek word ouden meaning nothing. Greeks denoted zero by the letter o. Here the word small for all practical purposes
means, a small-difference, small enough for the accuracy warranted by the technology of those times. The word `small' in italics, in what
follows, is used in this sense.

3Newton's algorithm is given in ``Mathematical Principles of Natural Philosophy'' and Heys's ``Treatise on theory of fuxions''Hayes,
A treatise on fluxions.

4Quantities and the ratio of the quantities which in any finite time converge continually to equality and before the end of the time
approach nearer the one to the other than by any given difference, become ultimately equal at o = 0 Smith, History of Mathematics.

5The Calculus Gallery, Masterpieces from Newton to LebsegueDunham, The Calculus Gallery, Masterpieces from Newton to Leb-
segue, p. 24.

6Calculus GalleryDunham, The Calculus Gallery, Masterpieces from Newton to Lebsegue, p. 53.
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h ̸= 0.
f(x + h) − f(x)

h
can be expressed in

the form

f ′(x + hθ)h
h

= f ′(x + hθ),

where 0 < θ < 1, h ̸= 0.

lim
h→zero

f(x + h) − f(x)
h

= lim
h→zero

f ′(x + hθ)

= f ′(x).

In short we can as well define

f(x + h) − f(x)
h

= f ′(x + hθ), h ̸= 0,

= f ′(x), h = 0.

In the above comparisons the infinitesimal nature of
small quantities are virtually treated as irrelevant,
they being either 0 or not 0, as the case may be.

3 BHĀSKARĀCĀRYA'S NOTIONS OF
KHAGUNẠ (MULTIPLE OF ZERO)

It had been the practice to write traditional mathe-
matical works (in Sanskrit) invariably in poetic form.
But a poetic form by its very nature could not ad-
mit the mathematical symbolism and therefore the
author had to resort to algorithmic style. Though
Bhāskarācārya has himself written a commentary
on the astronomical part of his monumental work
Siddhāntaśiromanị, in the case of Līlāvatī and Bī-
jaganịta, being basic mathematics necessary for his
work, the demonstrations of proof and the details of
workings were left to the wisdom of eminent com-
mentators (such as Ganẹśadaivajña and Krṣṇạdaiva-
jña), teachers and gifted students, lest it be too volu-
minous.7

3.1 Ideas of infinitesimals

Bhāskarācārya's multiple of zero khagunạ, x0, is the
counterpart of moment of fluxion. For lack of proper

notation, 0 is treated as a symbol denoting an in-
finitesimal. The commentator of Bhāskarācārya's al-
gebra, i.e., text Bījaganịta, Krṣṇạdaivajña8 explains:
The idea of infinitesimals by considering a numerical
example. The example presented by Krṣṇạdaivajña
is shown in the form of a table below.

Just as Multiplier Multiplicand Product
(यथा गुणकः) (गु؜ः ) (गुणनफलͳ)

12 4 48
12 3 36
12 2 24
12 1 12
12 1/2 6
12 1/4 3
12 1/12 1

He further comments:

अनयैव यु҉ा गुࡺ؜ परमापचये
गुणनफलࡺाࣺप परमापचयेन भाࠖͳ।
परमापचये Ϡ۠तैव पयϵवࡺतीࣻत Ϡ۠े गुे؜
गुणनफलमࣺप Ϡ۠मेवेࣻत ऀसڔͳ।
anayaiva yuktyā gunỵasya paramā-
pacaye gunạnaphalasyāpi paramā-
pacayena bhāvyam. paramāpacaye
śūnyataiva paryavasyatīti śūnye gunỵe
gunạnaphalamapi śūnyameveti śid-
dham.
By the same logic, if the multiplicand
(gunỵa) becomes smaller and smaller so
does the product (gunạnaphala) which
ultimately becomes the smallest (i.e.,
zero) as the multiplicand becomes the
smallest.

Similarly this logic is applicable to the multiplier.
Thus x0 is treated as an infinitesimal, ever decreas-
ing quantity, attaining the value zero. Therefore it is
natural to define x0 as zero. In modern notation:

lim
0→zero

x0 = zero, and [x0]0=zero = zero.

The idea of limit is conveyed by Buddhivilāsinī 9 as
follows:

7SiddhāntaśiromanịSastry, Siddhāntaśiromanị of Bhāskarācārya with Vāsanābhāsỵa, p. 39, śloka 9, Somayaji, Siddhāntaśiromanị
of Bhāskarācārya, p. 99, Bhāskarācārya says that he has made his work neither voluminous nor brief, for both the intelligent and the
less gifted are to be enlightened.

8Bhāskarāchārya viracita BījaganịtīyamApte, Bījaganịtīyam, p. 137.
9LīlāvatīApte, Līlāvatī (In Sanskrit) , p. 198.
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एवं गुणभुज̵ेΜक߫नयाڙगुणࣾڙࣾ यावՂापा-
सۚो बाϜः ाͪࡺ तावُाधयेͪ।
evaṃ dvigunạdvigunạbhujaksẹ-
trakalpanayā yāvaccāpāsanno bāhuh ̣
syāt tāvatsādhayet.
Thus by doubling the number of sides of
a regular polygon, [inscribed in a circle],
is to be carried out till its side is close
enough to the arc containing it.

In modern ϵ, δ notation it implies: choose the num-
ber of sides so large as to make the side δ very
small so that the chord-arc difference ϵ is small
enough. Bhāskarācārya has not defined the deriva-
tive in general but incorporates the idea of deriva-
tive in the concept of instantaneous velocity, in
his SiddhāntaśiromanịSastry, Siddhāntaśiromanị of
Bhāskarācārya with Vāsanābhāsỵa as we shall see
later. Bhāskarācārya says:10

अΜ यावښाव۟हڴासाध϶ बϡࣺन च खؓाࣺन
तावͪ तावͪ टाࡶु իा ाͪ।ࡺ
atra yāvadayāvanmahadvyāsārdhaṃ
bahūni ca khanḍạ̄ni tāvat tāvat sphutạ̄
jyā syāt.
The larger the radius and the more the
number of parts into which an arc is di-
vided (and hence the smaller the parts),
the better shall be the accuracy of the
rsine of the arc.

The concept of infinitesimals is implied here. The
manipulations of multiples of zero and zero-divisors
(zero as divisors) are based on two rules: Normally
x0, a multiple of 0, equals 0.

Rule A If the calculations of an expression contain-
ing xo and o, on putting o = 0, ultimately re-
sults in the indeterminate form 0

0 , thereby elim-
inating the very quantities which are to be de-
termined then treat xo and o as mere symbols,
and do not evaluate them to 0 i.e., xo and o are
not equal to 0.

Rule B The 0 in the numerator of the indeterminate
form

0
0
could be reduced to a multiple x′0 of

0 (of the denominator), giving the result
x′0
0

=
x′.

The above rules are stated briefly by Bhāskarācāryain
his Līlāvatī :

……खगुणः खं खगुणऀࠥ۹ࠥ शेषࣺवधौ॥ ४५ ॥
Ϡ۠े गुणके जाते खं हारࠥेمनुࡰदा राऀशः।
अࣺवकृत एव ̶ेयः ……॥ ४६ ॥
……khagunạh ̣kham,̣ khagunạścintyaśca
śesạvidhau || 45 ||
śūnye gunạke jāte khaṃ hāraścetpunas-
tadā rāśih ̣ |
avikrṭa eva jñeyah…̣…|| 46 ||

Normally a multiple of zero xo, is zero.

Rule 1 If, however, further (mathematical) calcula-
tions are there, multiple of zero, x0, should be
regarded as not zero. (0 is therefore not zero).
Buddhivilāsinī Apte, Līlāvatī (In Sanskrit) ex-
plains that it is treated as mere composite sym-
bol (See Appendix).

Rule 2 If multiple of zero be followed by further
operation of division by zero, i.e.,

x0
0

, it is
to be understood that the multiplicand x re-
mains unaltered i.e.,

x0
0

= x. (Thus x0 is
treated as not zero, and the indeterminate form
is avoided.) Buddhivilāsinī Apte, Līlāvatī (In
Sanskrit) adds:

Rule 3 If, however, division by zero is not there, x0
is zero (See Appendix A for complete transla-
tion of the Sanskrit text for these rules).

The following example given in śloka 47 Līlā-
vatīApte, Līlāvatī (In Sanskrit) by Bhāskarācārya il-
lustrates the infinitesimal nature of multiple of
zero.

Example 1 In mathematical terms it amounts to
solving the equation:

(x0 + x0
2 )3

0
= 63.

10SiddhāntaśiromanịSastry, Siddhāntaśiromanị of Bhāskarācārya with Vāsanābhāsỵa, p. 42.
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It is obvious that Bhāskarācārya could not
have meant 0 = zero in this case, for, if it were
so, x which is to be determined, would itself
be eliminated and the problem becomes pur-
poseless. Since there are further calculations,
byRule 1, x0 is not zero. On simplification we
get x0

0 = 14. Therefore by Rule 2 of the above
algorithm, x = 14.

It is interesting to see how Newton solves the follow-
ing similar example.
Example 2 Newton would, for example, solve the

equation
(x + o)3 − x3

o
= 12. as follows.

Since there are further calculations, byRule 1,

o ̸= 0. Hence (3x2 + 3xo + o2)o
o

= 12 and by
Rule 2, cancelling o, 3x2 + 3xo + o2 = 12.

As no further calculations are there, byRule 3,
o = 0. Hence 3x2 = 12, giving x = ± 2.

Bhāskarācārya says that Mathematics of zero
manipulations are very useful in Astronomy.
We shall consider this now.

3.2 Comparing the algorithms of Newton and Bhāskarācārya

Newton's method Bhāskarācārya's method
Newton's calculation of derivative dy

dx involves the
following algorithm. Let ẋo be an infinitesimal
increment in x and ẏo the increment in y. Let o ̸=
0. Rule (i)

If in any expression multiples of zero x0 occur, 0
is treated as a mere symbol kept by the side of x
as a composite symbol x0 ̸= 0. That is if there are
calculations to be done, let x0 ̸= zero Rule (i).
Hence 0 ̸= zero.

Newton makes all the calculations till he reaches
the form

f ′(x, o)o
o

and cancels o, to get the de-
sired ratio of fluxions

ẏo

ẋo
= f ′(x, o)o

o
= f ′(x, o) Rule (ii).

He, however, finds that there are still some in-
finitesimals involved in f ′(x, o), which cannot be
ignored,** errors being unacceptable in mathe-
matics.

Having done the pending operations, if x0 has
further operation of division* by zero then x0

0 =
x, by cancellation Rule (ii).
[Since there is further operation of division by 0,
by Rule (i), x0 ̸= zero therefore 0 ̸= zero. Hence
cancellation of the two zeroes is justified].

When all the calculations aremade he says let o =
0 Rule (iii).

If all the calulations are over, then x0 = 0 (and 0
= zero) Rule(iii).

This is same as defining


(

ẏ
ẋ

)
o

o


o = 0

as
ẏ

ẋ
. This is same as defining

[
x0
0

]
0 = zero

as x.[
( ẏ

ẋ
)o

o

]
o=0

as ẏ
ẋ . [x0

0 ]0=zero as x.

*The two 0s in
x0
0

are treated as same infinitesimals, whereas x0 and 0 are different infinitesimals.
** It is useful to consider infinitely small quantities such that when their ratio is sought they may not be con-
sidered zero, but which are rejected11 as often as they occur with the quantities incomparably greaterCajori, A

11virtually treated as zero.
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History of Mathematics.

Rule (ii) anticipates the reduction of 0
0 to the form

x.0
0 .

4 GEOMETRIC TREATMENT OF
INFINITESIMALS

4.1 Newton's method

We illustrate Newton′s geometric method of finding
the derivative12 in which he considers the tangent as
a rotating secant KEW in its limiting position KTS.
Newton was of the opinion that the fluxions of geo-
metric entities such as lines, areas, angles, etc., can
be obtained and it is not necessary to introduce them
into geometry13. But he rightly thought it necessary
to demonstrate their role, while considering the tan-
gent as a limit of a secant, as shown below.

S

O
θ

S

α
δαδα

E W

T

K F
δx

δx

δy

y

B

y

C

Fig.1

H
x

In Fig. 1, consider a point K on the circle, and a
secant KEW. Here OKS is the tangent at K, and let
the angles. ̸ KOB = ̸ TKF = θ. The secant
KEW is rotated about K till, the two points K and E,
ultimately coincide and KEW becomes the tangent
KTS, so that in the process the chord KE coincides
with the arc KE. In this ultimate position δα is 0 and
α = θ. Newton states that arc KE is the fluxion (in-
crement) of arc HK, BC the fluxion of OB, and FE
that of CF. These fluxions are in fact the infinitesi-
mals of geometric entities.

In modern notation fluxion stands for δ so that
fluxion of α = δα, fluxion of x = δx and fluxion
of y = δy. As the secant KEW approaches the tan-
gent KTS the line TEF approches the point K and ul-
timately coincides with it. Also δα approaches zero,
and α becomes equal to θ.

Therefore the two dissimilar triangles KEF and
KTF are almost similar to the finite △OKB, for
small δα. So we have

δy

δx
= FE

KF
≈ FT

KF
= m.

Thus in the limiting case, the slope of the secant = the
slope of the tangent. That is,

m = dy

dx
= ẏ

ẋ
.

This is similar to the following geometric treat-
ment of instantneous quanties by Bhāskara.

4.2 Bhāskarācārya's method

Bhāskara considers tātkālikagati or sūksṃagati
which means instantaneous motion or displacement
BD in a given small interval of time, such as daily
motion of slow moving planets, or even smaller in-
terval of time (see Fig.2),

The term tātkālikabhogyakhanḍạm or tātkā-
likadorjyayorantaram which stands for the
resulting instantaneous rsine-difference TD (See
Fig. 4) between two successive rsines is given by

δ(r sin θ) = (r cos θ)rδθ

r
= (r cos θ)BD

r
, (1)

where

δ(r sin θ) = r sin (θ + δθ) − r sin θ.

These are used to find the instantaneous posi-
tion of planetsJoseph, The Crest of the Peacock.
Bhāskarācārya proves the relation (1) in two parts.

12A History of MathematicsCajori, A History of Mathematics, p. 197.
13Ibid., p. 198.
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Part (i) First he considers sine differences for
various arc lengths at constant intervals of
225′ as given in the rsine-table he had pre-
pared, and proves geometrically that

δ′(r sin θ) = (r cos θ)225′

r
. (2)

The prime ′ on δ indicates constant intervals of
225′.

Part (ii) Next he considers sine differences for a
given arc length at variable intervals of rδθ.
Using the interpolation formula he proves first
for small daily motion of anomaly (kendra-
gati), and later for a small displacement 15′

(the radius (bimbārdha) of the Sun), the for-
mula δ(r sin θ) = (r cos θ) rδθ

r .

ताرाࣽलकभोӌखؓकरणायानुपातः।
tātkālikabhogyakhanḍạkaranạ̄yānu-
pātah.̣
Use of Proportions to obtain the in-
stantaneous sine difference.

In Figure 2 and 3, r = 3438′, rδ′θ = 225′ =
arc BD ≈ BD, and TD = r sin(δ′θ) ≈
rδ′θ = 225′.

O

δ′θr

D
RT

Initially θ = 0,

APB
Fig.2

O
θ δ′θ r

B
θ

D≈θ

P

R

̸ BOD = δ′θ
̸ TDB = θ + δ′θ

2 ≈ θ

AFig.3

T

Bhāskara's proof of Part (i)

The proof of (2) as given in Bhāskarācārya's
vāsanābhāsỵa (commentary) proceeds as follows.
He commences the proof by difining kendragati:14

अښतनࡰ࠰नके܃योरۖरं के܃गࣻतः।

adyatanaśvastanakendrayorantaraṃ
kendragatih ̣
The arc-distance, rδθ, between the posi-
tions of (centre of) the planet, say, at Sun
rise of today and tomorrow, is the daily
motion (displacement) of planet.

In the previous paragraph Bhāskarācārya says:

तࡺ कालࡺ मۀऽेनया गيा Ηहࠥालࣻयतुं-
युիत इࣻत। इयं ࣹकल लूाࡱ गࣻतः।
tasya kālasya madhye'nayā gatyā gra-
haścālayitumỵujyata iti. iyaṃ kila sthūlā
gatih.̣
During this interval this daily motion
can be used to find planetary position at
any instant. This indeed is approximate.

भुजիाकरणे यڗोӌखؓं तेन सा गु؜ा
शरࣾڙदΨैभЄիा।
bhujajyākaranẹ yadbhogykhanḍạṃ tena
sā gunỵā śaradvidasrairbhājyā.
This (arc rδθ) be multiplied by the
rsine-difference δ′ (r sin θ) (for the
arc rθ), obtained from the rsine-
differences15 prepared (at intervals of
δ′θ = 225′) and divided by 225.

This prescription essentially gives the rsine-

difference δ′(r sin θ)rδθ

225
for the arc rθ and the small

interval rδθ. Then it is stated:

तΜ तावͪ ताرाࣽलकभोӌखؓकरणायानु-
पातः।
tatra tāvat tātkālikabhogyakhanḍạ-
karanạ̄yānupātah.̣
To get this instantaneous rsine-
difference, here is the method of direct
proportions.

Now let's consider the similar triangles BDT and
BOP (see Figs 3 and 4). With respect to these similar
triangles Bhāskara lays down the rule of proportion
as follows:

14SiddhāntaśiromanịSastry, Siddhāntaśiromanị of Bhāskarācārya with Vāsanābhāsỵa, pp. 52-53, verses 36-37.
15Bhāskarācārya's SiddhāntaśiromanịSastry, Siddhāntaśiromanị of Bhāskarācārya with Vāsanābhāsỵa, slokas 2-9, p. 40.
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यࣺद ࣻΜիातु߰या कोࣺटիयांښ भोӌख-
ؓं शरࣾڙदΨतु߰ं लޟते तदे࠿या ࣹकࣻमي-
Μ कोࣺटիायाः शरࣾڙदΨा २२५ गुणःࢇիा
हरः।
yadi trijyātulyayā kot ̣ijyayādyaṃ bh-
ogyakhanḍạṃ śaradvidasratulyaṃ lab-
hyate tadesṭạyā kimityatra kot ̣ijyāyāh ̣
śaradvidasrā 225 gunạstrijyā harah.̣

It may noted that triangles BDT and BOP are almost
similar for all θ and the given small interval of 225′.

If initial rsine-difference (225') is obtained from
an altitude equal to the radius r, then what is the
rsine-difference for any desired altitude (r cos θ)?
See Fig. 3.

फलं ताرाࣽलकं ....टभोӌखؓͳࡶु
phalaṃ tātkālikaṃ sphutạbh-
ogyakhanḍạṃ ...
The result is the instantaneous rsine-
difference.

That is, δ′(r sin θ) = (r cos θ)225′

r .

Bhāskara's proof of Part (ii)

The proof of the result given by (3) commences with
the following argument.

तेन के܃गࣻतगुϵणनीया शरࣾڙदΨैभЄիा। अΜ
शरࣾڙदΨࣻमतयोगुϵणकभाजकयो߰ुࡰ ٌा-
ۚाशे कृते के܃गतेः कोࣺटիागुणःࢇիा हरः
ाͪ।ࡺ फलं अښतनࡰ࠰नके܃दोիϵयोरۖरं
भवࣻत।
tenakendragatirgunạnīyā śaradvida-
srairbhājyā atra śaradvidasramitayo-
rgunạkabhājakayostulyatvānnāśe krṭe
kendragateh ̣ kot ̣ijyāgunạstrijyā harah ̣
syāt phalaṃ adyatanaśvastanakendra-
dorjyayorantaraṃ bhavati.
By this rsine-difference be multiplied
the daily motion16 and divided by 225′.
When we cancel 225′ from the numera-
tor and the denominator what we obtain
is the product r cos θ BC divided by r.

The result would be the difference in the
daily motion.

This is just interpolation which follows from the
Rule of Three or from the almost similar trian-
gles BDT and BCSSharma, Siddhāntaśiromanị of
Bhāskarācārya similar to the finite triangle POB, see
Fig. 4.

The infinitesimal triangles BDT and BCS are (al-
most) ∼ to the finite △ BOP, for small δθ and for
all θ including the initial value θ = 0, Fig. 2.

It may be noted that

△TDB = θ + δ′θ

2
≈ θ.

Also,

TD = RD − PB

= r sin (θ + δ′θ) − r sin θ.

Morevoer,

D ̸ SCB = θ + δθ

2
≈ θ

SC = r sin (θ + δθ) − r sin θ = r cos θ

(
BC

r

)
.

O
θ

δθ
r

B
θ

≈θ

P

R
Q

̸ BOD = δ′θ = 225′

C

AFig.4

S
T

Bhāskarācārya applies the above method to find
rsine-difference for the radius of Sun's disk, as ex-
plained in SiddhāntaśiromanịSastry, Siddhāntaśiro-
manị of Bhāskarācārya with Vāsanābhāsỵa given be-
low:

16The daily motion denored by BC (= rδθ), will be less than 225′ minutes for all planets except in the case of the moon.
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यࣺद ࣻΜիातु߰ायЂ कोटौ Ρथमं իाध϶ श-
रࣾڙदΨा भोӌखؓं तदाࣾभमतायामࡺЂ ࣹक-
ࣻमࣻत फलं टंࡶु भोӌखؓͳ। तेन गुऀणतं
ࣺबްाध϶ शरࣾڙदΨैभЄի।ं एवं ऍࡱते शरࣾڙ-
दΨࣻमतयोगुϵणहरयोनЄशे कृते ࣺबްाधϵࡺ को-
ࣺटիागुणःࢇիाहरः फलं दोիϵयोरۖरͳ।
yadi trijyātulyāyāṃ kotạu prathamaṃ
jyārdhaṃ śaradvidasrā bhogyakhanḍạṃ
tadābhimatāyāmasyāṃ kimiti phalaṃ
sphutạṃ bhogyakhanḍạm. tena gunịtaṃ
bimbārdhaṃ śaradvidasrairbhājyam�̣
evaṃ sthite śaradvidasramitayorgunạ-
harayornāśe krṭe bimbārdhasya koti-
jyāgunạstrijyāharah ̣ phalam dorjyay-
orantaram.

Here Bhāskarācārya uses the rationale exactly as
given above.

The only difference here is that rδθ stands for the
arc-difference 15′, corresponding to half the width
of Sun's disk, giving the r sine-difference relation:
δ(r sin θ) = r cos(θ)( rδθ

r ).

4.3 Trigonometric method

Bhāskarācārya gives a hint as to how the above
results may be obtained using the expansion17 of
r sin(x + 1)◦. The relation given by Bhāskara is:

r sin(x+1)◦ = r sin(x)◦− r sin(x)◦

6569
+ 10r cos(x◦)

573
,

The rationale behind the above expression can be un-
derstand as follows. The sine addition formule was
well known. Hence,

r sin (x + 1)◦ = r sin x◦ cos 1◦ + r cos x◦ sin 1◦.

Here,

r cos 1◦ = r

(6568
6569

)
≈ r and r sin (1◦)

= r

( 10
573

)
≈ 60′.

δ(r sin x◦) = r sin(x + 1)◦ − r sin x◦

= r cos x◦ 60
r

.

For arbitrarily small interval rδx, by rule of three

δ(r sin(x)) = r cos(x)rδx

r
.

4.4 Infinitesimals and zero-manipulations,
involved in the geometric treatment by
Bhāskarācārya

In Fig. 5 consider the arc BD( = rδθ). This arc rep-
resents the tātkālikagati or infinitesimal increment of
arc AB (= rθ). TD which represents the tātkālikab-
hogyakhanḍạm is the infinitesimal increment of PB
(= r sin δθ). As the line OD approaches and reaches
OB, the triangle TDB becomes a point right triangle

and
TD

BD
assumes the form

0
0
. For this to have any

meaning the infinitesimal TD must be, a multiple of
0, say, x0. Hence

TD

BD
= x0

0
= x,

by Bhāskara's Rule (ii). This point right triangle
TDB, is similar to finite trianlge POB. Thus we have
TD

BD
= OP

OB
, from which we get

δ (r sin θ) = r cos θ

(
BD

r

)
.

O
θ δθ r

B
θ

D≈θ

P

R

AFig.5

T

Bhāskarācārya was indeed referring to these manip-
ulations of infinitesimals Apte, Līlāvatī (In Sanskrit)
when he said that these zero manipulations are very
useful in astronomy.

17English translation of SiddhāntaśiromanịWilkinson, Siddhāntaśiromanị, An English Translation, ślokas 16 and 17, p. 267.
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5 CONCLUSION

Though there are strking similarities between the al-
gorithms of Newton and Bhāskarācārya there are dif-
ferences in perspective. Newton, Leibnz and Euler
and Bhāskarācārya treat the infinitesimal nature of
small quantities virtually as irrelevant. These quan-
tities are either 0 or not 0, as the case may be. This
zero-nonzero dichotomy was there which was im-
plicit in the case of Newton, Leibnz and Euler and
was rather explicit in Bhāskarācārya's case.

Unlike Newton Bhāskarācārya does not explic-
itly state the infinitesimal nature of multiples of zero.
The idea of infinitesimals is implied in his treatment
of multiples of zero and zero divisors. This was re-
strcted to the rsine and rcosine functions, and he
found it handy to use the Rule of Three and the pro-
portional properties of similar right triangles.

He uses geometric method ingeniously thereby
avoiding the indeterminate form 0

0 and replaces Rule
of Proporions by the Rule of Three by identifying
the almost proportional quantities involved, in a way
difficult to imagine. In this geometric process are
involved dissimilar right angled triangles tending to
similarity to a finite triangle, as they converge to a
point. This avoids direct encounter with the indeter-
minate form 0

0 and gives us an impression that we are
dealing with finite quantities. Newton also says in
his geometric treatment of slope of a tangent as the
derivative, infinitesimals are not necessary as they
can be denoted by finite lengths.

Bhāskarācārya's use of the concept of infinitesi-
mals was restricted to applications in planetary cal-
culations unlike that of Newton field of application
was wide and varied. In Bhāskarācārya's times due
to lack of proper notations and motivation there was
no development of Calculus, as such, though clearly,
there was development of Calculus by Mādhava and
NīlakanṭḥaDunham, The Calculus Gallery, Master-
pieces from Newton to Lebsegue of Kerala School of
Mathematics and others, during 15th and 16th cen-
turies leading to the expansion of sine and inverse
tangent functions etc.

These developments by Mādhava were again a
continuation of geometric treatment of infinitesimals,

whereasNewton used themethod of term by term dif-
ferenciation of infinite series unmindful of the con-
vergence problem involved in it. Considering these
facts Bhāskarācārya's bold attempt to give an algo-
rithm to deal with infinitesimals and use these ideas
in astronomy is commendable. Highlighting these
facts is appropriate in his 900th birth year which is
being presently celebrated.

APPENDIX

Buddhivilāsinī 18 makes this more clear, as given be-
low.

शेषࡺ ࣺवधौ कतϵࠖे सࣻत खगुणऀࠥ۹ः।
तथा ࣹह राशेः Ϡ۠े गुणके Ρा݆े तࡺा۠ो
ࣺवࣾधࠥेदऋࡰ, तदा खगुणो राऀशः खं ाࣺदࣻतࡺ
न कायϵͳ। ࣹकۖु Ϡ۠ं तمा࠰Ϻ गुणकࡱाने
ͳ।ݍाࡱ
śesạsya vidhau kartavye sati kh-
agunạścintyah.̣ tathā hi rāśeh ̣ śūnye
gunạke prāpte tasyānyo vidhiścedasti
tadā khagunọ rāśih ̣ khaṃ syāditi
na kāryam .kintu śūnyaṃ tatpārśve
gunạkasthāne sthāpyam.

Further operations pending multiple of
zero be given a second thought. That
is, if a number is multiplied by zero and
there are further operations remaining
then the multiple of zero is not to be con-
strued as zero, but 0 is to be kept by the
side of the number (as a mere symbol)

ततः शेषࣺवधाने कृते पुनः खं हरࠥेـदा तयोः
Ϡ۠गुणकहरयो߰ुࡰ ٌने नाशः कायϵः। नो
चेͪ खं हरः, तदा खगुणो राऀशः खं ...ाͪࡺ
tatah ̣ śesạvidhāne krṭe punah ̣ khaṃ
haraścettadā tayoh ̣ śūnyagunạka-
harayostulyatvena nāśah ̣kāryah ̣. no cet
khaṃ harah,̣ tadā khagunọ rāśih ̣ khaṃ
syāt.

If, having done all the operations, there
is further operation of division by zero
then the denominator and the numerator

18LīlāvatīApte, Līlāvatī (In Sanskrit) pp. 39, 40.



IDEAS OF INFINITESIMALS OF BHĀSKARĀCĀRYA 27

being equal, they be cancelled (0 being
treated as a mere symbol). If, however,
there is no division by zero then the mul-
tiple of zero is to be treated as zero.
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