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Abstract

The prāṇakalāntara, or the difference between the longitude and the corresponding right ascen-
sion, is an important astronomical parameter used in determining the ascendant (lagna), as well as
the equation of time in Indian astronomy. This paper explores the different algorithms described to
calculate the prāṇakalāntara in the Lagnaprakaraṇa, a hitherto unpublished manuscript attributed
to Mādhava, the founder of the Kerala school of astronomy and mathematics. We also point out
the interpretation of some of the algorithms in terms of epicyclic models.
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1. INTRODUCTION

India has a long and rich history of the study
of astronomy, which extends back a few millen-
nia. Renowned astronomer-mathematicians like
Āryabhaṭa, Bhāskara I, Brahmagupta, Lalla, Śrīd-
hara, Śrīpati, Bhāskara II etc. have made numer-
ous contributions to the study of astronomy as
well as mathematics. Starting in the fourteenth
century CE, a succession of scholars enjoying a
teacher-taught lineage (guru-śiṣya-parampara),
and collectively referred to as the Kerala school
of astronomy and mathematics,1 made enormous
contributions to the study of astronomy as well
as mathematics. Mādhava of Saṅgamagrāma,
the illustrious founder of this school is credited
with a number of important results like an infi-

nite series for 𝜋, as well as the functions sine and
cosine. He is credited with a number of astro-
nomical works including Veṇvāroha, Sphuṭacan-
drāpti, Agaṇita-grahacāra, Candravākyāni, Mad-
hyamānayanaprakāra, Mahājyānayanaprakāra,
Lagnaprakaraṇa, and perhaps Golavāda.2
The Lagnaprakaraṇa3 is a work dedicated to

the determination of the ascendant or the uday-
alagna, and discuses numerous techniques for the
same. However, as a necessary precursor to de-
termining the ascendant, the text first discusses
various methods to determine the prāṇakalāntara,
which is the difference between the longitude and
corresponding right ascension of a star.
In this paper, we first discuss the prāṇakalān-

tara and its significance in Section 2. In Sec-
tion 3, we discuss the different algorithms for de-

∗Cell for Indian Science and Technology in Sanskrit, Indian Institute of Technology Bombay, Powai, Mumbai - 400076;
Email: aditya.kolachana@gmail.com
1So named because all these scholars resided in the Malabar coast of the Kerala state in India.
2See Sarma 1977. Also see Pingree 1981, pp. 414–415.
3The authors obtained twomanuscripts of the Lagnaprakaraṇa from the Prof. K. V. Sarma Research Foundation, Chennai.
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termining the prāṇakalāntara as described in the
Lagnaprakaraṇa, and also interpret a few of the al-
gorithms in terms of epicyclic models. Finally, in
Section 4, we discuss the significance of these dif-
ferent techniques, and conclude with our remarks.

2. PRĀṆAKALĀNTARA AND ITS
SIGNIFICANCE

The word prāṇakalāntara is a compound word
that is made up on three parts: prāṇa, kalā, and
antara.4 The term prāṇa generally refers to a
certain unit of time that is close to four seconds,
and is equal to the unit of time corresponding to
one arc-minute of the celestial equator.5 This unit
of time is also sometimes referred to as an asu.
The term kalā refers to one-sixtieth part of a de-
gree. In the current context, it refers to a unit
of measure along the ecliptic equal to one arc-
minute. The word antara in Sanskrit means ‘dif-
ference’. Hence, the compound word prāṇakalān-
tara is used as a technical term denoting the dif-
ference between the longitude and corresponding
right ascension.6 In Lagnaprakaraṇa, prāṇakalān-
tara is primarily used to convert the longitude of
any point on the ecliptic into its corresponding
right ascension, or vice-versa. Nīlakaṇṭha also em-
ploys the prāṇakalāntara to determine the equa-
tion of time in his Tantrasaṅgraha.7
Denoting the longitude with 𝜆, and the right

ascension with 𝛼, the prāṇakalāntara can be ex-
pressed in mathematical notation as

prāṇakalāntara = 𝜆 − 𝛼.
While this quantity can be positive or negative de-
pending on the point of the ecliptic under consider-
ation, Indian astronomers considered only its mag-
nitude, and applied it positively or negatively to

the longitude to obtain the right ascension. There-
fore, the general formula for determining the right
ascension, given the longitude and the prāṇakalān-
tara, can be written as follows:

𝛼 = 𝜆 ± prāṇakalāntara = 𝜆 ± |𝜆 − 𝛼| .

3. DETERMINATION OF PRAṆAKALĀNTARA
IN THE LAGNAPRAKARAṆA

The Lagnaprakaraṇa can be divided into eight
chapters, of which the last seven chapters are es-
sentially dedicated to different methods of deter-
mining the lagna. The first chapter lays the foun-
dation for this by introducing various concepts
like declination, prāṇakalāntara, dyujyā or ra-
dius of diurnal circle, ascensional difference, and
kālalagna or the time elapsed since the rise of the
vernal equinox at a desired instance. All these vari-
ables have great physical significance. However,
depending on the approach to the problem, only a
select few of them would appear in a specific pro-
cedure of calculating lagna.
After the customary invocation, and after

quickly defining the declination and versine,
the text immediately jumps into the discussion
of prāṇakalāntara in verses 6–17, which de-
scribe various methods of calculating this quan-
tity. Below, we discuss the different methods
to determine the prāṇakalāntara discussed in the
Lagnaprakaraṇa. In the following discussion, it
may be noted that the radius of the diurnal circle
of a given body having declination of 𝛿 is nothing
but 𝑅 cos 𝛿, where 𝑅 is the radius of the equator. It
may also be noted that verses 13 and 14 discuss the
appropriate sign to be used with the prāṇakalān-
tara, depending upon the quadrant of the ecliptic
under consideration.

4The first two words are combined through a karmadhāraya compound, and the last one through a ṣaṣṭhītatpuruṣa.
5The equator consists of 360∗60 = 21600 arc-minutes, while the period of Earth’s rotation is approximately 24∗60∗60 =

84600 seconds. Therefore, one arc-minute of the equator would take approximately 4 seconds to cut across the prime merid-
ian.
6It may be noted that both prāṇas and kalās are measured in the same unit essentially, as both correspond to one-sixtieth

of a degree, though measured along the equator and the ecliptic respectively.
7See Ramasubramanian and Sriram 2011, pp. 80–82.
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Fig. 1. Determining the prāṇakalāntara.

Method 1

अ٦ۅजुीवाहतबाϛजीवाʹ
इ٦ࠋमुौߢЂ ʹܒवभजेदवाࣆ ।
चापीकृतं बाϛगुणࡆ चापाͫ
धतंࣉवशोࣆ ΢ाणकलाڢरं ाͫࡆ ॥६॥
antyadyujīvāhatabāhujīvām
iṣṭadyumaurvyā vibhajedavāptam |
cāpīkṛtaṃ bāhuguṇasya cāpāt
viśodhitaṃ prāṇakalāntaraṃ syāt ||6||

One should divide the Rsine [of the Sun’s longi-
tude] (bāhujīvā)—which is multiplied by the last
radius of the diurnal circle (antyadyujīvā)—by
the given radius of the diurnal circle (dyumau-
rvī). The quotient converted to arc [minutes]
and then subtracted from the arc corresponding
to the Rsine [of the Sun’s longitude] would be
the difference of the longitude and right ascen-
sion (prāṇakalāntara).

The expression for prāṇakalāntara given in the
above verse can be understood with the help of
Fig. 1. Here, 𝑃 and 𝐾 represent the poles of
the equator and ecliptic respectively. Γ represents
the vernal equinox, while 𝑆 is the Sun with lon-
gitude 𝜆 and declination 𝛿. 𝜖 denotes the obliq-
uity of ecliptic, which is also the maximum possi-
ble declination of the Sun. The meridian passing
through the Sun intersects the equator at 𝐵, and

therefore Γ𝐵 represents the right ascension 𝛼 of
the Sun. Using the above notations, the expres-
sion for prāṇakalāntara given in the verse may be
expressed as:

𝜆 − 𝛼 = 𝜆 − 𝑅 sin−1
(

𝑅 sin 𝜆 × 𝑅 cos 𝜖
𝑅 cos 𝛿 ) . (1)

The second expression on the right-hand side can
be easily seen to be the right ascension of the Sun
by considering the spherical triangle 𝑃 Γ𝑆. Here,
𝑃 𝑆 = 90 − 𝛿 and 𝑃 Γ̂𝑆 = 90 − 𝜖. Now, applying
the sine rule of spherical trigonometry, we have

sin 𝛼
sin 𝜆 = sin(90 − 𝜖)

sin(90 − 𝛿),

or, 𝛼 = sin−1
(

sin 𝜆 cos 𝜖
cos 𝛿 ) . (2)

In the above expression, the sines are dimen-
sionless, whereas the Indian Rsine is a linear mea-
sure. Taking this into account, the expression for
𝛼 may be written as:

𝛼 = 𝑅 sin−1
(

𝑅 sin 𝜆 × 𝑅 cos 𝜖
𝑅 cos 𝛿 ) .

Thus, we easily see that (1) is nothing but the
difference of the longitude and the right ascension,
i.e. prāṇakalāntara.
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Method 2

कोटीगुणं ासदलेनߢ संह-
Ђߢ٦मुौࠋेؖ ΢ࣆवभԷ लݎाͫ ।
चापीकृताͫ कोࣅटगुणࡆ चापे
ؖнेऽथवा ΢ाणकलाڢरं ाͫࡆ ॥७॥
koṭīguṇaṃ vyāsadalena saṃha-
tyeṣṭadyumaurvyā pravibhajya labdhāt |
cāpīkṛtāt koṭiguṇasya cāpe
tyakte’thavā prāṇakalāntaraṃ syāt ||7||

Or, the prāṇakalāntara would be that when
the arc of the Rcosine [of the Sun’s longitude]
(koṭiguṇa) is subtracted from the arc of the quo-
tient obtained after multiplying the Rcosine [of
the Sun’s longitude] (koṭīguṇa) by the semi-
diameter, [and then] dividing it by the day-radius
(dyumaurvī).

The expression coded in the above verse to de-
termine the prāṇakalāntara can be expressed as
follows:

𝜆−𝛼 = 𝑅 sin−1
(

𝑅 cos 𝜆 × 𝑅
𝑅 cos 𝛿 )−𝑅 sin−1(𝑅 cos 𝜆).

(3)
The rationale behind the above expression can be
understood as follows. As indicated in Fig. 1, the
Sun reaches itsmaximumdeclination at point𝐷 on
the prime meridian. Now, considering the spheri-
cal triangle 𝑃 𝑆𝐷, and applying the sine rule, we
have

sin(90 − 𝛼)
sin(90 − 𝜆) = sin 90∘

sin(90 − 𝛿),

or, sin(90 − 𝛼) = cos 𝜆
cos 𝛿 . (4)

It can be seen that the sine inverse of the right-hand
side of the above expression is equivalent to the
first term in the RHS of (3). Now, subtracting the
sine inverse of the cosine of the longitude of the
Sun from this quantity, we obtain the prāṇakalān-
tara:

sin−1
(

cos 𝜆
cos 𝛿 ) − sin−1 cos 𝜆

= sin−1 sin(90 − 𝛼) − sin−1 sin(90 − 𝜆)
= 𝜆 − 𝛼.

Method 3

अۅΖा࣎ڢशराहता٣जुगुणाͫ ंۅमܒΝԷाࣆ फलं
मफलंڢव٦ा٢ाϛगुणा،द࣎ࣆ संशोڌ वग࣮कृताͫ ।
कोࣅटԷाकृࣆतसंयुताͫ पदࣆमह ٦Էुा तया संहरेͫ
कोࣅटԷाڢफलाहࣆतं फलࣆमदं ासुभेदंܒलࣈ वϘःࣆ ॥८॥
antyakrāntiśarāhatādbhujaguṇāt trijyāpta-
mantyaṃ phalaṃ
vidyādbāhuguṇāttadantimaphalaṃ saṃśodhya
vargīkṛtāt |
koṭijyākṛtisaṃyutāt padamiha dyujyā tayā
saṃharet
koṭijyāntaphalāhatiṃ phalamidaṃ liptāsub-
hedaṃ viduḥ ||8||

One should know the antyaphala as the quotient
obtained from dividing the product of the Rsine
[of the Sun’s longitude] (bhujaguṇa) and the ver-
sine corresponding to the maximum declination
(antyakrāntiśara) by the radius (trijyā). Having
subtracted that antimaphala (antyaphala) from
the Rsine [of the Sun’s longitude], the square-
root taken from square [of that quantity] added
by the square of the Rcosine [of the Sun’s lon-
gitude] (koṭijyā), is the radius of the diurnal cir-
cle (dyujyā). One should divide the product of
the koṭijyā and the antyaphala by that (dyujyā).
[Scholars] know this quotient as the difference
of the [Sun’s] longitude and right ascension (lip-
tāsubheda).

This verse first defines a quantity known as
antyaphala as follows:

antyaphala = 𝑅 sin 𝜆 × 𝑅 versin 𝜖
𝑅 . (5)

It then presents relations for the radius of the diur-
nal circle (dyujyā or 𝑅 cos 𝛿), and the prāṇakalān-
tara. The expressions for these two quantities pre-
sented in the text may be expressed as

𝑅 cos 𝛿 = √(𝑅 sin 𝜆 − antyaphala)2 + (𝑅 cos 𝜆)2,
(6)

𝜆 − 𝛼 = 𝑅 cos 𝜆 × antyaphala
𝑅 cos 𝛿 . (7)
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Fig. 2. Determining the antyaphala and dyujyā.
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The rationale behind (6) can be understood from
Fig. 2. In the figure, 𝑆 and 𝑆′ indicate a point
on the ecliptic, and its projection on the equato-
rial plane respectively. The planar right-angled
triangle 𝑆𝑂𝑆′ lies in the meridian plane passing
through 𝑆, along which the declination is mea-
sured. Therefore, we have 𝑆𝑂̂𝑆′ = 𝛿, and hence

𝑆𝑆′ = 𝑅 sin 𝛿, 𝑂𝑆′ = 𝑅 cos 𝛿.

The right-angled8 triangle 𝑂𝐵𝑆 lies in the plane
of the ecliptic. The angle 𝐵𝑂̂𝑆 = 𝜆, and hence

𝐵𝑆 = 𝑅 sin 𝜆, 𝑂𝐵 = 𝑅 cos 𝜆.

The right-angled triangle 𝑆𝐵𝑆′ lies in a plane per-
pendicular to the equator, and is parallel to the
plane containing the great circle passing through
the poles of the ecliptic (𝐾) and equator (𝑃 ).
Hence, the angle 𝑆 ̂𝐵𝑆′ = 𝜖, and

𝐵𝑆 = 𝑅 sin 𝜆, 𝐵𝑆′ = 𝑅 sin 𝜆 cos 𝜖.

Now, consider the right-angled triangle 𝑂𝐵𝑆′ that
lies on the plane of the equator, and whose sides
have been calculated above. Since𝑂𝑆′2 = 𝐵𝑆′2+
𝑂𝐵2, we have

𝑅 cos 𝛿 = √(𝑅 sin 𝜆 cos 𝜖)2 + (𝑅 cos 𝜆)2

= √(𝑅 sin 𝜆 − antyaphala)2 + (𝑅 cos 𝜆)2,

which is the same as (6) given in the text.9

Thus, we find that the expression for dyujyā
given by (6) is an exact expression. However, the
expression for the prāṇakalāntara which is given
in terms of the antyaphala and the dyujyā in (7)
seems to be approximate, and can be understood
as follows. Substituting (5) in (7), and employing
versin 𝜖 = 1 − cos 𝜖, we have
cos 𝜆 × antyaphala

cos 𝛿 = cos 𝜆 sin 𝜆
cos 𝛿 −cos 𝜆 sin 𝜆 cos 𝜖

cos 𝛿 .

Substituting

cos 𝛼 = cos 𝜆
cos 𝛿 , sin 𝛼 = sin 𝜆 cos 𝜖

cos 𝛿 ,

from (4) and (2) respectively, the above expression
reduces to10

cos 𝜆 × antyaphala
cos 𝛿 = sin 𝜆 cos 𝛼 − cos 𝜆 sin 𝛼

= sin(𝜆 − 𝛼).
This appears to have been approximated as 𝜆 − 𝛼.
Indian mathematicians knew at least from the time
of Āryabhaṭa that sin 𝜃 ≈ 𝜃, for small 𝜃. The
prāṇakalāntara has a maximum value of approx-
imately 2.6∘, at a longitude of 46∘, as shown in
Fig. 3.11 Therefore, the use of this approximation
is justified.
From a geometric point of view, the expression

for the antyaphala can be thought of as the differ-
ence between the hypotenuse and the base of the
triangle 𝑆𝐵𝑆′. That is

𝐵𝑆 − 𝐵𝑆′ = 𝑅 sin 𝜆 − 𝑅 sin 𝜆 cos 𝜖
= 𝑅 sin 𝜆 versin 𝜖,

8The triangle does not appear right-angled in the figure due to the difficulty in depicting the three-dimensional celestial
sphere on a two-dimensional surface.
9It may be mentioned here that while discussing the determination of right ascension, Nīlakaṇṭha in his Tantrasaṅgraha

employs the term koṭikā to refer to the simplified expression

𝑅 sin 𝜆 cos 𝜖 = 𝑅 sin 𝜆 − antyaphala.

For details, see Ramasubramanian and Sriram 2011, pp. 76–79.
10In the Tantrasaṅgraha, Nīlakaṇṭha indicates that Mādhava was aware of the rule

sin(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵.

See Ramasubramanian and Sriram 2011, pp. 70–73.
11Plotted taking the obliquity of the ecliptic as 𝜖 = 24∘.
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Fig. 3. Variation of prāṇakalāntara with longitude.

which is essentially the same as (5). When the
Sun’s longitude is 90 at 𝐷, this expression reaches
its maximum value, which can also be deduced
from the triangle 𝐷𝑂𝐹 :

𝑅 sin 𝜆 versin 𝜖 = 𝑅 versin 𝜖
= 𝑅 − 𝑅 cos 𝜖
= 𝑂𝐷 − 𝑂𝐹 .

Method 4

दोःकोࣅटजीवे पुनर࣎ڢमेन
फलेन हؘा वभजेͫࣆ ЂߢΝमौࣆ ।
लंݎ भुजाकोࣅटफले पुनͫ࠼
भुजाफलं ʹڌ٥शोࣉासदलाߢ ॥९॥

࣊शࡆࠋ को֌ा߱ फलࡆ कृؖोः
समासमूलं भवࣆत ٦जुीवा ।
कोटीफलं ासदलेनߢ हؘा
٦Էुाύतं ΢ाणकलाڢरं ाͫࡆ ॥१०॥
doḥkoṭijīve punarantimena
phalena hatvā vibhajet trimaurvyā |
labdhaṃ bhujākoṭiphale punastat
bhujāphalaṃ vyāsadalādviśodhyam ||9||
śiṣṭasya koṭyāśca phalasya kṛtyoḥ
samāsamūlaṃ bhavati dyujīvā |
koṭīphalaṃ vyāsadalena hatvā
dyujyāhṛtaṃ prāṇakalāntaraṃ syāt ||10||

Again, having multiplied the Rsine and Rco-
sine [of the Sun’s longitude] by antimaphala
(antyaphala), one should divide [the obtained
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quantities] by the radius (trimaurvī). The quo-
tients obtained are bhujāphala and koṭiphala.
Again, that bhujāphala should be subtracted
from the semi-diameter. The square-root of the
sum of the squares of the residue and koṭiphala
is the radius of the diurnal circle (dyujīvā). The
koṭīphala multiplied by the semi-diameter and
divided by dyujyā would be prāṇakalāntara.

These two verses describe yet another way of
calculating (i) the radius of the diurnal circle, and
(ii) the prāṇakalāntara, with the help of two inter-
mediary quantities

bhujāphala = 𝑅 sin 𝜆 × antyaphala
𝑅 , (8)

koṭīphala = 𝑅 cos 𝜆 × antyaphala
𝑅 . (9)

Then, the radius of the diurnal circle is given as

𝑅 cos 𝛿 = √(𝑅 − bhujāphala)2 + (koṭīphala)2,
(10)

and the prāṇakalāntara as

𝜆 − 𝛼 = koṭīphala × 𝑅
𝑅 cos 𝛿 . (11)

Expressions (10) and (11) can be shown to be
equal to results obtained earlier through simple
trigonometric manipulation. Readers can easily
verify that (10) indeed yields (6) upon substituting
(8) and (9) in it, and that (11) reduces to (7) upon
substituting (9) in it.12
However, the above relations also have a deep

geometric significance. The author appears to
have conceived of a geometric model akin to the
classical epicycle or nīcoccavṛttamodel employed
in determining the true position of a planet from
its mean position. In this model, the radius of the
epicycle—which is taken to be antyaphala here—
is a function of the sine of the longitude of the Sun

and hence would be zero at 𝜆 = 0 or 180, and will
be maximum at 𝜆 = 90 or 270. Fig. 4 depicts this
model wherein, the radius of the epicycle is given
by

𝑎 = 𝑃0𝑃 = 𝑅 sin 𝜆 versin 𝜖 = antyaphala,

while 𝑂𝑃0 = 𝑅 is the radius of the deferent cir-
cle. The radius of the diurnal circle 𝑂𝑃 = 𝑅 cos 𝛿
is what is to be determined. It is easily seen that
the radius of the diurnal circle is maximum (= 𝑅)
when 𝜆 = 0,13 as in this case the antyaphalawould
be zero, and both 𝑃 and 𝑃0 would coincide with
𝑋.14 As the longitude of the Sun increases, the
dyujyā starts decreasing, and would be shortest
when 𝜆 = 90. In this case, the radius of the epicy-
cle (that corresponds to the antyaphala) reaches its
maximum value which is

𝑎𝑚𝑎𝑥 = 𝑅 − 𝑅 cos 𝜖.

When this happens, 𝑃0 would coincide with 𝑌 and
𝑃 with 𝑇 .
In the triangle 𝑃0𝑂𝑃 , 𝑃 𝑄 is a perpendicular

dropped on 𝑂𝑃0, and since 𝑃 𝑃0 is parallel to 𝑂𝑌 ,
we have

𝑃 ̂𝑃0𝑄 = 𝜆′ = 90 − 𝜆.
Then, in the right-angled triangle 𝑃0𝑄𝑃 we have

bhujāphala 𝑃0𝑄 = sin 𝜆 × antyaphala,
koṭīphala 𝑃 𝑄 = cos 𝜆 × antyaphala,

which are essentially the expressions (8) and (9)
given in the text respectively. This also yields

𝑂𝑄 = 𝑅 − bhujāphala.

Therefore, in right-angled triangle 𝑃 𝑂𝑄 we have

𝑅 cos 𝛿 = √(𝑅 − bhujāphala)2 + (koṭīphala)2,
12Here again, the approximation sin(𝜆 − 𝛼) ≈ 𝜆 − 𝛼 is used.
13This is expected as the declination 𝛿 would also be zero, implying a position on the equator.
14The deferent circle here is analogous to the equatorial plane, as 𝑅 is the maximum possible radius (𝑅 cos 𝛿) of the diurnal
circle.
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𝑅𝑂

(a) The annual trajectory (to scale) of dyujyā when mapped on to the equatorial plane.
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Fig. 4. Determination of dyujyā conceiving an epicyclic model.
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which is the same as (10). Therefore, this computa-
tion is akin to the computation of the mandaphala
or śīghraphala in the Indian epicycle or eccentric
models, with the dyujyā playing the role of the
karṇa. In this specific case, the karṇa is always
less than or equal to 𝑅.

Method 5

य٥ा परΖा࣎ڢशरेण हؘा
कोटीगुणं ासदलेनߢ ύؘा ।
लेݎन दोःकोࣅटगुणौ नहؖࣄ
ΝԷाύतेࣆ तΝ फले भवेताʹ ॥११॥
कोटीफलं ̶࣊पतु तؑरम٦मुौߢЃ
त٥गϳबाϛफलवगϳसमासमूलʹ ।
٦Էुा भवे٣जुफलाहतࣆव࠼राधϴ15
٦Էुाύतं भवࣆत तΝ कलासुभेदʹ ॥१२॥
yadvā parakrāntiśareṇa hatvā
koṭīguṇaṃ vyāsadalena hṛtvā |
labdhena doḥkoṭiguṇau nihatya
trijyāhṛte tatra phale bhavetām ||11||
koṭīphalaṃ kṣipatu tatparamadyumaurvyāṃ
tadvargabāhuphalavargasamāsamūlam |
dyujyā bhavedbhujaphalāhatavistarārdhaṃ
dyujyāhṛtaṃ bhavati tatra kalāsubhedam ||12||

Or, when the Rcosine [of the Sun’s longitude]
multiplied by the Rversine of the maximum dec-
lination and divided by the semi-diameter, [and
the result separately] multiplied by the Rsine and
Rcosine [of the Sun’s longitude] and divided by
the radius (trijyā), there would be two phalas
(bhujaphala and koṭīphala). Add the koṭīphala
to that last radius of the diurnal circle (dyumau-
rvī). The square-root of the sum of the square of
that [previously determined sum] and the square
of the bāhuphala (bhujaphala) would be the ra-
dius of the diurnal circle (dyujyā). The bhu-
japhala multiplied by the semi-diameter and di-
vided by the dyujyā would be the difference
in longitude and right ascension (kalāsubheda)
there.

This verse yet again defines two intermedi-

ary quantities bhujaphala and koṭīphala (different
from those in the previous verse):

bhujaphala = 𝑅 cos 𝜆 × 𝑅 versin 𝜖
𝑅 × 𝑅 sin 𝜆

𝑅 ,
(12)

koṭīphala = 𝑅 cos 𝜆 × 𝑅 versin 𝜖
𝑅 × 𝑅 cos 𝜆

𝑅 ,
(13)

in service of determining (i) the radius of the Sun’s
diurnal circle

𝑅 cos 𝛿 = [(𝑅 cos 𝜖 + koṭīphala)2+

(bhujaphala)2]
1
2 , (14)

and (ii) the prāṇakalāntara, i.e.

𝜆 − 𝛼 = bhujaphala × 𝑅
𝑅 cos 𝛿 . (15)

It is easy to verify that, after some basic trigono-
metric manipulation, (14) yields (6) upon substi-
tuting (12)–(13) in it, while (15) yields (7) upon
substituting (12) in it.16
Here, the author appears to have come up

with the given relations by conceiving a differ-
ent epicyclic model to the one discussed in the
previous method. Here, firstly, one has to con-
sider a deferent circle of radius 𝑅 cos 𝜖, which
is the smallest possible radius of the diurnal cir-
cle. Secondly, the radius of the epicycle is taken
as 𝑅 cos 𝜆 versin 𝜖 instead of 𝑅 sin 𝜆 versin 𝜖 or
antyaphala as in the previous method.
Fig. 5 depicts this model wherein, the radius of

the epicycle is given by

𝑎′ = 𝑃0𝑃 = 𝑅 cos 𝜆 versin 𝜖,

while 𝑂𝑃0 = 𝑅 cos 𝜖 is the radius of the defer-
ent circle. The radius of the diurnal circle 𝑂𝑃 =
𝑅 cos 𝛿 is what is to be determined. It is easily
seen that the radius of the diurnal circle is maxi-
mum (= 𝑅) when 𝜆 = 0, as in this case the radius
of the epicycle 𝑎′

𝑚𝑎𝑥 = 𝑅 − 𝑅 cos 𝜖, and 𝑃 and 𝑃0
15Manuscripts read .राधЂ࠼वࣆ However, राधϴ࠼वࣆ is more appropriate here.
16Here again, the approximation sin(𝜆 − 𝛼) ≈ 𝜆 − 𝛼 is used.
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𝑅 cos 𝜖𝑂

(a) The annual trajectory (to scale) of dyujyā when mapped on to the equatorial plane.
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Fig. 5. Determination of dyujyā conceiving an epicyclic model.



12 INDIAN JOURNAL OF HISTORY OF SCIENCE

would coincide with 𝑌 and 𝑇 respectively. As the
longitude of the Sun increases, the dyujyā starts de-
creasing, and would be shortest when 𝜆 = 90. In
this case, the radius of the epicycle becomes zero,
as both 𝑃0 and 𝑃 coincide with 𝑋.
In the triangle 𝑃0𝑂𝑃 , 𝑃 𝑄 is a perpendicular

dropped on extended 𝑂𝑃0, and since 𝑃0𝑃 is par-
allel to 𝑂𝑌 , we have 𝑃 ̂𝑃0𝑄 = 𝜆. Then, in the
right-angled triangle 𝑃0𝑄𝑃 we have

bhujaphala 𝑃 𝑄 = sin 𝜆 × 𝑎′,
koṭīphala 𝑃0𝑄 = cos 𝜆 × 𝑎′,

which are essentially the expressions (12) and (13)
given in the text respectively. This also yields

𝑂𝑄 = 𝑅 cos 𝜖 + koṭīphala.

Therefore, in right-angled triangle 𝑃 𝑂𝑄 we have

𝑅 cos 𝛿 = [(𝑅 cos 𝜖 + koṭīphala)2+

(bhujaphala)2]
1
2 ,

which is the same as (14).

Application of prāṇakalāntara

The following two verses describe when the
prāṇakalāntara is to be applied positively or neg-
atively.

दोःकोࣅटमौߢЇवϳधत࣌ࡓमौߢЂ
लंݎ परापΖमबाणࣄनҷʹ ।
٦Էुाύतं ΢ाणकलाڢरं तͫ
युҗौजपादΖमतो धनणϳʹ ॥१३॥
doḥkoṭimaurvyorvadhatastrimaurvyā
labdhaṃ parāpakramabāṇanighnam |

dyujyāhṛtaṃ prāṇakalāntaraṃ tat
yugmaujapādakramato dhanarṇam ||13||

The quotient obtained from the division of the
product of the Rsine and Rcosine [of the Sun’s
longitude] by radius, multiplied by Rversine
corresponding to the maximum declination and
divided by the radius of the diurnal circle is
prāṇakalāntara. That is positive and negative
depending on even and odd quadrants respec-
tively.

This verse gives the following relation for the
prāṇakalāntara:

𝜆 − 𝛼 = 𝑅 sin 𝜆 × 𝑅 cos 𝜆
𝑅 × 𝑅 versin 𝜖

𝑅 cos 𝛿 . (16)

This is just a restatement of the (7), with only the
order of terms changed.
The verse also states that the prāṇakalāntara is

to be applied negatively when the Sun is in the first
and third quadrants,17 and positively when it is in
the second and fourth quadrants. This can be un-
derstood from the fact that, for the Sun, 𝜆 > 𝛼
in the first and third quadrants, and 𝜆 < 𝛼 in
the second and fourth quadrants.18 Therefore, the
prāṇakalāntara of the form |𝜆 − 𝛼| has to be sub-
tracted from the longitude of the Sun in the first
and third quadrants, and added to the longitude of
the Sun in the second and fourth quadrants to ob-
tain the correct right ascension.19

ࡆ٥ҷࣉ सायनरवेभुϳजमौࣆवϳकाधЂͫ
अۅापमेषुगु࣊णताٰुगुणेन लݎʹ ।
ासुभेदܒलࣈ इह स ࡆ٥गुणࣉ भानोः
जूकࣅΖयाࣅदवशतः Ζमशो धनणϳʹ ॥१४॥
dvighnasya sāyanaraverbhujamaurvikārdhāt
antyāpameṣuguṇitāddyuguṇena labdham |
liptāsubheda iha sa dviguṇasya bhānoḥ
jūkakriyādivaśataḥ kramaśo dhanarṇam ||14||

17Measuring eastwards from the vernal equinox.
18For instance, consider triangle 𝑃 Γ𝐵 in Fig. 1, where the Sun is depicted in the first quadrant. Here, Γ𝐵 will be the
shortest great circle arc from Γ to any point on 𝑃 𝐵 as 𝑃 itself is its pole. Therefore, the great circle arc Γ𝑆, whose pole lies
at 𝐾 , will be longer than Γ𝐵. Hence, we can show that 𝜆 > 𝛼 when the Sun is in the first quadrant. Similarly, we can also
show that 𝜆 > 𝛼 in the third quadrant, and 𝜆 < 𝛼 in the second and fourth quadrants.
19Indian mathematicians and astronomers typically preferred not to deal with negative numbers. They therefore consid-
ered only the absolute value of any difference, and changed the sign of the quantity appropriately during its application in
a mathematical operation.
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The quotient obtained from the division of—half
of the Rsine of twice the precession corrected
longitude of the Sun multiplied by the Rversine
corresponding to the last declination—by the ra-
dius of the diurnal circle (dyuguṇa) is the differ-
ence in the longitude and right ascension (liptā-
subheda) here. That is positive or negative de-
pending on if twice the longitude is [in the six
signs] commencing from Libra (Jūka) or Aries
(Kriya) respectively.

This verse gives the following relation for the
prāṇakalāntara, i.e.

𝜆 − 𝛼 =
1
2 × 𝑅 sin 2𝜆 × 𝑅 versin 𝜖

𝑅 cos 𝛿 , (17)

which reduces to (7) upon substituting

sin 2𝜆 = 2 sin 𝜆 cos 𝜆

in it.
The verse states that the prāṇakalāntara is to

be applied positively when twice the Sun’s longi-
tude is in the range 180∘ to 360∘ (i.e. 90∘ < 𝜆 <
180∘), and negatively when the same quantity is
in the range of 0∘ to 180∘ (i.e. 0∘ < 𝜆 < 90∘).20
This is equivalent to the statement in the previous
verse that prāṇakalāntara is to be applied posi-
tively when the Sun is in the second and fourth
quadrants, and negatively when it is present in the
first and third quadrants.

Method 6

After discussing the application of prāṇakalān-
tara, the text describes one last method for the de-
termination of dyujyā and prāṇakalāntara.

य٥ा नҷीकृतसायनाकЂͫࣄ٥ࣉ
भुजागुणं कोࣅटगुणՑ नीؘा ।
परापयानेषुदलाहतौ तौ
ौܒΝजीवयाࣆ भवतः फले ٥े ॥१५॥

परापमेࠗधϳࣆवयुࣕіमौߢЃ
कोटीफलं तृګगककॳ टा٦ोः।
णϴࡈ च तٟोःफलवगϳयोगाͫ
मूलՑ भानोभϳवࣆत ٦जुीवा ॥१६॥
भुजाफलं Νजी  वयाࣆ समाहतं ٦जुीवया ।
हरेؒलࡆ कामुϳकं कलासुभेद उԖते ॥१७॥
yadvā dvinighnīkṛtasāyanārkāt
bhujāguṇaṃ koṭiguṇañca nītvā |
parāpayāneṣudalāhatau tau
trijīvayāptau bhavataḥ phale dve ||15||
parāpameṣvardhaviyuktrimaurvyāṃ
koṭīphalaṃ tanmṛgakarkaṭādyoḥ |
svarṇaṃ ca taddoḥphalavargayogāt
mūlañca bhānorbhavati dyujīvā ||16||
bhujāphalaṃ trijī  vayā samāhataṃ dyujīvayā |
haretphalasya kārmukaṃ kalāsubheda  ucy-
ate ||17||

Or, after computing Rsine (bhujāguṇa) and Rco-
sine (koṭiguṇa) from twice of the precession cor-
rected longitude of the Sun, those two multiplied
by half of the Rversine of the maximum declina-
tion and divided by the radius (trijīvā) become
the two phalas (bhujāphala and koṭīphala). The
koṭīphala is additive or subtractive to the radius
diminished by half of the Rversine correspond-
ing to the maximum declination when it is in
[six signs] commencing from Capricorn (mṛga)
or Cancer (karkaṭa) [respectively]. The square-
root of the sum of the squares of that [result]
and doḥphala (bhujāphala) is the radius of the
diurnal circle (dyujyā) of the Sun. One should
divide the bhujāphalawhich has been multiplied
by the radius, by the radius of the diurnal circle
(dyujīvā). The arc of that result is stated to be
the difference in longitude and right ascension
(kalāsubheda).

This verse first defines two intermediary quan-
tities

bhujāphala =
𝑅 sin 2𝜆 × 1

2𝑅 versin 𝜖
𝑅 , (18)

20The zodiac signs referred to in the verse serve only to indicate the position on the ecliptic, and are unrelated to the par-
ticular star connected to that zodiac sign. Therefore, ‘Libra’ and ‘Aries’ here refer to the positions of 0∘ and 180∘ on the
ecliptic.
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koṭīphala =
𝑅 cos 2𝜆 × 1

2𝑅 versin 𝜖
𝑅 , (19)

and then gives the following expressions for (i) ra-
dius of the diurnal circle

𝑅 cos 𝛿 = [(𝑅 − 1
2𝑅 versin 𝜖 ± koṭīphala)2+

(bhujāphala)2
]

1
2 , (20)

and (ii) the prāṇakalāntara, i.e.

𝜆 − 𝛼 = 𝑅 sin−1
(

bhujāphala × 𝑅
𝑅 cos 𝛿 ) . (21)

While it is unclear if the above expressions have
any physical significance, one can understand the
rationale behind these by comparing with (12)–
(15). Whereas (12) and (18) are essentially the
same expression, (13) and (19) differ from each
other. However, one can easily see that, (14)
and (20) yield the same result upon substituting
(13) and (19) in them respectively.21 It appears
that the author desired symmetric expressions for
koṭīphala and bhujāphala and suitably modified
(19) and (20) to this end.

By substituting (18) in (21), the given expres-
sion for prāṇakalāntara reduces to

𝜆−𝛼 = 𝑅 sin−1
(

𝑅 sin 𝜆 × 𝑅 cos 𝜆 × 𝑅 versin 𝜖
𝑅 cos 𝛿 ) .

The expression within the parentheses is the same
as (7), and as we have shown in our discus-
sion there, reduces to sin(𝜆 − 𝛼). There, the au-
thor directly approximated this expression to the
prāṇakalāntara. Here, instead, taking the sine in-
verse of the expression yields the more exact re-
sult.

4. DISCUSSION AND CONCLUSION

The Lagnaprakaraṇa is an important astronomi-
cal work for various reasons. Firstly, as one of
the likely works of the great savant Mādhava, the
text holds enormous potential for the discovery of
new astronomical techniques and insights into the
mind of the author, whose works are yet unfor-
tunately poorly studied. Secondly, in contrast to
typical astronomical treatises which cover a wide
range of topics, the Lagnaprakaraṇa focuses ex-
clusively on determining the ascendant, which al-
lows the author to discuss multiple approaches to-
wards solving a given problem. As shown in our
discussion, this text reveals the limitless ingenu-
ity of the author in coming up with various ex-
pression for dyujyā and prāṇakalāntara, and show-
cases him as a true mathematician who delights in
solving the same problem in innovative and differ-
ent ways.
Moreover, these different approaches may help

in faster calculations in different circumstances.
One can note that the different expressions for
the prāṇakalāntara discussed in the text involve
different trigonometric functions and varying lev-
els of computational complexity. For instance,
whereas (1) requires determining the inverse sine
only once, (3) requires this twice, adding to com-
putational complexity. However, (3) which is ex-
pressed in terms of cos 𝜆 rather than sin 𝜆, may be
more convenient in situations where the value of
cos 𝜆 is more readily available.
The text also attests to the fact that Indian as-

tronomers were master geometers. For instance,
the expressions (5)–(7) have been derived through
a deep understanding of spherical geometry as
shown, while the expressions (8)–(11) and (12)–
(15) suggest that they have been arrived at by con-
ceiving and constructing ingenious epicyclic mod-
els, mapping the variation in the radius of the di-

21 The verse notes that koṭīphala is to be applied positively when 2𝜆 is in the range 270∘ to 90∘ (six signs starting with
Capricorn), and negatively when it is in the range of 90∘ to 270∘ (six signs starting with Cancer). This is because koṭīphala
includes the variable term cos 2𝜆, which is positive in the first and fourth quadrants, and negative in the second and third
quadrants.
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urnal circle on to the equatorial plane. This is in-
deed a brilliant strategy. It also appears that the
author had a keen eye for mathematical beauty, as
seen in the attempts to obtain symmetric expres-
sions for bhujāphala and koṭīphala in (18)–(19),
and was also adept at trigonometric manipulations
to arrive at simplified expressions, as seen in the
case of (17).
It is clear that a text such as Lagnaprakaraṇa

would not have been possible without a strong
prevalent tradition of mathematical astronomy,
and its existence attests to a deep study of the
subject in India. The authors hope to throw fur-
ther light on this important and fascinating work
with the publication of the entire text of the
Lagnaprakaraṇa, along with translation and notes,
in the near future.
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