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Abstract

The pranakalantara, or the difference between the longitude and the corresponding right ascen-
sion, is an important astronomical parameter used in determining the ascendant (/agna), as well as
the equation of time in Indian astronomy. This paper explores the different algorithms described to
calculate the pranakalantara in the Lagnaprakarana, a hitherto unpublished manuscript attributed
to Madhava, the founder of the Kerala school of astronomy and mathematics. We also point out
the interpretation of some of the algorithms in terms of epicyclic models.
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1. INTRODUCTION

India has a long and rich history of the study
of astronomy, which extends back a few millen-
nia. Renowned astronomer-mathematicians like
Aryabhata, Bhaskara I, Brahmagupta, Lalla, Srid-
hara, Sﬁpati, Bhaskara II etc. have made numer-
ous contributions to the study of astronomy as
well as mathematics. Starting in the fourteenth
century CE, a succession of scholars enjoying a
teacher-taught lineage (guru-sisya-parampara),
and collectively referred to as the Kerala school
of astronomy and mathematics,' made enormous
contributions to the study of astronomy as well
as mathematics. Madhava of Sangamagrama,
the illustrious founder of this school is credited
with a number of important results like an infi-

nite series for 7, as well as the functions sine and
cosine. He is credited with a number of astro-
nomical works including Venvaroha, Sphutacan-
drapti, Aganita-grahacara, Candravakyani, Mad-
hyamanayanaprakara, Mahajyanayanaprakara,
Lagnaprakarana, and perhaps Golavada.

The Lagnaprakarana® is a work dedicated to
the determination of the ascendant or the uday-
alagna, and discuses numerous techniques for the
same. However, as a necessary precursor to de-
termining the ascendant, the text first discusses
various methods to determine the pranakalantara,
which is the difference between the longitude and
corresponding right ascension of a star.

In this paper, we first discuss the pranakalan-
tara and its significance in Section 2. In Sec-
tion 3, we discuss the different algorithms for de-
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'So named because all these scholars resided in the Malabar coast of the Kerala state in India.

2See Sarma 1977. Also see Pingree 1981, pp. 414-415.

3The authors obtained two manuscripts of the Lagnaprakarana from the Prof. K. V. Sarma Research Foundation, Chennai.
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termining the pranakalantara as described in the
Lagnaprakarana, and also interpret a few of the al-
gorithms in terms of epicyclic models. Finally, in
Section 4, we discuss the significance of these dif-
ferent techniques, and conclude with our remarks.

2. PRANAKALANTARA AND ITS
SIGNIFICANCE

The word pranakalantara is a compound word
that is made up on three parts: prana, kala, and
antara.* The term prana generally refers to a
certain unit of time that is close to four seconds,
and is equal to the unit of time corresponding to
one arc-minute of the celestial equator.’ This unit
of time is also sometimes referred to as an asu.
The term kala refers to one-sixtieth part of a de-
gree. In the current context, it refers to a unit
of measure along the ecliptic equal to one arc-
minute. The word antara in Sanskrit means ‘dif-
ference’. Hence, the compound word pranakalan-
tara is used as a technical term denoting the dif-
ference between the longitude and corresponding
right ascension.® In Lagnaprakarana, pranakalan-
tara is primarily used to convert the longitude of
any point on the ecliptic into its corresponding
right ascension, or vice-versa. Nilakantha also em-
ploys the pranakalantara to determine the equa-
tion of time in his Tantrasangraha.’

Denoting the longitude with A, and the right
ascension with a, the pranakalantara can be ex-
pressed in mathematical notation as

pranakalantara = A — a.

While this quantity can be positive or negative de-
pending on the point of the ecliptic under consider-
ation, Indian astronomers considered only its mag-
nitude, and applied it positively or negatively to

the longitude to obtain the right ascension. There-
fore, the general formula for determining the right
ascension, given the longitude and the pranakalan-
tara, can be written as follows:

a = A+ pranakalantara = A + |A — af .

3. DETERMINATION OF PRANAKALANTARA
IN THE LAGNAPRAKARANA

The Lagnaprakarana can be divided into eight
chapters, of which the last seven chapters are es-
sentially dedicated to different methods of deter-
mining the lagna. The first chapter lays the foun-
dation for this by introducing various concepts
like declination, pranakalantara, dyujya or ra-
dius of diurnal circle, ascensional difference, and
kalalagna or the time elapsed since the rise of the
vernal equinox at a desired instance. All these vari-
ables have great physical significance. However,
depending on the approach to the problem, only a
select few of them would appear in a specific pro-
cedure of calculating lagna.

After the customary invocation, and after
quickly defining the declination and versine,
the text immediately jumps into the discussion
of pranakalantara in verses 6-17, which de-
scribe various methods of calculating this quan-
tity. Below, we discuss the different methods
to determine the pranakalantara discussed in the
Lagnaprakarana. In the following discussion, it
may be noted that the radius of the diurnal circle
of a given body having declination of 6 is nothing
but R cos 6, where R is the radius of the equator. It
may also be noted that verses 13 and 14 discuss the
appropriate sign to be used with the pranakalan-
tara, depending upon the quadrant of the ecliptic
under consideration.

“The first two words are combined through a karmadharaya compound, and the last one through a sasthitatpurusa.
The equator consists of 36060 = 21600 arc-minutes, while the period of Earth’s rotation is approximately 24 %6060 =
84600 seconds. Therefore, one arc-minute of the equator would take approximately 4 seconds to cut across the prime merid-

ian.

%It may be noted that both pranas and kalds are measured in the same unit essentially, as both correspond to one-sixtieth
of a degree, though measured along the equator and the ecliptic respectively.

’See Ramasubramanian and Sriram 2011, pp. 80-82.
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Fig. 1. Determining the pranakalantara.

Method 1

FEHIAT fasteaTaTy |
- - D
[ERIECRIMETIE R R

antyadyujivahatabahujivam
istadyumaurvya vibhajedavaptam |
capikrtam bahugunasya capat
visodhitam pranakalantaram syat ||6||

One should divide the Rsine [of the Sun’s longi-
tude] (bahujiva)—which is multiplied by the last
radius of the diurnal circle (antyadyujiva)—by
the given radius of the diurnal circle (dyumau-
). The quotient converted to arc [minutes]
and then subtracted from the arc corresponding
to the Rsine [of the Sun’s longitude] would be
the difference of the longitude and right ascen-
sion (pranakalantara).

The expression for pranakalantara given in the
above verse can be understood with the help of
Fig. 1. Here, P and K represent the poles of
the equator and ecliptic respectively. I" represents
the vernal equinox, while S is the Sun with lon-
gitude A and declination 6. € denotes the oblig-
uity of ecliptic, which is also the maximum possi-
ble declination of the Sun. The meridian passing
through the Sun intersects the equator at B, and

therefore I'B represents the right ascension a of
the Sun. Using the above notations, the expres-
sion for pranakalantara given in the verse may be
expressed as:

Rsin A X Rcose
Rcos o

h—a=i-Rsin ( ). ™
The second expression on the right-hand side can
be easily seen to be the right ascension of the Sun
by considering the spherical triangle PI'S. Here,
PS =90 — 6 and PI'S = 90 — e. Now, applying
the sine rule of spherical trigonometry, we have

sina _ sin(90 — ¢€)
sind  sin(90 — §)’
or, a=sin! <—sm Acos e) . (2)
CcoS 0

In the above expression, the sines are dimen-
sionless, whereas the Indian Rsine is a linear mea-
sure. Taking this into account, the expression for
a may be written as:

o = Rsin~! <Rsin/1><Rcose>

Rcoso

Thus, we easily see that (1) is nothing but the
difference of the longitude and the right ascension,
i.e. pranakalantara.
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Method 2
ASHIAT AATHT Gl |
ATHIHATA HITSOTT =TT

AH SUAT ATIThRBSTR AT |19l

kotigunam vydsadalena samha-
tyestadyumaurvya pravibhajya labdhat |
capikrtat kotigunasya cape

tyakte thava pranakalantaram syat ||7||

Or, the pranakalantara would be that when
the arc of the Rcosine [of the Sun’s longitude]
(kotiguna) is subtracted from the arc of the quo-
tient obtained after multiplying the Rcosine [of
the Sun’s longitude] (kofiguna) by the semi-
diameter, [and then] dividing it by the day-radius
(dyumaurvi).

The expression coded in the above verse to de-
termine the pranakalantara can be expressed as
follows:

RcosA X R

A—a = Rsin™! <
Rcosé

)—R sin_l(R cos A).

3)
The rationale behind the above expression can be
understood as follows. As indicated in Fig. 1, the
Sun reaches its maximum declination at point D on
the prime meridian. Now, considering the spheri-
cal triangle P.S D, and applying the sine rule, we
have

sin(90 — ) sin90°
sin(90 — A) ~ sin(90 — §)’
or, sin(90 — a) = cos ﬂ. 4)
Cos o

It can be seen that the sine inverse of the right-hand
side of the above expression is equivalent to the
first term in the RHS of (3). Now, subtracting the
sine inverse of the cosine of the longitude of the
Sun from this quantity, we obtain the pranakalan-
tara:

sin~! <COS ﬂ) —sin"!cos A
CcoS 6
= sin~ ! sin(90 — @) — sin~! sin(90 — 1)

=l-a.

Method 3
EERIGEES R T0Y

FTCSATHITHYAT TETHE 4T T JExd
HITCSATTRATET hHE [HHRIHE [9g: 1
antyakrantisarahatadbhujagunat
mantyam phalam
vidyadbahugunattadantimaphalam samsodhya
vargikrtat |

trijyapta-

kotijyakrtisamyutat padamiha dyujya taya
samharet
kotijyantaphalahatim  phalamidam  liptasub-

hedam viduh ||8]|

One should know the antyaphala as the quotient
obtained from dividing the product of the Rsine
[of the Sun’s longitude] (bhujaguna) and the ver-
sine corresponding to the maximum declination
(antyakrantisara) by the radius (trijya). Having
subtracted that antimaphala (antyaphala) from
the Rsine [of the Sun’s longitude], the square-
root taken from square [of that quantity] added
by the square of the Rcosine [of the Sun’s lon-
gitude] (kotijya), is the radius of the diurnal cir-
cle (dyujya). One should divide the product of
the kotijya and the antyaphala by that (dyujya).
[Scholars] know this quotient as the difference
of the [Sun’s] longitude and right ascension (/ip-
tasubheda).

This verse first defines a quantity known as
antyaphala as follows:

Rsin A X Rversine

hala =
antyapnala R

()
It then presents relations for the radius of the diur-
nal circle (dyujya or R cos 6), and the pranakalan-
tara. The expressions for these two quantities pre-
sented in the text may be expressed as

Rcosé = \/(R sin A — antyaphala)? + (R cos 1)?,
(6)
(7)

_ Rcos A X antyaphala
B Rcosé '

A—a
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Fig. 2. Determining the antyaphala and dyujya.
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The rationale behind (6) can be understood from
Fig. 2. In the figure, S and S’ indicate a point
on the ecliptic, and its projection on the equato-
rial plane respectively. The planar right-angled
triangle SOS’ lies in the meridian plane passing
through S, along which the declination is mea-
sured. Therefore, we have SOS’ = 8, and hence

SS’ = Rsiné, OS’ = Rcosé.

The right-angled® triangle OBS lies in the plane

of the ecliptic. The angle BO.S = A, and hence
BS = Rsin A, OB = Rcos A.

The right-angled triangle .S B:S' lies in a plane per-

pendicular to the equator, and is parallel to the

plane containing the great circle passing through

the poles of the ecliptic (K) and equator (P).

Hence, the angle SBS’ = ¢, and

BS = Rsin A, BS’ = Rsin Acose.
Now, consider the right-angled triangle OB.S’ that
lies on the plane of the equator, and whose sides
have been calculated above. Since 0S’% = BS'*+
OBZ, we have

Rcosd = V(Rsin Acos€)? + (R cos )2

= \/(R sin A — antyaphala)? + (R cos 1)2,

which is the same as (6) given in the text.’

Thus, we find that the expression for dyujya
given by (6) is an exact expression. However, the
expression for the pranakalantara which is given
in terms of the antyaphala and the dyujya in (7)
seems to be approximate, and can be understood
as follows. Substituting (5) in (7), and employing
versine = 1 — cos ¢, we have

cos A X antyaphala _ cos Asin A _cosAsinAcose

CoS 0 cos 0 cos o
Substituting
cos A ) sin A cos e
cosq = ——, sing = —————
Ccos o cos o

from (4) and (2) respectively, the above expression
reduces to'’

cos A X antyaphala . .
=sin Acosa — cos Asin«

CcoS 0
= sin(4A — a).

This appears to have been approximated as A — a.
Indian mathematicians knew at least from the time
of Aryabhata that sin @ 0, for small 6. The
pranakalantara has a maximum value of approx-
imately 2.6°, at a longitude of 46°, as shown in
Fig. 3.!' Therefore, the use of this approximation
is justified.

From a geometric point of view, the expression
for the antyaphala can be thought of as the differ-
ence between the hypotenuse and the base of the
triangle SBS’. That is

BS — BS’ = RsinA— RsinAcose

= Rsin Aversine,

~
~

8The triangle does not appear right-angled in the figure due to the difficulty in depicting the three-dimensional celestial

sphere on a two-dimensional surface.

%It may be mentioned here that while discussing the determination of right ascension, Nilakantha in his Tantrasangraha

employs the term kotika to refer to the simplified expression

Rsin Acos e = Rsin A — antyaphala.

For details, see Ramasubramanian and Sriram 2011, pp. 76-79.
01 the Tantrasangraha, Nilakantha indicates that Madhava was aware of the rule

sin(A — B) = sin A cos B — cos A sin B.

See Ramasubramanian and Sriram 2011, pp. 70-73.
"Plotted taking the obliquity of the ecliptic as ¢ = 24°.
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Longitude (4°) pranakalantara ([A — a]’)
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Fig. 3. Variation of pranakalantara with longitude.

which is essentially the same as (5). When the
Sun’s longitude is 90 at D, this expression reaches
its maximum value, which can also be deduced
from the triangle DOF:

Rsin Aversine = R versin e

= R—- Rcose
= 0D - OF.
Method 4
Srahitesa QR
Thob BT favsiq et |

R Sy wo Far:
T WAt i |
TS ATIIST gl

YSATEd ARG A1 11901l

dohkotijive punarantimena

phalena hatva vibhajet trimaurvya |
labdham bhujakotiphale punastat
bhujaphalam vyasadaladvisodhyam ||9||
sistasya kotydasca phalasya krtyoh
samasamitlam bhavati dyujiva |
kotiphalam vydsadalena hatva
dyujyahrtam pranakalantaram syat ||10||

Again, having multiplied the Rsine and Rco-
sine [of the Sun’s longitude] by antimaphala
(antyaphala), one should divide [the obtained
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quantities] by the radius (trimaurvi). The quo-
tients obtained are bhujaphala and kotiphala.
Again, that bhujaphala should be subtracted
from the semi-diameter. The square-root of the
sum of the squares of the residue and kotiphala
is the radius of the diurnal circle (dyujiva). The
kotiphala multiplied by the semi-diameter and
divided by dyujya would be pranakalantara.

These two verses describe yet another way of
calculating (i) the radius of the diurnal circle, and
(i) the pranakalantara, with the help of two inter-
mediary quantities

Rsin A X hal

bhujaphala = — aRnlyap ¢ a’ (®)
Rcos A x hal

kotiphala = —=2° ;”ly“p )

Then, the radius of the diurnal circle is given as

Rcosé = \/ (R — bhujaphala)? + (kotiphala)?,

(10)
and the pranakalantara as
kotiphala X R
_ ,  kotiphala . (1)
Rcos o

Expressions (10) and (11) can be shown to be
equal to results obtained earlier through simple
trigonometric manipulation. Readers can easily
verify that (10) indeed yields (6) upon substituting
(8) and (9) in it, and that (11) reduces to (7) upon
substituting (9) in it.!?

However, the above relations also have a deep
geometric significance. The author appears to
have conceived of a geometric model akin to the
classical epicycle or nicoccavrtta model employed
in determining the true position of a planet from
its mean position. In this model, the radius of the
epicycle—which is taken to be antyaphala here—
is a function of the sine of the longitude of the Sun

2Here again, the approximation sin(A — a) ~ A — a is used.

and hence would be zero at 4 = 0 or 180, and will
be maximum at A = 90 or 270. Fig. 4 depicts this
model wherein, the radius of the epicycle is given
by

a = PyP = Rsin Aversin e = antyaphala,

while OP, = R 1is the radius of the deferent cir-
cle. The radius of the diurnal circle OP = Rcos é
is what is to be determined. It is easily seen that
the radius of the diurnal circle is maximum (= R)
when A = 0,'° as in this case the antyaphala would
be zero, and both P and P, would coincide with
X.'* As the longitude of the Sun increases, the
dyujya starts decreasing, and would be shortest
when 4 = 90. In this case, the radius of the epicy-
cle (that corresponds to the antyaphala) reaches its
maximum value which is
pmax = R— Rcose.

When this happens, P, would coincide with Y and
P with T.

In the triangle PyOP, PQ is a perpendicular
dropped on OP,, and since P P, is parallel to OY,
we have

PPyO =4 =90- A

Then, in the right-angled triangle PyQ P we have

bhujaphala  PyQ = sin A X antyaphala,

kotiphala PQ = cos A X antyaphala,

which are essentially the expressions (8) and (9)
given in the text respectively. This also yields

OQ = R — bhujaphala.

Therefore, in right-angled triangle POQ we have

Rcos 6 = \/(R — bhujaphala)? + (kotiphala)?,

3This is expected as the declination 6§ would also be zero, implying a position on the equator.
4The deferent circle here is analogous to the equatorial plane, as R is the maximum possible radius (R cos §) of the diurnal

circle.
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(b) A quadrant of the trajectory (not to scale).

Fig. 4. Determination of dyujya conceiving an epicyclic model.
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which is the same as (10). Therefore, this computa-
tion is akin to the computation of the mandaphala
or Sighraphala in the Indian epicycle or eccentric
models, with the dyujya playing the role of the
karna. In this specific case, the karna is always
less than or equal to R.

Method 5

AT WAl a FARIHET 119 I

yvadva parakrantisarena hatva

kotigunam vydsadalena hrtva |

labdhena dohkotigunau nihatya

trijyahrte tatra phale bhavetam ||11||
kotiphalam ksipatu tatparamadyumaurvyam
tadvargabahuphalavargasamdasamitlam |
dyujya bhavedbhujaphalahatavistarardham
dyujyahrtam bhavati tatra kalasubhedam ||12||

Or, when the Rcosine [of the Sun’s longitude]
multiplied by the Rversine of the maximum dec-
lination and divided by the semi-diameter, [and
the result separately] multiplied by the Rsine and
Rcosine [of the Sun’s longitude] and divided by
the radius (#rijya), there would be two phalas
(bhujaphala and kotiphala). Add the kofiphala
to that last radius of the diurnal circle (dyumau-
rvI). The square-root of the sum of the square of
that [previously determined sum] and the square
of the bahuphala (bhujaphala) would be the ra-
dius of the diurnal circle (dyujya). The bhu-
Jjaphala multiplied by the semi-diameter and di-
vided by the dyujya would be the difference
in longitude and right ascension (kalasubheda)
there.

This verse yet again defines two intermedi-

INDIAN JOURNAL OF HISTORY OF SCIENCE

ary quantities bhujaphala and kotiphala (different
from those in the previous verse):

bhujaphala = RcosA X Rversine  Rsin A
R R
(12)
kotiphala = RcosA X Rversine  Rcos A
R R
(13)

in service of determining (i) the radius of the Sun’s
diurnal circle

Rcos & = [(Rcos e + kofiphala)*+

1
(bhujaphala)z] 2,

(14)
and (i1) the pranakalantara, i.e.
bhujaphala X R
1 _ g = Dhuap ala X ' (15)
Rcoso

It is easy to verify that, after some basic trigono-
metric manipulation, (14) yields (6) upon substi-
tuting (12)—(13) in it, while (15) yields (7) upon
substituting (12) in it.'®

Here, the author appears to have come up
with the given relations by conceiving a differ-
ent epicyclic model to the one discussed in the
previous method. Here, firstly, one has to con-
sider a deferent circle of radius Rcose, which
is the smallest possible radius of the diurnal cir-
cle. Secondly, the radius of the epicycle is taken
as Rcos Aversine instead of Rsin Aversine or
antyaphala as in the previous method.

Fig. 5 depicts this model wherein, the radius of
the epicycle is given by

a’' = PyP = Rcos Aversine,

while OF, = Rcose is the radius of the defer-
ent circle. The radius of the diurnal circle OP =
Rcos 6 is what is to be determined. It is easily
seen that the radius of the diurnal circle is maxi-
mum (= R) when A = 0, as in this case the radius
of the epicycle a,,,., = R — Rcose, and P and P,

'Manuscripts read fa=aRTaIT. However, l=aRTe is more appropriate here.

!Here again, the approximation sin(A — a) ~ A — a is used.
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(a) The annual trajectory (to scale) of dyujya when mapped on to the equatorial plane.
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(b) A quadrant of the trajectory (not to scale).

Fig. 5. Determination of dyujya conceiving an epicyclic model.
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would coincide with Y and T respectively. As the
longitude of the Sun increases, the dyujya starts de-
creasing, and would be shortest when 4 = 90. In
this case, the radius of the epicycle becomes zero,
as both Py and P coincide with X.

In the triangle P,OP, PQ is a perpendicular
dropped on extended OF,, and since PP is par-
allel to OY, we have PP)Q = A. Then, in the
right-angled triangle PyO P we have

PO =siniAxa,
PyO =cosAxd,

bhujaphala
kotiphala

which are essentially the expressions (12) and (13)
given in the text respectively. This also yields

OQ = Rcos € + kotiphala.

Therefore, in right-angled triangle POQ we have

Rcosé = [(R cose + kom)hala)2+
1
(bhujaphala)z] 2,

which is the same as (14).

Application of pranakalantara

The following two verses describe when the
pranakalantara is to be applied positively or neg-
atively.

T RITCHTATT AT AT
Tl IRTISHASTOTY |
%ﬂlga‘ Al AR T‘R_‘[

TERISTTESRAT SO 119311

dohkotimaurvyorvadhatastrimaurvya
labdham parapakramabananighnam |
"Measuring eastwards from the vernal equinox.
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dyujyahrtam pranakalantaram tat
yugmaujapadakramato dhanarnam ||13|]

The quotient obtained from the division of the
product of the Rsine and Rcosine [of the Sun’s
longitude] by radius, multiplied by Rversine
corresponding to the maximum declination and
divided by the radius of the diurnal circle is
pranakalantara. That is positive and negative
depending on even and odd quadrants respec-
tively.

This verse gives the following relation for the
pranakalantara:

_ RsinAX RcosA _ Rversine (16)
R Rcosé

This is just a restatement of the (7), with only the

order of terms changed.

The verse also states that the pranakalantara is
to be applied negatively when the Sun is in the first
and third quadrants,!” and positively when it is in
the second and fourth quadrants. This can be un-
derstood from the fact that, for the Sun, 4 > «
in the first and third quadrants, and 4 < «a in
the second and fourth quadrants.'® Therefore, the
pranakalantara of the form |1 — a| has to be sub-
tracted from the longitude of the Sun in the first
and third quadrants, and added to the longitude of
the Sun in the second and fourth quadrants to ob-
tain the correct right ascension.'”

o araay=mifdwTata

HEH

LS

TR TS O
foargye 38 T fgnrorer WA
STERSRATIEERTd: SHAST oo 1192

dvighnasya sayanaraverbhujamaurvikardhat
antyapamesugunitaddyugunena labdham |
liptasubheda iha sa dvigunasya bhanoh
Jukakriyadivasatah kramaso dhanarnam ||14||

A—a

8For instance, consider triangle PT'B in Fig. 1, where the Sun is depicted in the first quadrant. Here, I'B will be the
shortest great circle arc from I" to any point on P B as P itself is its pole. Therefore, the great circle arc I''S, whose pole lies
at K, will be longer than I'B. Hence, we can show that 4 > @ when the Sun is in the first quadrant. Similarly, we can also
show that A > « in the third quadrant, and A < a in the second and fourth quadrants.

YIndian mathematicians and astronomers typically preferred not to deal with negative numbers. They therefore consid-
ered only the absolute value of any difference, and changed the sign of the quantity appropriately during its application in

a mathematical operation.
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The quotient obtained from the division of—half
of the Rsine of twice the precession corrected
longitude of the Sun multiplied by the Rversine
corresponding to the last declination—by the ra-
dius of the diurnal circle (dyuguna) is the differ-
ence in the longitude and right ascension (/ipta-
subheda) here. That is positive or negative de-
pending on if twice the longitude is [in the six
signs] commencing from Libra (Jizka) or Aries
(Kriya) respectively.

This verse gives the following relation for the
pranakalantara, i.e.

% X Rsin2A X Rversin e

A—a= ,
Rcos o

17)
which reduces to (7) upon substituting
sin24A = 2sin Acos 4

in it.

The verse states that the pranakalantara is to
be applied positively when twice the Sun’s longi-
tude is in the range 180° to 360° (i.e. 90° < 4 <
180°), and negatively when the same quantity is
in the range of 0° to 180° (i.e. 0° < 4 < 90°).%°
This is equivalent to the statement in the previous
verse that pranakalantara is to be applied posi-
tively when the Sun is in the second and fourth
quadrants, and negatively when it is present in the
first and third quadrants.

Method 6

After discussing the application of pranakalan-
tara, the text describes one last method for the de-
termination of dyujya and pranakalantara.

EREEISPIERIEELIE)

HICThes A Th®HETET: |

O T LRSI

o5 WHNata gt 19511
meml

B Ghllich hATLHE I 11901l

yadva dvinighnikytasayanarkat

bhujagunam kotigunarica nitva |
parapayanesudalahatau tau

trijivayaptau bhavatah phale dve ||15]|
parapamesvardhaviyuktrimaurvyam
kotiphalam tanmygakarkatadyoh |

svarnam ca taddohphalavargayogat

mitlaiica bhanorbhavati dyujiva ||16||
bhujaphalam trijivayd samahatam dyujivaya |
haretphalasya karmukam kaldasubheda ucy-
ate ||17]|

Or, after computing Rsine (bhujaguna) and Rco-
sine (kotiguna) from twice of the precession cor-
rected longitude of the Sun, those two multiplied
by half of the Rversine of the maximum declina-
tion and divided by the radius (zrijiva) become
the two phalas (bhujaphala and kotiphala). The
kotiphala is additive or subtractive to the radius
diminished by half of the Rversine correspond-
ing to the maximum declination when it is in
[six signs] commencing from Capricorn (mrga)
or Cancer (karkata) [respectively]. The square-
root of the sum of the squares of that [result]
and dohphala (bhujaphala) is the radius of the
diurnal circle (dyujya) of the Sun. One should
divide the bhujaphala which has been multiplied
by the radius, by the radius of the diurnal circle
(dyujiva). The arc of that result is stated to be
the difference in longitude and right ascension
(kalasubheda).

13

This verse first defines two intermediary quan-

PEARFAE I ELRIREIEAGY tities
Wiﬁﬁmﬁm |
RIAHYESEA af Rsin24 x %R versin e
st yaa: w194l bhujaphala = (18)

R b
20The zodiac signs referred to in the verse serve only to indicate the position on the ecliptic, and are unrelated to the par-
ticular star connected to that zodiac sign. Therefore, ‘Libra’ and ‘Aries’ here refer to the positions of 0° and 180° on the
ecliptic.
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Rcos2A X %R versin €
R b

kotiphala = (19)

and then gives the following expressions for (i) ra-
dius of the diurnal circle

Rcosé = [(R - %R versin € + ko;‘z’])hala)2+
1
(bhuja’phala)z] 2 (20)

and (ii) the pranakalantara, i.e.

bhujaphala x R
/l—a:Rsin_1< aprare ) 1)

Rcoséd

While it is unclear if the above expressions have
any physical significance, one can understand the
rationale behind these by comparing with (12)—
(15). Whereas (12) and (18) are essentially the
same expression, (13) and (19) differ from each
other. However, one can easily see that, (14)
and (20) yield the same result upon substituting
(13) and (19) in them respectively.?! It appears
that the author desired symmetric expressions for
kotiphala and bhujaphala and suitably modified
(19) and (20) to this end.

By substituting (18) in (21), the given expres-
sion for pranakalantara reduces to

J—a = Rsin~! (RsinﬂchosAvaersine)

Rcosé

The expression within the parentheses is the same
as (7), and as we have shown in our discus-
sion there, reduces to sin(4 — «). There, the au-
thor directly approximated this expression to the
pranakalantara. Here, instead, taking the sine in-
verse of the expression yields the more exact re-
sult.
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4. DISCUSSION AND CONCLUSION

The Lagnaprakarana is an important astronomi-
cal work for various reasons. Firstly, as one of
the likely works of the great savant Madhava, the
text holds enormous potential for the discovery of
new astronomical techniques and insights into the
mind of the author, whose works are yet unfor-
tunately poorly studied. Secondly, in contrast to
typical astronomical treatises which cover a wide
range of topics, the Lagnaprakarana focuses ex-
clusively on determining the ascendant, which al-
lows the author to discuss multiple approaches to-
wards solving a given problem. As shown in our
discussion, this text reveals the limitless ingenu-
ity of the author in coming up with various ex-
pression for dyujya and pranakalantara, and show-
cases him as a true mathematician who delights in
solving the same problem in innovative and differ-
ent ways.

Moreover, these different approaches may help
in faster calculations in different circumstances.
One can note that the different expressions for
the pranakalantara discussed in the text involve
different trigonometric functions and varying lev-
els of computational complexity. For instance,
whereas (1) requires determining the inverse sine
only once, (3) requires this twice, adding to com-
putational complexity. However, (3) which is ex-
pressed in terms of cos A rather than sin A, may be
more convenient in situations where the value of
cos A is more readily available.

The text also attests to the fact that Indian as-
tronomers were master geometers. For instance,
the expressions (5)—(7) have been derived through
a deep understanding of spherical geometry as
shown, while the expressions (8)—(11) and (12)—
(15) suggest that they have been arrived at by con-
ceiving and constructing ingenious epicyclic mod-
els, mapping the variation in the radius of the di-

21 The verse notes that kotiphala is to be applied positively when 24 is in the range 270° to 90° (six signs starting with
Capricorn), and negatively when it is in the range of 90° to 270° (six signs starting with Cancer). This is because kofiphala
includes the variable term cos 24, which is positive in the first and fourth quadrants, and negative in the second and third

quadrants.
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urnal circle on to the equatorial plane. This is in-
deed a brilliant strategy. It also appears that the
author had a keen eye for mathematical beauty, as
seen in the attempts to obtain symmetric expres-
sions for bhujaphala and kotiphala in (18)—(19),
and was also adept at trigonometric manipulations
to arrive at simplified expressions, as seen in the
case of (17).

It is clear that a text such as Lagnaprakarana
would not have been possible without a strong
prevalent tradition of mathematical astronomy,
and its existence attests to a deep study of the
subject in India. The authors hope to throw fur-
ther light on this important and fascinating work
with the publication of the entire text of the
Lagnaprakarana, along with translation and notes,
in the near future.
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