Precise Determination of the Ascendant in the Lagnaprakaraṇa - I

Aditya Kolachana*, K. Mahesh, K. Ramasubramanian
Indian Institute of Technology Bombay

(Received 25 March 2019; revised 09 September 2019)

Abstract

The determination of the ascendant (udayalagna) or the rising point of the ecliptic is an important problem in Indian astronomy, both for its astronomical as well as socio-religious applications. Thus, astronomical works such as the Sūryasiddhānta, the Brāhmasphuṭasiddhānta, the Śisyadhīvrddhidatantra, etc., describe a standard procedure for determining this quantity, which involves a certain approximation. However, Mādhava (c. $14^{\text {th }}$ century) in his Lagnaprakaraṇa employs innovative analytic-geometric approaches to outline several procedures to precisely determine the ascendant. This paper discusses the first method described by Mādhava in the Lagnaprakaraṇa.

Key words: Ascendant, Dṛkkṣepajyā, Dṛkkṣepalagna, Lagna, Lagnaprakaraṇa, Madhyakāla, Madhyalagna, Mādhava, Paraśañku, Rāśikūṭalagna, Udayalagna.

1 Introduction

As the name implies, the Lagnaprakaraṇa (Treatise for the Computation of the Ascendant) is a text exclusively written to outline procedures for the determination of the ascendant (udayalagna) or the rising point of the ecliptic. To our knowledge, it is the first text to give multiple precise relations for finding this quantity. We have defined the udayalagna and discussed its significance in an earlier paper. ${ }^{1}$ In the same paper, we have briefly noted the state of udayalagna computations in Indian astronomy prior to Mādhava, and also remarked upon the approximations involved therein. ${ }^{2}$

[^0]In the first chapter of the Lagnaprakaraṇa, Mādhava discusses several procedures (many of them novel) to determine astronomical quantities such as the prānakalāntara (difference between the longitude and right ascension of a body), cara (ascensional difference of a body), and kālalagna (the time interval between the rise of the vernal equinox and a desired later instant). The physical significance of these quantities, the crucial role they play in the computation of the ascendant, as well as the import of Mādhava's procedures in their determination have been discussed in earlier papers. ${ }^{3}$ It may be briefly noted here that the kālalagna is an ingenious and novel concept, apparently first introduced by Mādhava in the Lagnaprakaraṇa, which greatly facilitates precise determination of a number of astronomical quantities, including the udayalagna.

[^1]From the second chapter onwards, the Lagnaprakaraṇa describes several techniques of precisely determining the udayalagna. These techniques are fairly involved, spread over many verses, and require the calculation of numerous intermediary quantities. The current paper focuses only on the first technique of determining the udayalagna described in the second chapter of the Lagnaprakaraṇa.

Besides this introduction, this paper consists of two more sections. In Section 2, which consists of several subsections, we provide the relevant verses of the Lagnaprakaraṇa which describe the first method of the computation of the udayalagna, along with their translation and detailed mathematical notes. In the third and last section, we make a few concluding remarks.

2 Precise determination of the ascendant

The second chapter of the Lagnaprakaraṇa commences with the definition of two quantities known as the rāsíkūtalagna and madhyalagna (meridian ecliptic point). Through eight verses (31 to 38), Mādhava successively and systematically defines several quantities such as the madhyakāla, madhyajyā, dṛkkṣepajyā, paraśañku, drkkșepalagna, and finally the udayalagna. As we go through the verses, one cannot but help conclude that Mādhava's approach is quite meticulous and methodical.

As a prelude to our discussion, it may be mentioned that in the following discussion we employ the symbols λ, α, δ, and z to respectively refer to the longitude, right ascension, declination, and zenith distance of a celestial body. The kālalagna, the latitude of the observer, and the obliquity of the ecliptic are denoted by the symbols α_{e}, ϕ, and ϵ respectively. It may also be mentioned that all the figures in this section depict the celestial sphere for an observer having a northerly latitude ϕ.

2.1 Obtaining the rāśikūṭalagna and the madhyalagna

निजप्राणकलाभेदं
कुर्यात् कालविलग्रके।
राशिकूटविलग्रं तत्
त्रिभोनं मध्यलग्रकम् ॥३३॥
nijaprāṇakalābhedaṃ

kuryāt kālavilagnake |
 rāśikūṭavilagnaṃ tat
 tribhonaṃ madhyalagnakam ||31\|
 One should apply the nija-prāṇakalābheda (nijaprāṇakalāntara) to the kālavilagna (kālalagna). That is the rāsikūtavilagna. That decreased by three signs is the meridian ecliptic point (madhyalagnaka). ${ }^{4}$

This verse (in the anusțubh metre) shows the method to determine the madhyalagna, or the meridian ecliptic point, in degrees. Towards this end, the verse first gives the following relation to determine the rāsikūutalagna, which is a point on the ecliptic ninety degrees from the meridian ecliptic point:
rāśikūṭalagna $=k \bar{a} l a l a g n a ~ \pm$ nija-prāṇakalāntara

$$
\begin{equation*}
\text { or, } \quad \lambda_{r}=\alpha_{e} \pm\left|\lambda_{r}-\alpha_{e}\right|, \tag{1}
\end{equation*}
$$

where α_{e} and λ_{r} represent the kālalagna and the longitude of the rāsikūṭalagna respectively. Then, the verse notes that the madhyalagna can be simply determined as follows:

$$
\begin{align*}
\text { madhyalagna } & =\text { rāśikūṭalagna }- \text { tribha } \\
\text { or, } \quad \lambda_{m} & =\lambda_{r}-90 . \tag{2}
\end{align*}
$$

Note on nija-prāṇakalāntara and koṭi-prāṇakalāntara

The verse states that the rāsikūṭalagna can be determined by applying the nija-prāṇakalāntara (lit. own prāṇakalāntara) to the kālalagna. The nija-prāṇakalāntara refers to the magnitude of the difference of the longitude and right ascension of any body, ${ }^{5}$ not necessarily lying on the ecliptic. The term nija-prāṇakalāntara is used in contrast to the term koti-prāṇakalāntara, which appears in later verses, to differentiate between the two possible prāṇakalāntaras for a point B on the equator shown in Figure 1. Here, we have

$$
\text { nija-prāṇakalāntara }=\left|\lambda_{f}-\alpha_{b}\right| \text {, }
$$

[^2]

Figure 1 The significance of nija-prāṇakalāntara and koṭi-prāṇakalāntara.
which gives the difference in terms of point B 's 'own' lon- From the above two relations, we have gitude and right ascension, while the

$$
\text { koṭi-prāṇakalāntara }=\left|\lambda_{c}-\alpha_{b}\right| \text {, }
$$

gives the difference in the longitude and right ascension of point C on the ecliptic whose right ascension $\left(\alpha_{b}\right)$ corresponds to that of point $B .{ }^{6}$ Thus, only one kind of prāṇakalāntara is applicable for a point on the ecliptic, while the two kinds discussed above are possible for a point on the equator.

Perhaps assuming the procedure to be straightforward (though it doesn't seem to be so), the text does not describe how to determine the nija-prāṇakalāntara. Hence, for the convenience of the readers, here we outline how to obtain this quantity using modern spherical trigonometrical results. Applying the cosine rule of spherical trigonometry in the spherical triangle $F \Gamma B$, where

$$
B \hat{F} \Gamma=90, \quad B \hat{\Gamma} F=\epsilon, \quad \Gamma B=\alpha_{b}, \quad \Gamma F=\lambda_{f},
$$

yields

$$
\cos \alpha_{b}=\cos \lambda_{f} \cos B F
$$

Applying the sine rule in the same triangle, we get

$$
\sin B F=\sin \alpha_{b} \sin \epsilon
$$

[^3]\[

$$
\begin{aligned}
\lambda_{f} & =\cos ^{-1}\left(\frac{\cos \alpha_{b}}{\cos \left[\sin ^{-1}\left(\sin \alpha_{b} \sin \epsilon\right)\right]}\right) \\
\text { or, } \quad 90-\lambda_{f} & =\sin ^{-1}\left(\frac{\cos \alpha_{b}}{\cos \left[\sin ^{-1}\left(\sin \alpha_{b} \sin \epsilon\right)\right]}\right) .
\end{aligned}
$$
\]

The above relations can be used to determine the nijaprānakalāntara in the form of

$$
\lambda_{f}-\alpha_{b},
$$

where α_{b} is already known. The same relations can also be arrived at using planar geometry, and would surely have been known to the author of the text.

Deriving the expressions for rāśikūṭalagna and madhyalagna

The verse states that the nija-prānakalāntara is to be applied to the kālalagna to obtain the rāśikūtalagna. This can be understood from Figure 2, where the great circle arc $K R E$ is the secondary ${ }^{7}$ from the pole of the ecliptic (K) to the ecliptic, and also passes through the east cardinal point (E). Let the right ascension of E be α_{e}. This secondary meets the ecliptic at the rāśikūṭalagna (R). Let the longitude of R be λ_{r}. The points E and R are analogous to points B and F in Figure 1. Therefore, applying the nija-prāṇakalāntara to α_{e} gives λ_{r}, or

$$
\lambda_{r}=\alpha_{e} \pm \text { nija-prāṇakalāntara }=\alpha_{e} \pm\left|\lambda_{r}-\alpha_{e}\right|
$$

[^4]

Figure 2 Determining the madhyalagna from the kālalagna and the rāsikūṭalagna.
which is the relation given by (1).
Now, the madhyalagna is the longitude of the point M at the intersection of the ecliptic and prime meridian in Figure 2. As the arcs $M E=M K=90,{ }^{8}$ one can conclude that M is the pole of the great circle arc $K R E .{ }^{9}$ Therefore, we have $M R=90$, which is the relation stated in (2).

It may be noted that since the kālalagna is the same for all observers on a given longitude, ${ }^{10}$ the rāśikūṭalagna and the madhyalagna are the same too for these observers.

2.2 Computation of the madhyakāla

मध्यलग्ने पुनः कुर्यात्
निजप्राणकलान्तरम्।
मध्यकालो भवेत्सोऽयं
त्रिभाढयं काललग्नकम् ॥३२॥
काललग्रं त्रिराइयूनं
मध्यकालः प्रकीर्तितः।
madhyalagne punaḥ kuryāt
nijaprāṇakalāntaram ।
madhyakālo bhavet so'yaṃ
tribhāḍhyaṃ kālalagnakam ||32||
kālalagnaṃ trirāśsūnaṃ
madhyakālah prakīrtitaḥ|
One should again apply the nija-prāṇa-kalāntara
to the meridian ecliptic point (madhyalagna). That would be the madhyakāla. That increased by three signs would be the kālalagna. The kālalagna diminished by three signs is stated to be the madhyakāla.

The above verses (in the anustiubh metre) essentially introduce the concept of madhyakāla, which is the right ascension of the point at the intersection of the equator and the prime meridian, represented by point T in Figure 3. They also present expressions detailing the relationship between the madhyakāla and the kālalagna.

In Figure 3, let the point M represent the madhyalagna, which has been discussed in the previous verse. Taking α_{t} as the right ascension of T, and λ_{m} as the longitude of M, the relation given in the verse for the madhyakāla can be expressed as:

$$
\begin{align*}
\text { madhyakāla } & =\text { madhyalagna } \pm \text { nija-prānakalāntara } \\
\text { or, } \quad \alpha_{t} & =\lambda_{m} \pm\left|\lambda_{m}-\alpha_{t}\right| . \tag{3}
\end{align*}
$$

Having defined the madhyakāla thus, starting with the latter half of verse 32, the author describes the connection between the kālalagna and the madhyakāla through the following relations:

$$
\begin{align*}
& \text { kālalagna }=\text { madhyak } \bar{a} l a+\text { tribha } \\
& \text { or, } \quad \alpha_{e}=\alpha_{t}+90, \tag{4}
\end{align*}
$$

$$
\begin{align*}
\text { madhyakāla } & =\text { kālalagna }- \text { trirās̄i } \\
\text { or, } \quad \alpha_{t} & =\alpha_{e}-90 . \tag{5}
\end{align*}
$$

Figure 3 Determining the madhyalagna and the madhyakāla.

The relation between the madhyakāla and the madhyalagna given in (3) can be easily understood with the help of Figure 3. Here, both the points T and M lie on the prime meridian, which immediately indicates that α_{t} is the right ascension of a body at M. Thus, if the madhyalagna $\left(\lambda_{m}\right)$ is already known, then the madhyakāla $\left(\alpha_{t}\right)$ can be readily found by applying the prānakalāntara to it. ${ }^{11}$ That is,

$$
\alpha_{t}=\lambda_{m} \pm\left|\lambda_{m}-\alpha_{t}\right|,
$$

which is the first relation given in the verse.
As the east cardinal point (E) is the pole for any point on the prime meridian, it is also evident from the figure that the kālalagna (α_{e}) is given by

$$
\alpha_{e}=\alpha_{t}+90
$$

which explains the relations (4) and (5) stated in the verse.

2.3 An alternate way of obtaining the madhyalagna

मध्यकाले पुनस्तस्मिन्
कोटिप्राणकलान्त्रम् ॥३३॥
व्यस्तं कुर्यात् तदा वात्र

[^5]
मध्यलग्रमवाप्यते ।

madhyakāle punastasmin
koṭiprāṇakalāntaram \|33\|
vyastaṃ kuryāt tadā vātra madhyalagnamavāpyate |

Again, one should apply the koți-prāṇa-kalāntara to that madhyakāla reversely. Then also the meridian ecliptic point (madhyalagna) is obtained here.

The latter half of verse 33 and the first half of verse 34 (both in the anustubh metre) together present the following expression to determine the madhyalagna or the meridian ecliptic point from the madhyakāla:

$$
\text { madhyalagna }=\text { madhyakāla } \mp \text { koṭi-prāṇakalāntara }
$$

$$
\begin{equation*}
\text { or, } \quad \lambda_{m}=\alpha_{t} \mp\left|\lambda_{m}-\alpha_{t}\right| . \tag{6}
\end{equation*}
$$

It is easily seen that the above relation is a corollary of (3). The kotti-prāṇakalāntara is applied here as we want to convert the meridian ecliptic point's right ascension into its longitude. ${ }^{12}$ Furthermore, it must be noted that the prānakalāntara is applied reversely here for the same

[^6]reason, as we want to convert right ascension into longitude. ${ }^{13}$

2.4 Determining the madhyajyā

मध्यलग्रात् पुनस्तस्मात्
दोःकोट्योः क्रान्तिमानयेत् ॥३४॥
दोःक्रान्तिकोट्याक्षममुष्य
कोट्या दो:क्रान्तिजीवां च निहत्य ${ }^{14}$ भूयः।
तद्योगभेदात् समभिन्नदिक्त्वे
त्रिज्याहृतं मध्यगुणं वदन्ति ॥३५॥
madhyalagnāt punastasmāt
doḥkotyoh krāntimānayet \|34\|
doḥkrāntikotyākṣamamuṣya
koṭyā doḥkrāntijūvām ca nihatya bhūyaḥ ।
tadyogabhedāt samabhinnadiktve
trijyāhrtaṃ madhyaguṇaṃ vadanti \|35\|

Again, from that meridian ecliptic point (madhyalagna), one should derive the Rsine and Rcosine of its declination. Having multiplied (i) the [Rsine of the] latitude ($a k s, a$) with the Rcosine of the declination corresponding to the longitude (doḥkrāntikotti) [of the madhyalagna], and also (ii) the Rsine of the declination corresponding to the longitude (doḥkrāntijī̀và) [of the madhyalagna] with the Rcosine of this [latitude], their sum or differencedepending upon [whether the equator and the zenith are in the] same or opposite direction [with respect to the ecliptic]-divided by the radius (tri$j y \bar{a})$, is stated to be the madhyaguṇa.

In one and a half verses (half in the anuștubh and full in the indravajrā metres) Mādhava gives the relation for calculating the madhyajyā (i.e. madhyaguṇa) or the Rsine of the zenith distance $\left(z_{m}\right)$ of the meridian ecliptic point (madhyalagna). To this end, the verses instruct that first the Rsine and Rcosine of the declination $\left(\delta_{m}\right)$ corresponding to the longitude of the madhyalagna should be calculated. ${ }^{15}$ The relation for the madhyajyā in terms of these

[^7]two quantities, as well as the Rsine and Rcosine of the latitude (ϕ), is stated as follows:
madhyaguṇa $=($ akṣajyā \times doḥkrāntikoṭi \pm
$$
\text { akṣakoṭijyā } \times \text { doḥkrāntijū̀ } \bar{a}) \div \operatorname{trijy} \bar{a}
$$
or,
\[

$$
\begin{equation*}
R \sin z_{m}=\frac{\left(R \sin \phi \times R \cos \delta_{m} \pm R \cos \phi \times R \sin \delta_{m}\right)}{R} \tag{7}
\end{equation*}
$$

\]

The verses further state that the sign in the above relation has to be taken as positive or negative depending upon whether the latitude and declination are in the 'same' or 'opposite' directions. This remark, as well as the validity of the above expression, can be understood from Figure 4. The figure depicts the madhyalagna (M) when it has northern as well as southern declination. The figure also depicts its declination $\left(\delta_{m}\right)$, as well as zenith distance $\left(z_{m}\right)$, in these two cases. As can be seen from the figure, the zenith distance of M is equal to $\phi+\delta_{m}$ when the ecliptic is in the same direction with respect to both the zenith and the equator, and $\phi-\delta_{m}$ when the equator and the zenith are on either side of the ecliptic. ${ }^{16}$ We therefore have

$$
\sin z_{m}=\sin \left(\phi \pm \delta_{m}\right)=\sin \phi \cos \delta_{m} \pm \cos \phi \sin \delta_{m},
$$

or,

$$
R \sin z_{m}=\frac{\left(R \sin \phi \times R \cos \delta_{m} \pm R \cos \phi \times R \sin \delta_{m}\right)}{R}
$$

which is the same as (7).
Now, a brief note on the advantage of the choice of form of the rule prescribed by (7). Naively, it may appear that expanding $\sin \left(\phi \pm \delta_{m}\right)$ and determining the sum or difference of products of the sine and cosine functions could be more cumbersome than directly determining the sine of the total quantity. However, this need not be the case if the constituent terms of the expansion were already known to the practitioners, who could then easily determine the result by the simple summation of two products. For instance, the sine of the declination of the madhyalagna $\left(\sin \delta_{m}\right)$ can be derived directly using the relation

[^8]

Figure 4 The direction of the equator and the zenith with respect to the ecliptic for determining the madhyaguṇa.
$\sin \delta=\sin \lambda \sin \epsilon$. Its cosine too can be easily determined using basic arithmetic, while the sine and cosine of the latitude would be readily available for a given location. On the other hand, to directly determine $\sin \left(\phi \pm \delta_{m}\right)$, one would have to first calculate the inverse sine of the quantity $\sin \delta_{m}$ to obtain δ_{m}, add or subtract this to the latitude, and then determine the sine of the composite quantity. The complex and time consuming task of determining the inverse sine can be avoided by following the prescribed procedure.

The quantity madhyajyā thus determined is now used to determine the drkkṣepajyā in the next verse.

2.5 Determining the dṛkkṣepajyā

कोटिक्रान्तेर्मध्यजीवाहताया
लब्धं बाहुक्रान्तिकोट्या तु बाहुः।
मध्यज्याया वर्गतो बाहुवर्गं
त्यक्त्वा शिष्टं स्याच दृक्क्षेपवर्गः ॥३६॥
koṭikrāntermadhyajī̀āhatāyā
labdhaṃ bāhukrāntikotyā tu bāhuḥ|
madhyajyāyā vargato bāhuvargaṃ
tyaktvā siș̣taṃ syācca dṛkkṣepavargaḥ ||36\|
The result obtained from the kotikrānti, which is multiplied by the madhyajīv \bar{a} (madhyajy \bar{a}), and divided by the bāhukrāntikoṭi is bāhu. The residue obtained after the subtraction of the square of the $b \bar{a} h u$ from the square of the Rsine of the madhya$j y \bar{a}$, would be the square of [the Rsine of] the drkkṣepa.

The drkkșepajy \bar{a}, or simply the dr$k k s ̦ e p a$, is the Rsine of the zenith distance of the drrkksepalagna or the nonagesimal. ${ }^{17}$ This verse (in the śálinī metre) gives an expression for determining the drrkksepa in terms of the madhya$j y \bar{a}$ and another intermediary quantity called the $b \bar{a} h u$, which is defined as follows: ${ }^{18}$

$$
\begin{align*}
b \bar{a} h u & =\frac{\text { madhyajyā } \times \text { koṭikrānti }}{\text { bāhukrāntikoṭi }} \\
& =\frac{R \sin z_{m} \times R \cos \lambda_{m} \sin \epsilon}{R \cos \delta_{m}} . \tag{8}
\end{align*}
$$

Now, the dṛkkṣepajyā is defined as:

$$
\begin{align*}
(d r k k s ̣ e p a j y \bar{a})^{2} & =(\text { madhyajy } \bar{a})^{2}-(b \bar{a} h u)^{2} \\
\text { or, } \quad\left(R \sin z_{d}\right)^{2} & =\left(R \sin z_{m}\right)^{2}-(b \bar{a} h u)^{2}, \tag{9}
\end{align*}
$$

where z_{d} corresponds to the zenith distance of the drkkssepalagna.

Rationale behind the expression for dṛkkṣepajyā

The expression for the $d r k k s ̣ e p a j y \bar{a}$ given in (9) can be arrived at as follows. In Figure 5, D represents the drkkṣepalagna or the nonagesimal, which corresponds to the highest point of the ecliptic lying above the horizon. In other words, its zenith distance $Z D$ (which is the

[^9]

Figure 5 Visualising the dṛkksepa.
$d r k k s ̣ e p a)$, is the least compared to any other point on the ecliptic. This is only possible when $Z D$ is perpendicular to the tangent to the ecliptic at $D .{ }^{19}$ This in turn implies that the secondary $K D$ from the pole of the ecliptic (K), which is perpendicular to the ecliptic at D, passes through the zenith $(Z) .{ }^{20}$

Also, in the figure, the ecliptic points M and R correspond to the madhyalagna and the rāsikūṭalagna respectively, while the equatorial point T corresponds to the madhyakāla. As E is the pole for any point on the prime meridian, we have $E J=90$. Now, let $E R=\mu$. Then, obviously $R J=90-\mu$. As M is the pole of the great circle arc $K J R E,{ }^{21}$ the arc $R J$ also corresponds to the angle between the prime meridian and the ecliptic.

From the form of (9), it is evident that the author visualised a right-angled triangle, with the madhyajy \bar{a} as the hypotenuse, and the $d r ̣ k s ̣ e p a j y \bar{a}$ and $b \bar{a} h u$ as sides. To help visualise this triangle, the celestial sphere is depicted from the point of view of the ecliptic plane in Figure 6 a. Here, $Z D^{\prime}$ and $Z M^{\prime}$ correspond to the Rsines of

[^10]the drkkṣepa and the zenith distance of the madhyalagna respectively. Taking $Z D=z_{d}$ and $Z M=z_{m}$, we have
$$
Z D^{\prime}=R \sin z_{d}, \quad \text { and } \quad Z M^{\prime}=R \sin z_{m} .
$$

We also have

$$
O D^{\prime}=R \cos z_{d}, \quad \text { and } \quad O M^{\prime}=R \cos z_{m} .
$$

Now, as $K Z D$ is perpendicular to the ecliptic, the planar triangle $Z M^{\prime} D^{\prime}$ is right-angled at D^{\prime}, and lies in a plane perpendicular to the ecliptic. Therefore, we have

$$
\left(R \sin z_{d}\right)^{2}=\left(R \sin z_{m}\right)^{2}-\left(M^{\prime} D^{\prime}\right)^{2},
$$

which is the relation given in (9), where the side $M^{\prime} D^{\prime}$ has been called $b \bar{a} h u$.

Rationale behind the expression for bāhu

The relation for the $b \bar{a} h u$ given by (8) can be understood from the same right-angled triangle $Z M^{\prime} D^{\prime}$. In this triangle, the angle

$$
Z \hat{M}^{\prime} D^{\prime}=90-\mu
$$

corresponds to the angle between the prime meridian and the ecliptic. Using simple trigonometry, we have

$$
M^{\prime} D^{\prime}=R \sin Z M \cos (90-\mu)
$$

(a) Visualising the dr$k k s s e p a$ from the point of view of the ecliptic plane.

(b) Planar triangles used to determine the drrkkṣepajyā and the drkksepalagna.

Figure 6 Determining the drtkksepajyā and the drkkșepalagna.
or

$$
\begin{equation*}
b \bar{a} h u=R \sin z_{m} \sin \mu \text {. } \tag{10}
\end{equation*}
$$

The expression for $\sin \mu$ can be determined from the spherical triangle $\Gamma E R$ in Figure 5, where we have $E R=\mu$, $R \hat{\Gamma} E=\epsilon$, and $\Gamma \hat{E} R=90-\delta_{m} \cdot{ }^{22}$ Applying the sine rule in this triangle, we have

$$
\begin{equation*}
\sin \mu=\frac{\sin \Gamma R \times \sin \epsilon}{\sin \left(90-\delta_{m}\right)} \tag{11}
\end{equation*}
$$

However, as the rāsikūṭalagna is ninety degrees from the madhyalagna, we have

$$
\Gamma R=90-M \Gamma=90-\left(360-\lambda_{m}\right)=\lambda_{m}-270 .
$$

Using the above expression for ΓR in (11), we have

$$
\sin \mu=\frac{\cos \lambda_{m} \sin \epsilon}{\cos \delta_{m}}=\frac{R \cos \lambda_{m} \sin \epsilon}{R \cos \delta_{m}} .
$$

Substituting the above expression in (10), we have

$$
b \bar{a} h u=\frac{R \sin z_{m} \times R \cos \lambda_{m} \sin \epsilon}{R \cos \delta_{m}},
$$

which is the same as (8).

2.6 Determining paraśaṅku, dṛksṣepalagna, and udayalagna
 दृक्क्षेपवर्गे त्रिगुणस्य वर्गात्
 त्यक्तेऽस्य मूलं परशाङ्कुमाहुः।
 त्रिज्याहतं बाहुमनेन भक्तं
 चापीकृतं मध्यविलग्रकेऽस्मिन् ॥३७॥
 क्रमाद्धनर्णं मृगकर्कटाद्यो:
 व्यस्तं च तन्मध्यगुणे तु सौम्ये।
 तदा तु दृक्क्षेपविलग्नकं स्यात्
 तत्सत्रिभं तूदयलग्रमाहुः ॥३८॥

dṛkkṣepavarge triguṇasya vargāt tyakte'sya mūlạ̣ paraśañkumāhuḥ | trijyāhataṃ bāhumanena bhaktaṃ cāpīkrtaṃ madhyavilagnake'smin ||37\| kramāddhanarṇaṃ mrgakarkaṭādyoh vyastaṃ ca tanmadhyaguṇe tu saumye | tadā tu dṛkkṣepavilagnakaṃ syāt tatsatribhaṃ tūdayalagnamāhuḥ ||38\|

[^11]When the square of the $d r ̣ k k s e p a[j y \bar{a}]$ is subtracted from the square of the radius (trijy \bar{a}), [people] state its (the difference's) square-root to be the paraśañku. The bāhu [stated in the previous verse] multiplied by the radius (trijy \bar{a}) divided by this (paraśañku) is converted to arc and applied positively and negatively in order to the meridian ecliptic point (madhyalagna) depending on [whether the madhyalagna is in the six signs] Capricorn ($m r g \bar{g} d i$) etc., or Cancer (karkaṭādi) etc. It (the positive or negative application of the arc to the madhyalagna) is reversed when the madhyajy \bar{a} is northward. Then, the nonagesimal (drkksepavilagna) would be [obtained]. That added by three signs is stated to be the rising ecliptic point (udayalagna).

The two verses above (in the indravajrā and upajāti metres respectively) are essentially meant for providing an expression for the ascendant or the udayalagna. The expression for the udayalagna is given in terms of the drkkṣepalagna, which in turn is defined in terms of the paraśañku. Hence, the set of verses above first give a relation for the paraśańku or the gnomon corresponding to the nonagesimal, then for the drkkssepalagna or the longitude of the nonagesimal, and finally for the udayalagna or the rising ecliptic point. The relation for the paraśañku is given as:

$$
\begin{align*}
\text { paraśainku } & =\sqrt{(\text { triguṇa })^{2}-(\text { drkksepajyā })^{2}} \\
\text { or, } \quad R \cos z_{d} & =\sqrt{R^{2}-\left(R \sin z_{d}\right)^{2}} \tag{12}
\end{align*}
$$

The expression for drkksepalagna is given to be:
$d r ̣ k k s ̣ e p a l a g n a=m a d h y a l a g n a \pm c \bar{a} p a\left(\frac{\text { bāhu } \times \text { trijy } \bar{a}}{\text { paraśànku }}\right)$
or,

$$
\begin{equation*}
\lambda_{d}=\lambda_{m} \pm R \sin ^{-1}\left(\frac{b \bar{a} h u \times R}{R \cos z_{d}}\right), \tag{13}
\end{equation*}
$$

where $b \bar{a} h u$ is given by (8), and paraśañku by (12).
Now, the expression for the udayalagna stated in terms of the drkksepalagna in the last quarter of verse 38 is:

$$
\begin{align*}
\text { udayalagna } & =d r k k s ̣ e p a l a g n a+\text { tribha } \\
\text { or, } \quad \lambda_{l} & =\lambda_{d}+90 . \tag{14}
\end{align*}
$$

We now provide the rationale behind the above expressions.

Expression for the paraśañku

The paraśañku is the gnomon dropped from the dṛkkṣepalagna (point D in Figure 5) to the horizon. In later verses, this quantity is also referred to as the drkkṣepakotik \bar{a} or the rāsikūttaprabhā. The length of this gnomon would be equal to the Rsine of the arc $C D$. As $C D=90-z_{d}$, we have

$$
\text { paraśánku }=R \sin \left(90-z_{d}\right)=R \cos z_{d} \text {, }
$$

which is equivalent to (12).

Expression for the dṛkkṣepalagna

For observers in the northern hemisphere, the drkkṣepalagna is generally south of the zenith, and can be either in the eastern hemisphere or the western hemisphere, depending upon the longitude of the madhyalagna. When the longitude of the madhyalagna is in the range of 270 degrees to 90 degrees ($m r g \bar{a} d i$), the drkkș̣epalagna is in the eastern hemisphere, and when the longitude of the madhyalagna is in the range of 90 degrees to 270 degrees (karkaṭādi), the dṛkksepalagna is in the western hemisphere. In Figure 5, where the longitude of the madhyalagna is mrgādi, it can be seen that the dṛkksepalagna is in the eastern hemisphere, and that its longitude is equal to the sum of the longitude of the madhyalagna (M) and the $\operatorname{arc} M D$. Alternatively, when the drkksepalagna is in the western hemisphere, this arc would have to be subtracted from the longitude of the madhyalagna to obtain the drkkșepalagna. Thus, we have

$$
\begin{equation*}
\lambda_{d}=\lambda_{m} \pm M D \tag{15}
\end{equation*}
$$

In some cases, for observers at lower latitudes $(\phi<\epsilon)$, the dṛkkṣepalagna and the dṛkkṣepajyā can be north of the zenith (for instance, see Figure 7b). In these cases, the $d r k k s ̣ e p a l a g n a$ is in the eastern hemisphere when the longitude of the madhyalagna is in the range of 90 degrees to 270 degrees (karkatā$d i$), and in the western hemisphere when the longitude of the madhyalagna is in the range of 270 degrees to 90 degrees ($m r g \bar{a} d i$). Therefore, for obtaining the dṛkksepalagna in this case, the arc MD has to be subtracted from the longitude of the madhyalagna when it is $m r g \bar{a} d i$, and added to it when the madhyalagna is karkaṭādi. Therefore, when compared to the situation
where the drkkssepa is to the south of the zenith, the procedure of applying the $\operatorname{arc} M D$ to the madhyalagna is reverse in the case when the dṛkksepajyā is northwards.
The length of the arc $M D$ can be determined by considering the triangles $D F O$ and $D^{\prime} M^{\prime} O$ shown in Figure 6 b . The triangle $D F O$ lies on the plane of the ecliptic, in which $O D=R$, and $D F$ is the perpendicular dropped on the radius $O M$ from D. Thus,

$$
D F=R \sin M D, \quad \text { and } \quad O F=R \cos M D .
$$

The triangle $D^{\prime} M^{\prime} O$ also lies on the plane of the ecliptic, where we have already shown in our discussion of the previous verse that $M^{\prime} D^{\prime}=b \bar{a} h u, O M^{\prime}=R \cos z_{m}$, and $O D^{\prime}=R \cos z_{d}$. Using (8), it can be shown that

$$
\left(O D^{\prime}\right)^{2}=\left(O M^{\prime}\right)^{2}+\left(M^{\prime} D^{\prime}\right)^{2}
$$

which implies that triangle $D^{\prime} M^{\prime} O$ is right-angled at M^{\prime}.
Thus, the triangles $D F O$ and $D^{\prime} M^{\prime} O$ are similar, as they are both right-angled, and also share the common angle at O. Applying the rule of proportionality of the sides of similar triangles, we have

$$
\begin{equation*}
R \sin M D=\frac{b \bar{a} h u \times R}{R \cos z_{d}} . \tag{16}
\end{equation*}
$$

Substituting this result in (15), we have

$$
\lambda_{d}=\lambda_{m} \pm R \sin ^{-1}\left(\frac{b \bar{a} h u \times R}{R \cos z_{d}}\right)
$$

which is the same as (13).

Expression for the udayalagna

In Figure 5, one observes that the udayalagna (L) is 90 degrees from the pole of the ecliptic (K), as well as the zenith (Z). Therefore, L is the pole of the great circle $K Z D C$, which means $L D=90$. Therefore,

$$
\lambda_{l}=\lambda_{d}+90
$$

which is the same as (14).
From the fact that L is at 90 degrees from both C and D, the angle $C \hat{L} D$ between the ecliptic and the horizon will be equal to the measure of the $\operatorname{arc} C D$, and therefore

$$
\begin{equation*}
C \hat{L} D=z_{d}^{\prime}=90-z_{d} . \tag{17}
\end{equation*}
$$

Though the above result is not stated in the above verses, we make a note of it here as it is essential for later discussions which will be brought out as a sequel to this article.

Figure 7 Direction of the dṛkkṣepa at lower latitudes.

3 Conclusion

The Lagnaprakaraṇa is a unique text focusing on a single problem in astronomy, namely the determination of the ascendant. This is indeed a non-trivial problem that seems to have attracted the attention of astronomers in India and around the world. While the problem has been attempted to be solved using a variety of approximations by various civilisations at different points of time, in our understanding, precise formulations appear in this work of Mādhava for the first time in the annals of Indian and world astronomy. Indeed, Mādhava seems to have approached this problem from the viewpoint of a pure mathematician and employs a variety of techniques to present multiple precise relations for the computation of the ascendant.

In this paper, we have discussed the first technique described by Mādhava in the Lagnaprakaraṇa. From our discussion it is evident that Mādhava seems to have been exceptionally good at visualising the motion of celestial objects in the celestial sphere and the projection of various points on it in several planes. This mastery enabled him to precisely derive the udayalagna through a series of fairly complex mathematical steps involving the determination of several quantities such as rāśikūṭalagna, madhyalagna, madhyakāla, madhyajyā, dṛkkṣepajyā, paraśaṅku, $d r k k s ̣ e p a l a g n a, ~ e t c . ~ T h i s ~ c o m p l e x i t y ~ p e r h a p s ~ e x p l a i n s ~$ why previous astronomers did not give precise relations for the ascendant, and attests to Mādhava's reputation as the Golavid, or the knower of the celestial sphere, in the

Kerala astronomical tradition.
In subsequent papers, we plan to present other techniques of determining the ascendant described by Mādhava in the Lagnaprakaraṇa.

Acknowledgements

We would like to place on record our sincere gratitude to MHRD for the generous support extended to carry out research activities on Indian science and technology by way of initiating the Science and Heritage Initiative (SandHI) at IIT Bombay. We pay our obeisance to the late Prof. K. V. Sarma, who saved the Lagnaprakaraṇa for future generations by painstakingly copying the crumbling manuscripts of the text. We are also extremely grateful to the Prof. K. V. Sarma Research Foundation, Chennai, for preserving and sharing the copies of these manuscripts, which has enabled us to study this interesting and important work. Finally, we would also like to profusely thank the anonymous referee for thoroughly reviewing our paper and making constructive suggestions.

Bibliography

[1] Āryabhaṭa. Āryabhaṭīya. Ed., trans., and comm., with an introd., by Kripa Shankar Shukla and K. V. Sarma. New Delhi: Indian National Science Academy, 1976.
[2] Bhāskara. Siddhāntaśiromaṇi. With a comment. by Satyadeva Sharma. Varanasi: Chaukhamba Surabharati Prakashan, 2007.
[3] Brahmagupta. Brāhmasphuṭasiddhānta. Ed. and comm. by Sudhakara Dvivedi. Reprint from The Pandit. Benares: Printed at the Medical Hall Press, 1902.
[4] Śrī Kṛ̣ṇa Candra Dvivedī, ed. Sūryasiddhānta. With the commentary Sudhāvarṣiṇi of Sudhākara Dvivedī. Sudhākara Dvivedī Granthamālā. Varanasi: Sampurnanand Sanskrit University, 1987.
[5] Jñanarāja. Siddhāntasundara. Trans. and comm. by Toke Lindegaard Knudsen. Baltimore: John Hopkins University Press, 2014.
[6] Jyeșṭhadeva. Gaṇita-yukti-bhāṣā. Ed. and trans. by K. V. Sarma. With a comment. by K. Ramasubramanian, M. D. Srinivas, and M. S. Sriram. 2 vols. Culture and History of Mathematics 4. New Delhi: Hindustan Book Agency, 2008.
[7] Aditya Kolachana, K. Mahesh, and K. Ramasubramanian. "Determination of kālalagna in the Lagnaprakaraṇa". In: Indian Journal of History of Science 54.1 (2019), pp. 1-12.
[8] Aditya Kolachana, K. Mahesh, and K. Ramasubramanian. "Mādhava's multi-pronged approach for obtaining the prāṇakalāntara". In: Indian Journal of History of Science 53.1 (2018), pp. 1-15.
[9] Aditya Kolachana et al. "Determination of ascensional difference in the Lagnaprakaraṇa". In: Indian Journal of History of Science 53.3 (2018), pp. 302-316.
[10] Lalla. Sissyadhīvrddhidatantra. With the commentary of Mallikārjuna Sūri. Ed., with an introd., by Bina Chatterjee. Vol. 1.2 vols. New Delhi: Indian National Science Academy, 1981.
[11] Mādhava. "Lagnaprakaraṇa". Manuscript 414B, ff. 53-84. Kerala University Oriental Research Institute and Manuscripts Library, Thiruvananthapuram.
[12] Mādhava. "Lagnaprakaraṇa". KVS Manuscript No. 37a. Prof. K. V. Sarma Research Foundation, Chennai.
[13] Mādhava. "Lagnaprakaraṇa". KVS Manuscript No. 37b. Prof. K. V. Sarma Research Foundation, Chennai.
[14] Nīlakaṇṭha Somayājī. Tantrasañgraha. Trans. and comm. by K. Ramasubramanian and M. S. Sriram. Culture and History of Mathematics 6. New Delhi: Hindustan Book Agency, 2011.
[15] Putumana Somayājī. Karaṇapaddhati. Trans. and comm. by Venketeswara Pai et al. Culture and History of Mathematics 9. New Delhi: Hindustan Book Agency, 2017.
[16] Srīpati. Siddhāntaśekhara. Part 1. Ed. and comm. by Babuāji Miśra. Calcutta: Calcutta University Press, 1932.
[17] Srīpati. Siddhāntaśekhara. Part 2. Ed. and comm. by Babuāji Miśra. Calcutta: University of Calcutta, 1947.
[18] Vațeśvara. Vaṭeśvarasiddhānta and Gola. Part 2. Trans. and comm. by Kripa Shankar Shukla. New Delhi: Indian National Science Academy, 1985.
[19] Vațeśvara. Vaṭeśvarasiddhānta and Gola. Part 1. Ed. by Kripa Shankar Shukla. New Delhi: Indian National Science Academy, 1986.

[^0]: DOI: 10.16943/ijhs/2019/v54i3/49741
 *Corresponding author: aditya.kolachana@gmail.com
 ${ }^{1}$ See the introduction to [7].
 ${ }^{2}$ The standard procedure adopted by Indian astronomers prior to Mādhava to determine the udayalagna is perhaps best described in the

[^1]: Tripraśnādhikāra of Śisyadhūvrddhidatantra. For a detailed discussion of this technique, see [10, pp. 61-69].
 ${ }^{3}$ See [8], [9], and [7] respectively.

[^2]: ${ }^{4}$ The term madhyalagnaka employed in the verse refers to the madhyalagna only. In other words, the suffix $k a$ is not meant to modify the meaning of the noun here (स्वार्थे).
 ${ }^{5}$ Though the definition is generic, and is quite inclusive to be applicable to celestial bodies that are off the ecliptic, it may be noted that the term prāṇakalāntara discussed in the first chapter of the Lagnaprakaraṇa assumed the body (typically the Sun) to lie on the ecliptic. See [8].

[^3]: ${ }^{6}$ The term koṭi-prāṇakalāntara may have been employed as it refers to the prāṇakalāntara corresponding to the koṭi or the upright $C B$ of the triangle $С Г В$, which is right angled at B.

[^4]: ${ }^{7}$ The secondary would of course be perpendicular to the ecliptic.

[^5]: ${ }^{11}$ Note that for a point on the ecliptic, there is only one kind of $p r a ̄ n ̣ a-$ kalāntara.

[^6]: ${ }^{12}$ Refer to our discussion on nija-prāṇakalāntara and koṭiprāṇakalāntara in verse 31. The points T and M here are analogous to points B and C in Figure 1.

[^7]: ${ }^{13}$ The prāṇakalāntara as defined in the first chapter of the Lagnaprakaraṇa is for converting the longitude of an ecliptic point to the corresponding right ascension. Thus, it is prescribed to be applied 'reversely' here.
 ${ }^{14}$ The available manuscripts give the reading as निहत्य. This however appears to be a transcribing error as the correct relation requires multiplication and not division.
 ${ }^{15}$ Knowing the longitude λ_{m} of the madhyalagna, the sine of its

[^8]: declination can be determined easily using the well known relation $\sin \delta=\sin \lambda \sin \epsilon$. This would be the doḥkrāntijīvā. Its cosine would be the doḥkrāntikoṭi.
 ${ }^{16}$ Here, δ_{m} represents only the magnitude of the declination of the madhyalagna.

[^9]: ${ }^{17}$ The nonagesimal is a point on the ecliptic above the horizon which is ninety degrees from the rising ecliptic point, and is also the highest point of the ecliptic.
 ${ }^{18}$ The standard relation for krānti or declination is $\sin \lambda \sin \epsilon$. The term kottikrānti is to be instead understood to be $\cos \lambda \sin \epsilon$. The term $b \bar{a} h u k r a \overline{n t i k o t ̣ i ~ h e r e ~ i s ~ t o ~ b e ~ u n d e r s t o o d ~ t o ~ m e a n ~ t h e ~ c o s i n e ~ o f ~ t h e ~ d e c-~}$ lination of the madhyalagna, i.e., $\cos \delta_{m}$.

[^10]: ${ }^{19}$ The arcs corresponding to the zenith distances of other points on the ecliptic will not be perpendicular to it, implying that they will be longer than $Z D$.
 ${ }^{20}$ The great circle containing the arc $K Z D$ is sometimes referred to as the drkkssepavrtta, or the great circle corresponding to the $d r k k s e p a$.
 ${ }^{21}$ Shown in our discussion of verse 31.

[^11]: ${ }^{22}$ As P is the pole of the equator, and M is the pole of the great circle arc $K J R E$, we have $P T=J M=90$, and $P J=T M=\delta_{m}$. Therefore, $\Gamma \hat{E} R=T \hat{E} P-J \hat{E} P=90-\delta_{m}$.

