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Abstract

The determination of the ascendant (udayalagna) or the rising point of the ecliptic is an important
problem in Indian astronomy, both for its astronomical as well as socio-religious applications. Thus, as-
tronomical works such as the Sūryasiddhānta, the Brāhmasphuṭasiddhānta, the Śiṣyadhīvṛddhidatantra,
etc., describe a standard procedure for determining this quantity, which involves a certain approximation.
However, Mādhava (c. 14th century) in his Lagnaprakaraṇa employs innovative analytic-geometric
approaches to outline several procedures to precisely determine the ascendant. This paper discusses the
first method described by Mādhava in the Lagnaprakaraṇa.
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1 Introduction

As the name implies, the Lagnaprakaraṇa (Treatise for
the Computation of the Ascendant) is a text exclusively
written to outline procedures for the determination of the
ascendant (udayalagna) or the rising point of the ecliptic.
To our knowledge, it is the first text to give multiple pre-
cise relations for finding this quantity. We have defined
the udayalagna and discussed its significance in an earlier
paper.1 In the same paper, we have briefly noted the state
of udayalagna computations in Indian astronomy prior
to Mādhava, and also remarked upon the approximations
involved therein.2
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1See the introduction to [7].
2The standard procedure adopted by Indian astronomers prior to Mā-

dhava to determine the udayalagna is perhaps best described in the

In the first chapter of the Lagnaprakaraṇa, Mādhava
discusses several procedures (many of them novel) to
determine astronomical quantities such as the prāṇa-
kalāntara (difference between the longitude and right as-
cension of a body), cara (ascensional difference of a body),
and kālalagna (the time interval between the rise of the
vernal equinox and a desired later instant). The physi-
cal significance of these quantities, the crucial role they
play in the computation of the ascendant, as well as the
import of Mādhava’s procedures in their determination
have been discussed in earlier papers.3 It may be briefly
noted here that the kālalagna is an ingenious and novel
concept, apparently first introduced by Mādhava in the
Lagnaprakaraṇa, which greatly facilitates precise deter-
mination of a number of astronomical quantities, includ-
ing the udayalagna.

Tripraśnādhikāra of Śiṣyadhīvṛddhidatantra. For a detailed discus-
sion of this technique, see [10, pp. 61–69].

3See [8], [9], and [7] respectively.
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From the second chapter onwards, the Lagna-
prakaraṇa describes several techniques of precisely
determining the udayalagna. These techniques are
fairly involved, spread over many verses, and require
the calculation of numerous intermediary quantities.
The current paper focuses only on the first technique
of determining the udayalagna described in the second
chapter of the Lagnaprakaraṇa.

Besides this introduction, this paper consists of two
more sections. In Section 2, which consists of several
subsections, we provide the relevant verses of the Lagna-
prakaraṇa which describe the first method of the compu-
tation of the udayalagna, along with their translation and
detailed mathematical notes. In the third and last section,
we make a few concluding remarks.

2 Precise determination of the
ascendant

The second chapter of the Lagnaprakaraṇa commences
with the definition of two quantities known as the rāśi-
kūṭalagna and madhyalagna (meridian ecliptic point).
Through eight verses (31 to 38), Mādhava successively
and systematically defines several quantities such as
the madhyakāla, madhyajyā, dṛkkṣepajyā, paraśaṅku,
dṛkkṣepalagna, and finally the udayalagna. As we go
through the verses, one cannot but help conclude that Mā-
dhava’s approach is quite meticulous and methodical.

As a prelude to our discussion, it may be mentioned
that in the following discussion we employ the symbols
𝜆, 𝛼, 𝛿, and 𝑧 to respectively refer to the longitude, right
ascension, declination, and zenith distance of a celestial
body. The kālalagna, the latitude of the observer, and the
obliquity of the ecliptic are denoted by the symbols 𝛼𝑒, 𝜙,
and 𝜖 respectively. It may also be mentioned that all the
figures in this section depict the celestial sphere for an ob-
server having a northerly latitude 𝜙.

2.1 Obtaining the rāśikūṭalagna and the
madhyalagna

नजप्राणकलाभेदंࣄ
कुयЂत् कालࣆवलҔके ।
रा࣊शकूटࣆवलҔं तत्
त्रभोनंࣆ मڌलҔकम् ॥३१॥
nijaprāṇakalābhedaṃ

kuryāt kālavilagnake |
rāśikūṭavilagnaṃ tat
tribhonaṃ madhyalagnakam ||31||

One should apply the nija-prāṇakalābheda (nija-
prāṇakalāntara) to the kālavilagna (kālalagna).
That is the rāśikūṭavilagna. That decreased by
three signs is the meridian ecliptic point (mad-
hyalagnaka).4

This verse (in the anuṣṭubh metre) shows the method
to determine the madhyalagna, or the meridian eclip-
tic point, in degrees. Towards this end, the verse first
gives the following relation to determine the rāśikūṭa-
lagna, which is a point on the ecliptic ninety degrees from
the meridian ecliptic point:

rāśikūṭalagna = kālalagna ± nija-prāṇakalāntara
or, 𝜆𝑟 = 𝛼𝑒 ± |𝜆𝑟 − 𝛼𝑒|, (1)

where 𝛼𝑒 and 𝜆𝑟 represent the kālalagna and the longi-
tude of the rāśikūṭalagna respectively. Then, the verse
notes that the madhyalagna can be simply determined as
follows:

madhyalagna = rāśikūṭalagna − tribha
or, 𝜆𝑚 = 𝜆𝑟 − 90. (2)

Note on nija-prāṇakalāntara and koṭi-prāṇakalāntara

The verse states that the rāśikūṭalagna can be determined
by applying the nija-prāṇakalāntara (lit. own prāṇa-
kalāntara) to the kālalagna. The nija-prāṇakalāntara
refers to the magnitude of the difference of the longitude
and right ascension of any body,5 not necessarily lying
on the ecliptic. The term nija-prāṇakalāntara is used in
contrast to the term koṭi-prāṇakalāntara, which appears
in later verses, to differentiate between the two possible
prāṇakalāntaras for a point 𝐵 on the equator shown in
Figure 1. Here, we have

nija-prāṇakalāntara = |𝜆𝑓 − 𝛼𝑏|,
4The term madhyalagnaka employed in the verse refers to the

madhyalagna only. In other words, the suffix ka is not meant to mod-
ify the meaning of the noun here .(ाथϸࡈ)

5Though the definition is generic, and is quite inclusive to be appli-
cable to celestial bodies that are off the ecliptic, it may be noted that
the term prāṇakalāntara discussed in the first chapter of the Lagna-
prakaraṇa assumed the body (typically the Sun) to lie on the ecliptic.
See [8].

305



ARTICLES IJHS | VOL 54.3 | SEPTEMBER 2019

equator
𝛼𝑏

𝐵

ecliptic

𝑃
𝐾

𝑋

Γ

Ω

𝐶𝐹

𝜖

Figure 1 The significance of nija-prāṇakalāntara and koṭi-prāṇakalāntara.

which gives the difference in terms of point 𝐵’s ‘own’ lon-
gitude and right ascension, while the

koṭi-prāṇakalāntara = |𝜆𝑐 − 𝛼𝑏|,

gives the difference in the longitude and right ascension
of point𝐶 on the ecliptic whose right ascension (𝛼𝑏) corre-
sponds to that of point 𝐵.6 Thus, only one kind of prāṇa-
kalāntara is applicable for a point on the ecliptic, while
the two kinds discussed above are possible for a point on
the equator.

Perhaps assuming the procedure to be straightforward
(though it doesn’t seem to be so), the text does not describe
how to determine the nija-prāṇakalāntara. Hence, for
the convenience of the readers, here we outline how to ob-
tain this quantity using modern spherical trigonometrical
results. Applying the cosine rule of spherical trigonome-
try in the spherical triangle 𝐹Γ𝐵, where

𝐵 ̂𝐹Γ = 90, 𝐵Γ̂𝐹 = 𝜖, Γ𝐵 = 𝛼𝑏, Γ𝐹 = 𝜆𝑓,

yields
cos𝛼𝑏 = cos 𝜆𝑓 cos𝐵𝐹.

Applying the sine rule in the same triangle, we get

sin𝐵𝐹 = sin𝛼𝑏 sin 𝜖.

6The term koṭi-prāṇakalāntara may have been employed as it refers
to the prāṇakalāntara corresponding to the koṭi or the upright 𝐶𝐵 of
the triangle 𝐶Γ𝐵, which is right angled at 𝐵.

From the above two relations, we have

𝜆𝑓 = cos−1 ( cos𝛼𝑏
cos[sin−1(sin𝛼𝑏 sin 𝜖)]

)

or, 90 − 𝜆𝑓 = sin−1 ( cos𝛼𝑏
cos[sin−1(sin𝛼𝑏 sin 𝜖)]

) .

The above relations can be used to determine the nija-
prāṇakalāntara in the form of

𝜆𝑓 − 𝛼𝑏,

where 𝛼𝑏 is already known. The same relations can also
be arrived at using planar geometry, and would surely
have been known to the author of the text.

Deriving the expressions for rāśikūṭalagna and
madhyalagna

The verse states that the nija-prāṇakalāntara is to be ap-
plied to the kālalagna to obtain the rāśikūṭalagna. This
can be understood from Figure 2, where the great circle
arc 𝐾𝑅𝐸 is the secondary7 from the pole of the ecliptic
(𝐾) to the ecliptic, and also passes through the east car-
dinal point (𝐸). Let the right ascension of 𝐸 be 𝛼𝑒. This
secondary meets the ecliptic at the rāśikūṭalagna (𝑅). Let
the longitude of 𝑅 be 𝜆𝑟. The points 𝐸 and 𝑅 are analo-
gous to points 𝐵 and 𝐹 in Figure 1. Therefore, applying
the nija-prāṇakalāntara to 𝛼𝑒 gives 𝜆𝑟, or

𝜆𝑟 = 𝛼𝑒 ± nija-prāṇakalāntara = 𝛼𝑒 ± |𝜆𝑟 − 𝛼𝑒|,
7The secondary would of course be perpendicular to the ecliptic.

306



IJHS | VOL 54.3 | SEPTEMBER 2019 ARTICLES

horizon

equator

ecliptic

𝑃

𝑍

𝑁𝑆

𝐸

Γ

𝑇

𝑀

𝐽

𝐾

𝑅

𝐿

𝜙

Figure 2 Determining the madhyalagna from the kālalagna and the rāśikūṭalagna.

which is the relation given by (1).
Now, the madhyalagna is the longitude of the point 𝑀

at the intersection of the ecliptic and prime meridian in
Figure 2. As the arcs 𝑀𝐸 = 𝑀𝐾 = 90,8 one can conclude
that 𝑀 is the pole of the great circle arc 𝐾𝑅𝐸.9 Therefore,
we have 𝑀𝑅 = 90, which is the relation stated in (2).

It may be noted that since the kālalagna is the same
for all observers on a given longitude,10 the rāśikūṭa-
lagna and the madhyalagna are the same too for these
observers.

2.2 Computation of the madhyakāla

मڌलҔे पुनः कुयЂत्
रम्ڢनजप्राणकलाࣄ ।
मڌकालो भवे؛ोऽयं
ंזत्रभाࣆ काललҔकम् ॥३२॥
काललҔं नंूߺत्रराࣆ
मڌकालः प्रकࣆࢩतर्तः ।
madhyalagne punaḥ kuryāt
nijaprāṇakalāntaram |
madhyakālo bhavet so’yaṃ
tribhāḍhyaṃ kālalagnakam ||32||
kālalagnaṃ trirāśyūnaṃ
madhyakālaḥ prakīrtitaḥ |

One should again apply the nija-prāṇa-kalāntara
8𝑀𝐸 = 90 as 𝐸 is the pole for any point on the prime meridian.

𝑀𝐾 = 90 as 𝐾 is the pole of any point on the ecliptic.
9Except when the points are separated by 180 degrees, two points are

sufficient to define a unique great circle on a sphere.
10See verse 30 in [7].

to the meridian ecliptic point (madhyalagna).
That would be the madhyakāla. That increased
by three signs would be the kālalagna. The kāla-
lagna diminished by three signs is stated to be the
madhyakāla.

The above verses (in the anuṣṭubh metre) essentially in-
troduce the concept of madhyakāla, which is the right as-
cension of the point at the intersection of the equator and
the prime meridian, represented by point 𝑇 in Figure 3.
They also present expressions detailing the relationship
between the madhyakāla and the kālalagna.

In Figure 3, let the point𝑀 represent the madhyalagna,
which has been discussed in the previous verse. Taking 𝛼𝑡
as the right ascension of 𝑇, and 𝜆𝑚 as the longitude of 𝑀,
the relation given in the verse for the madhyakāla can be
expressed as:

madhyakāla = madhyalagna ± nija-prāṇakalāntara
or, 𝛼𝑡 = 𝜆𝑚 ± |𝜆𝑚 − 𝛼𝑡|. (3)

Having defined the madhyakāla thus, starting with the
latter half of verse 32, the author describes the connection
between the kālalagna and the madhyakāla through the
following relations:

kālalagna = madhyakāla + tribha
or, 𝛼𝑒 = 𝛼𝑡 + 90, (4)

and

madhyakāla = kālalagna − trirāśi
or, 𝛼𝑡 = 𝛼𝑒 − 90. (5)
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Figure 3 Determining the madhyalagna and the madhyakāla.

The relation between the madhyakāla and the madhya-
lagna given in (3) can be easily understood with the help
of Figure 3. Here, both the points𝑇 and𝑀 lie on the prime
meridian, which immediately indicates that 𝛼𝑡 is the right
ascension of a body at 𝑀. Thus, if the madhyalagna (𝜆𝑚)
is already known, then the madhyakāla (𝛼𝑡) can be read-
ily found by applying the prāṇakalāntara to it.11 That is,

𝛼𝑡 = 𝜆𝑚 ± |𝜆𝑚 − 𝛼𝑡|,

which is the first relation given in the verse.
As the east cardinal point (𝐸) is the pole for any point

on the prime meridian, it is also evident from the figure
that the kālalagna (𝛼𝑒) is given by

𝛼𝑒 = 𝛼𝑡 + 90,

which explains the relations (4) and (5) stated in the verse.

2.3 An alternate way of obtaining the
madhyalagna

मڌकाले पुनࡅ࣒࠼न्
कोࣅटप्राणकलाڢरम् ॥३३॥
ं࠼ߢ कुयЂत् तदा वात्र

11Note that for a point on the ecliptic, there is only one kind of prāṇa-
kalāntara.

मڌलҔमवाܙते ।
madhyakāle punastasmin
koṭiprāṇakalāntaram ||33||
vyastaṃ kuryāt tadā vātra
madhyalagnamavāpyate |

Again, one should apply the koṭi-prāṇa-kalāntara
to that madhyakāla reversely. Then also the merid-
ian ecliptic point (madhyalagna) is obtained here.

The latter half of verse 33 and the first half of verse
34 (both in the anuṣṭubh metre) together present the fol-
lowing expression to determine the madhyalagna or the
meridian ecliptic point from the madhyakāla:

madhyalagna = madhyakāla ∓ koṭi-prāṇakalāntara
or, 𝜆𝑚 = 𝛼𝑡 ∓ |𝜆𝑚 − 𝛼𝑡|. (6)

It is easily seen that the above relation is a corollary of
(3). The koṭi-prāṇakalāntara is applied here as we want
to convert the meridian ecliptic point’s right ascension
into its longitude.12 Furthermore, it must be noted that
the prāṇakalāntara is applied reversely here for the same

12Refer to our discussion on nija-prāṇakalāntara and koṭi-
prāṇakalāntara in verse 31. The points 𝑇 and 𝑀 here are analogous
to points 𝐵 and 𝐶 in Figure 1.
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reason, as we want to convert right ascension into longi-
tude.13

2.4 Determining the madhyajyā

मڌलҔात् पुनࡅ࠼ात्
दोःको֌ोः क्राڢ࣎मानयेत् ॥३४॥
दोःक्राڢ࣎को֌ाक्षममुࠔ
को֌ा दोःक्राڢ࣎जीवां च नहؖ14ࣄ भूयः ।
त٦ोगभेदात् समࣉभࣅڦदїे
त्रԷाहृतंࣆ मڌगुणं वदڢ࣎ ॥३५॥
madhyalagnāt punastasmāt
doḥkoṭyoḥ krāntimānayet ||34||
doḥkrāntikoṭyākṣamamuṣya
koṭyā doḥkrāntijīvāṃ ca nihatya bhūyaḥ |
tadyogabhedāt samabhinnadiktve
trijyāhṛtaṃ madhyaguṇaṃ vadanti ||35||

Again, from that meridian ecliptic point (madhya-
lagna), one should derive the Rsine and Rcosine
of its declination. Having multiplied (i) the [Rsine
of the] latitude (akṣa) with the Rcosine of the dec-
lination corresponding to the longitude (doḥkrān-
tikoṭi) [of the madhyalagna], and also (ii) the Rsine
of the declination corresponding to the longitude
(doḥkrāntijīvā) [of the madhyalagna] with the
Rcosine of this [latitude], their sum or difference—
depending upon [whether the equator and the
zenith are in the] same or opposite direction [with
respect to the ecliptic]—divided by the radius (tri-
jyā), is stated to be the madhyaguṇa.

In one and a half verses (half in the anuṣṭubh and full in
the indravajrā metres) Mādhava gives the relation for cal-
culating the madhyajyā (i.e. madhyaguṇa) or the Rsine
of the zenith distance (𝑧𝑚) of the meridian ecliptic point
(madhyalagna). To this end, the verses instruct that first
the Rsine and Rcosine of the declination (𝛿𝑚) correspond-
ing to the longitude of the madhyalagna should be calcu-
lated.15 The relation for the madhyajyā in terms of these
13The prāṇakalāntara as defined in the first chapter of the Lagna-

prakaraṇa is for converting the longitude of an ecliptic point to the
corresponding right ascension. Thus, it is prescribed to be applied ‘re-
versely’ here.
14The available manuscripts give the reading as .नहृؖࣄ This however

appears to be a transcribing error as the correct relation requires mul-
tiplication and not division.
15Knowing the longitude 𝜆𝑚 of the madhyalagna, the sine of its

two quantities, as well as the Rsine and Rcosine of the lat-
itude (𝜙), is stated as follows:

madhyaguṇa = (akṣajyā × doḥkrāntikoṭi ±
akṣakoṭijyā × doḥkrāntijīvā) ÷ trijyā

or,

𝑅 sin 𝑧𝑚 = (𝑅 sin𝜙 × 𝑅 cos 𝛿𝑚 ± 𝑅 cos𝜙 × 𝑅 sin 𝛿𝑚)
𝑅 .

(7)
The verses further state that the sign in the above re-

lation has to be taken as positive or negative depend-
ing upon whether the latitude and declination are in the
‘same’ or ‘opposite’ directions. This remark, as well as the
validity of the above expression, can be understood from
Figure 4. The figure depicts the madhyalagna (𝑀) when
it has northern as well as southern declination. The figure
also depicts its declination (𝛿𝑚), as well as zenith distance
(𝑧𝑚), in these two cases. As can be seen from the figure,
the zenith distance of𝑀 is equal to 𝜙+𝛿𝑚 when the eclip-
tic is in the same direction with respect to both the zenith
and the equator, and 𝜙 − 𝛿𝑚 when the equator and the
zenith are on either side of the ecliptic.16 We therefore
have

sin 𝑧𝑚 = sin(𝜙 ± 𝛿𝑚) = sin𝜙 cos 𝛿𝑚 ± cos𝜙 sin 𝛿𝑚,

or,

𝑅 sin 𝑧𝑚 = (𝑅 sin𝜙 × 𝑅 cos 𝛿𝑚 ± 𝑅 cos𝜙 × 𝑅 sin 𝛿𝑚)
𝑅

which is the same as (7).
Now, a brief note on the advantage of the choice of form

of the rule prescribed by (7). Naively, it may appear that
expanding sin(𝜙 ± 𝛿𝑚) and determining the sum or dif-
ference of products of the sine and cosine functions could
be more cumbersome than directly determining the sine
of the total quantity. However, this need not be the case
if the constituent terms of the expansion were already
known to the practitioners, who could then easily deter-
mine the result by the simple summation of two products.
For instance, the sine of the declination of the madhya-
lagna (sin 𝛿𝑚) can be derived directly using the relation

declination can be determined easily using the well known relation
sin𝛿 = sin𝜆 sin 𝜖. This would be the doḥkrāntijīvā. Its cosine would
be the doḥkrāntikoṭi.
16Here, 𝛿𝑚 represents only the magnitude of the declination of the

madhyalagna.
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Figure 4 The direction of the equator and the zenith with respect to the ecliptic for determining the madhyaguṇa.

sin 𝛿 = sin 𝜆 sin 𝜖. Its cosine too can be easily determined
using basic arithmetic, while the sine and cosine of the
latitude would be readily available for a given location.
On the other hand, to directly determine sin(𝜙±𝛿𝑚), one
would have to first calculate the inverse sine of the quan-
tity sin 𝛿𝑚 to obtain 𝛿𝑚, add or subtract this to the latitude,
and then determine the sine of the composite quantity.
The complex and time consuming task of determining the
inverse sine can be avoided by following the prescribed
procedure.

The quantity madhyajyā thus determined is now used
to determine the dṛkkṣepajyā in the next verse.

2.5 Determining the dṛkkṣepajyā

कोࣅटक्राेڢमर्ڌजीवाहताया
लंݎ बाहुक्राڢ࣎को֌ा तु बाहुः ।
मڌԷाया वगर्तो बाहुवगϴ
ؖїा ࠋशं࣊ ाԎࡆ दृёेपवगर्ः ॥३६॥
koṭikrāntermadhyajīvāhatāyā
labdhaṃ bāhukrāntikoṭyā tu bāhuḥ |
madhyajyāyā vargato bāhuvargaṃ
tyaktvā śiṣṭaṃ syācca dṛkkṣepavargaḥ ||36||

The result obtained from the koṭikrānti, which is
multiplied by the madhyajīvā (madhyajyā), and di-
vided by the bāhukrāntikoṭi is bāhu. The residue
obtained after the subtraction of the square of the
bāhu from the square of the Rsine of the madhya-
jyā, would be the square of [the Rsine of] the
dṛkkṣepa.

The dṛkkṣepajyā, or simply the dṛkkṣepa, is the Rsine
of the zenith distance of the dṛkkṣepalagna or the nona-
gesimal.17 This verse (in the śālinī metre) gives an expres-
sion for determining the dṛkkṣepa in terms of the madhya-
jyā and another intermediary quantity called the bāhu,
which is defined as follows:18

bāhu = madhyajyā × koṭikrānti
bāhukrāntikoṭi

= 𝑅 sin 𝑧𝑚 × 𝑅 cos 𝜆𝑚 sin 𝜖
𝑅 cos 𝛿𝑚

. (8)

Now, the dṛkkṣepajyā is defined as:

(dṛkkṣepajyā)2 = (madhyajyā)2 − (bāhu)2

or, (𝑅 sin 𝑧𝑑)2 = (𝑅 sin 𝑧𝑚)2 − (bāhu)2, (9)

where 𝑧𝑑 corresponds to the zenith distance of the
dṛkkṣepalagna.

Rationale behind the expression for dṛkkṣepajyā

The expression for the dṛkkṣepajyā given in (9) can be
arrived at as follows. In Figure 5, 𝐷 represents the
drkkṣepalagna or the nonagesimal, which corresponds
to the highest point of the ecliptic lying above the hori-
zon. In other words, its zenith distance 𝑍𝐷 (which is the
17The nonagesimal is a point on the ecliptic above the horizon which

is ninety degrees from the rising ecliptic point, and is also the highest
point of the ecliptic.
18The standard relation for krānti or declination is sin𝜆 sin 𝜖. The

term koṭikrānti is to be instead understood to be cos𝜆 sin 𝜖. The term
bāhukrāntikoṭi here is to be understood to mean the cosine of the dec-
lination of the madhyalagna, i.e., cos𝛿𝑚.
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Figure 5 Visualising the dṛkkṣepa.

dṛkkṣepa), is the least compared to any other point on the
ecliptic. This is only possible when𝑍𝐷 is perpendicular to
the tangent to the ecliptic at𝐷.19 This in turn implies that
the secondary 𝐾𝐷 from the pole of the ecliptic (𝐾), which
is perpendicular to the ecliptic at 𝐷, passes through the
zenith (𝑍).20

Also, in the figure, the ecliptic points 𝑀 and 𝑅 corre-
spond to the madhyalagna and the rāśikūṭalagna respec-
tively, while the equatorial point 𝑇 corresponds to the
madhyakāla. As 𝐸 is the pole for any point on the prime
meridian, we have 𝐸𝐽 = 90. Now, let 𝐸𝑅 = 𝜇. Then, obvi-
ously 𝑅𝐽 = 90 − 𝜇. As 𝑀 is the pole of the great circle arc
𝐾𝐽𝑅𝐸,21 the arc 𝑅𝐽 also corresponds to the angle between
the prime meridian and the ecliptic.

From the form of (9), it is evident that the author vi-
sualised a right-angled triangle, with the madhyajyā as
the hypotenuse, and the dṛkkṣepajyā and bāhu as sides.
To help visualise this triangle, the celestial sphere is de-
picted from the point of view of the ecliptic plane in Fig-
ure 6a. Here, 𝑍𝐷′ and 𝑍𝑀′ correspond to the Rsines of

19The arcs corresponding to the zenith distances of other points on
the ecliptic will not be perpendicular to it, implying that they will be
longer than 𝑍𝐷.
20The great circle containing the arc𝐾𝑍𝐷 is sometimes referred to as

the dṛkkṣepavṛtta, or the great circle corresponding to the dṛkkṣepa.
21Shown in our discussion of verse 31.

the dṛkkṣepa and the zenith distance of the madhyalagna
respectively. Taking 𝑍𝐷 = 𝑧𝑑 and 𝑍𝑀 = 𝑧𝑚, we have

𝑍𝐷′ = 𝑅 sin 𝑧𝑑, and 𝑍𝑀′ = 𝑅 sin 𝑧𝑚.

We also have

𝑂𝐷′ = 𝑅 cos 𝑧𝑑, and 𝑂𝑀′ = 𝑅 cos 𝑧𝑚.

Now, as 𝐾𝑍𝐷 is perpendicular to the ecliptic, the planar
triangle 𝑍𝑀′𝐷′ is right-angled at 𝐷′, and lies in a plane
perpendicular to the ecliptic. Therefore, we have

(𝑅 sin 𝑧𝑑)2 = (𝑅 sin 𝑧𝑚)2 − (𝑀′𝐷′)2,

which is the relation given in (9), where the side𝑀′𝐷′ has
been called bāhu.

Rationale behind the expression for bāhu

The relation for the bāhu given by (8) can be understood
from the same right-angled triangle 𝑍𝑀′𝐷′. In this trian-
gle, the angle

𝑍𝑀̂′𝐷′ = 90 − 𝜇

corresponds to the angle between the prime meridian and
the ecliptic. Using simple trigonometry, we have

𝑀′𝐷′ = 𝑅 sin𝑍𝑀 cos(90 − 𝜇),
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or
bāhu = 𝑅 sin 𝑧𝑚 sin𝜇. (10)

The expression for sin𝜇 can be determined from the
spherical triangle Γ𝐸𝑅 in Figure 5, where we have𝐸𝑅 = 𝜇,
𝑅Γ̂𝐸 = 𝜖, and Γ ̂𝐸𝑅 = 90− 𝛿𝑚.22 Applying the sine rule in
this triangle, we have

sin𝜇 = sinΓ𝑅 × sin 𝜖
sin(90 − 𝛿𝑚)

. (11)

However, as the rāśikūṭalagna is ninety degrees from the
madhyalagna, we have

Γ𝑅 = 90 −𝑀Γ = 90 − (360 − 𝜆𝑚) = 𝜆𝑚 − 270.

Using the above expression for Γ𝑅 in (11), we have

sin𝜇 = cos 𝜆𝑚 sin 𝜖
cos 𝛿𝑚

= 𝑅 cos 𝜆𝑚 sin 𝜖
𝑅 cos 𝛿𝑚

.

Substituting the above expression in (10), we have

bāhu = 𝑅 sin 𝑧𝑚 × 𝑅 cos 𝜆𝑚 sin 𝜖
𝑅 cos 𝛿𝑚

,

which is the same as (8).

2.6 Determining paraśaṅku, dṛkkṣepalagna, and
udayalagna

दृёेपवगϸ ࡆत्रगुणࣆ वगЂत्
ؖнेऽࡆ मूलं परशӀुमाहुः ।
त्रԷाहतंࣆ बाहुमनेन भнं
चापीकृतं मࣆڌवलҔकेऽࡅ࣒न् ॥३७॥
क्रमा٠नणϴ मृगककॳ टा٦ोः
ं࠼ߢ च तڌګगुणे तु सौेݿ ।
तदा तु दृёेपࣆवलҔकंࡆात्
तࣆ؛त्रभं तूदयलҔमाहुः ॥३८॥
dṛkkṣepavarge triguṇasya vargāt
tyakte’sya mūlaṃ paraśaṅkumāhuḥ |
trijyāhataṃ bāhumanena bhaktaṃ
cāpīkṛtaṃ madhyavilagnake’smin ||37||
kramāddhanarṇaṃ mṛgakarkaṭādyoḥ
vyastaṃ ca tanmadhyaguṇe tu saumye |
tadā tu dṛkkṣepavilagnakaṃ syāt
tatsatribhaṃ tūdayalagnamāhuḥ ||38||

22 As 𝑃 is the pole of the equator, and 𝑀 is the pole of the great cir-
cle arc 𝐾𝐽𝑅𝐸, we have 𝑃𝑇 = 𝐽𝑀 = 90, and 𝑃𝐽 = 𝑇𝑀 = 𝛿𝑚.
Therefore, Γ𝐸̂𝑅 = 𝑇𝐸̂𝑃 − 𝐽𝐸̂𝑃 = 90 − 𝛿𝑚.

When the square of the dṛkkṣepa[jyā] is subtracted
from the square of the radius (trijyā), [people] state
its (the difference’s) square-root to be the para-
śaṅku. The bāhu [stated in the previous verse]
multiplied by the radius (trijyā) divided by this
(paraśaṅku) is converted to arc and applied posi-
tively and negatively in order to the meridian eclip-
tic point (madhyalagna) depending on [whether
the madhyalagna is in the six signs] Capricorn
(mṛgādi) etc., or Cancer (karkaṭādi) etc. It (the
positive or negative application of the arc to the
madhyalagna) is reversed when the madhyajyā
is northward. Then, the nonagesimal (dṛkkṣepa-
vilagna) would be [obtained]. That added by three
signs is stated to be the rising ecliptic point (udaya-
lagna).

The two verses above (in the indravajrā and upajāti
metres respectively) are essentially meant for providing
an expression for the ascendant or the udayalagna. The
expression for the udayalagna is given in terms of the
dṛkkṣepalagna, which in turn is defined in terms of the
paraśaṅku. Hence, the set of verses above first give a re-
lation for the paraśaṅku or the gnomon corresponding to
the nonagesimal, then for the dṛkkṣepalagna or the longi-
tude of the nonagesimal, and finally for the udayalagna
or the rising ecliptic point. The relation for the paraśaṅku
is given as:

paraśaṅku = √(triguṇa)2 − (dṛkkṣepajyā)2

or, 𝑅 cos 𝑧𝑑 = √𝑅2 − (𝑅 sin 𝑧𝑑)2. (12)

The expression for dṛkkṣepalagna is given to be:

dṛkkṣepalagna = madhyalagna ± cāpa (bāhu × trijyā
paraśaṅku )

or,
𝜆𝑑 = 𝜆𝑚 ± 𝑅 sin−1 (bāhu × 𝑅

𝑅 cos 𝑧𝑑
) , (13)

where bāhu is given by (8), and paraśaṅku by (12).
Now, the expression for the udayalagna stated in terms

of the dṛkkṣepalagna in the last quarter of verse 38 is:

udayalagna = dṛkkṣepalagna + tribha
or, 𝜆𝑙 = 𝜆𝑑 + 90. (14)

We now provide the rationale behind the above expres-
sions.

313



ARTICLES IJHS | VOL 54.3 | SEPTEMBER 2019

Expression for the paraśaṅku

The paraśaṅku is the gnomon dropped from the dṛkkṣepa-
lagna (point 𝐷 in Figure 5) to the horizon. In later verses,
this quantity is also referred to as the dṛkkṣepakoṭikā or
the rāśikūṭaprabhā. The length of this gnomon would be
equal to the Rsine of the arc 𝐶𝐷. As 𝐶𝐷 = 90 − 𝑧𝑑, we
have

paraśaṅku = 𝑅 sin(90 − 𝑧𝑑) = 𝑅 cos 𝑧𝑑,

which is equivalent to (12).

Expression for the dṛkkṣepalagna

For observers in the northern hemisphere, the dṛkkṣepa-
lagna is generally south of the zenith, and can be either
in the eastern hemisphere or the western hemisphere, de-
pending upon the longitude of the madhyalagna. When
the longitude of the madhyalagna is in the range of 270
degrees to 90 degrees (mṛgādi), the dṛkkṣepalagna is in
the eastern hemisphere, and when the longitude of the
madhyalagna is in the range of 90 degrees to 270 degrees
(karkaṭādi), the dṛkkṣepalagna is in the western hemi-
sphere. In Figure 5, where the longitude of the madhya-
lagna is mṛgādi, it can be seen that the dṛkkṣepalagna is
in the eastern hemisphere, and that its longitude is equal
to the sum of the longitude of the madhyalagna (𝑀) and
the arc 𝑀𝐷. Alternatively, when the dṛkkṣepalagna is in
the western hemisphere, this arc would have to be sub-
tracted from the longitude of the madhyalagna to obtain
the dṛkkṣepalagna. Thus, we have

𝜆𝑑 = 𝜆𝑚 ±𝑀𝐷. (15)

In some cases, for observers at lower latitudes (𝜙 < 𝜖),
the dṛkkṣepalagna and the dṛkkṣepajyā can be north of
the zenith (for instance, see Figure 7b). In these cases, the
dṛkkṣepalagna is in the eastern hemisphere when the lon-
gitude of the madhyalagna is in the range of 90 degrees to
270 degrees (karkaṭādi), and in the western hemisphere
when the longitude of the madhyalagna is in the range
of 270 degrees to 90 degrees (mṛgādi). Therefore, for ob-
taining the dṛkkṣepalagna in this case, the arc 𝑀𝐷 has
to be subtracted from the longitude of the madhyalagna
when it is mṛgādi, and added to it when the madhyalagna
is karkaṭādi. Therefore, when compared to the situation

where the dṛkkṣepa is to the south of the zenith, the pro-
cedure of applying the arc 𝑀𝐷 to the madhyalagna is re-
verse in the case when the dṛkkṣepajyā is northwards.

The length of the arc 𝑀𝐷 can be determined by consid-
ering the triangles 𝐷𝐹𝑂 and 𝐷′𝑀′𝑂 shown in Figure 6b.
The triangle𝐷𝐹𝑂 lies on the plane of the ecliptic, in which
𝑂𝐷 = 𝑅, and 𝐷𝐹 is the perpendicular dropped on the ra-
dius 𝑂𝑀 from 𝐷. Thus,

𝐷𝐹 = 𝑅 sin𝑀𝐷, and 𝑂𝐹 = 𝑅 cos𝑀𝐷.

The triangle 𝐷′𝑀′𝑂 also lies on the plane of the ecliptic,
where we have already shown in our discussion of the
previous verse that 𝑀′𝐷′ = bāhu, 𝑂𝑀′ = 𝑅 cos 𝑧𝑚, and
𝑂𝐷′ = 𝑅 cos 𝑧𝑑. Using (8), it can be shown that

(𝑂𝐷′)2 = (𝑂𝑀′)2 + (𝑀′𝐷′)2,

which implies that triangle 𝐷′𝑀′𝑂 is right-angled at 𝑀′.
Thus, the triangles𝐷𝐹𝑂 and𝐷′𝑀′𝑂 are similar, as they

are both right-angled, and also share the common angle
at 𝑂. Applying the rule of proportionality of the sides of
similar triangles, we have

𝑅 sin𝑀𝐷 = bāhu × 𝑅
𝑅 cos 𝑧𝑑

. (16)

Substituting this result in (15), we have

𝜆𝑑 = 𝜆𝑚 ± 𝑅 sin−1 (bāhu × 𝑅
𝑅 cos 𝑧𝑑

) ,

which is the same as (13).

Expression for the udayalagna

In Figure 5, one observes that the udayalagna (𝐿) is 90 de-
grees from the pole of the ecliptic (𝐾), as well as the zenith
(𝑍). Therefore, 𝐿 is the pole of the great circle 𝐾𝑍𝐷𝐶,
which means 𝐿𝐷 = 90. Therefore,

𝜆𝑙 = 𝜆𝑑 + 90,

which is the same as (14).
From the fact that 𝐿 is at 90 degrees from both 𝐶 and𝐷,

the angle 𝐶 ̂𝐿𝐷 between the ecliptic and the horizon will
be equal to the measure of the arc 𝐶𝐷, and therefore

𝐶 ̂𝐿𝐷 = 𝑧′𝑑 = 90 − 𝑧𝑑. (17)

Though the above result is not stated in the above verses,
we make a note of it here as it is essential for later discus-
sions which will be brought out as a sequel to this article.
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Figure 7 Direction of the dṛkkṣepa at lower latitudes.

3 Conclusion

The Lagnaprakaraṇa is a unique text focusing on a sin-
gle problem in astronomy, namely the determination of
the ascendant. This is indeed a non-trivial problem that
seems to have attracted the attention of astronomers in
India and around the world. While the problem has been
attempted to be solved using a variety of approximations
by various civilisations at different points of time, in our
understanding, precise formulations appear in this work
of Mādhava for the first time in the annals of Indian and
world astronomy. Indeed, Mādhava seems to have ap-
proached this problem from the viewpoint of a pure math-
ematician and employs a variety of techniques to present
multiple precise relations for the computation of the as-
cendant.

In this paper, we have discussed the first technique de-
scribed by Mādhava in the Lagnaprakaraṇa. From our
discussion it is evident that Mādhava seems to have been
exceptionally good at visualising the motion of celestial
objects in the celestial sphere and the projection of various
points on it in several planes. This mastery enabled him to
precisely derive the udayalagna through a series of fairly
complex mathematical steps involving the determina-
tion of several quantities such as rāśikūṭalagna, madhya-
lagna, madhyakāla, madhyajyā, dṛkkṣepajyā, paraśaṅku,
dṛkkṣepalagna, etc. This complexity perhaps explains
why previous astronomers did not give precise relations
for the ascendant, and attests to Mādhava’s reputation as
the Golavid, or the knower of the celestial sphere, in the

Kerala astronomical tradition.
In subsequent papers, we plan to present other tech-

niques of determining the ascendant described by Mā-
dhava in the Lagnaprakaraṇa.
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