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Abstract

An explanation is provided for the Inca counting board described by Guáman Poma in 1615 ce. Although
the board could have been used in more than one way, we show that based on certain reasonable assump-
tions regarding non-uniform representation of numbers its most likely use was counting in multiples of
6, 24, and 72. The independent numbers represented on its five rows are 92, 31, 29, 79, and 56 that appear
to be astronomically connected to sub-periods within the year and planet periods in a manner similar
to Mayan astronomy. Based on these and other considerations we propose that the board fulfilled an
astronomical counting function.

Keywords: Calendric systems, Counting boards, History of astronomy, Inca astronomy, Incamathematics,
Khipu, Mayan astronomy, Number representations.

1 Introduction

This article explains the logic of the Inca calculating
board (yupana, Figure 1) shown in the book El Primer
Nueva Corónica y Buen Gobierno (The First New Chron-
icle and Good Government), a Peruvian chronicle com-
pleted around 1615 by Felipe Guáman Poma de Ayala,
and sent as a handwrittenmanuscript to King Philip III of
Spain (Guáman Poma 1615). The counting use of the grid
of solid and unfilled dots or tokens appears reasonable be-
cause of its appearance with a khipu (or quipu) (Figure 2)
that was widely used in the Inca world for recording num-
bers (and other information) (Urton 2003). That the yu-
pana (Quechua for the verb to count) is not a simple aba-
cus that does decimal computations is clear from the con-
straints that are placed on the number of pieces or tokens
in each position.
The understanding of Guáman Poma’s Yupana (hence-

forth GPY) is of considerable importance inmaking sense
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Figure 1 Yupana of Guáman Poma.
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Figure 2 Guáman Poma’s illustration of yupana and
khipu.

of Inca astronomy. Several theories have been proposed
for the use of this yupana but none of them is adequate.
Some of these theories take the numbers in the higher
row to be 10 times the one in the immediately lower row
(Wassen 1931; Radicati de Primaglio 1979; Burns Glynn
1981) with different weights for the four columns.
Wassen takes the weights to be 1, 5, 15, and 30 from

left to right which means that the total sum of the low-
est row is 80. This is an arbitrary procedure leading to no
advantage in calculations. The theories of Radicati and
Burns—who takes the rightmost column to be memory—
take the weights to be the same but they don’t have expla-
nation for the use of columns. This also does not explain
why each row has 11 pieces and why tokens of the same
value are lumped together in groups of 5, 3, 2, and 1. Al-
though GPY could have been used as an abacus (Leonard
and Chakiban 2010), the fact of its four divisions for each
digit argues against that being its primary function.
Two other arbitrary approaches take the columns to be

in the proportion 1, 2, 3, 5 (Mendizabal 1971), and 5, 3,
2, 1 (De Pasquale 2001). Like the other previous propos-
als, these do not provide unique mapping of numbers to
token placements which rules them out as valid solutions.
Yet another theory (Florio 2009) takes the rightmost col-

umn to be multiplicand and the next two columns to be
multipliers and the leftmost column to be the sum of the
second and the third columns. This theory further takes
the dark circle to be 1 and the light circle to be 10. This rep-
resentation is arbitrary without any specific advantage in
computations and, furthermore, it doesn’t even check out
for the dots on Poma de Ayala’s yupana. Florio explains
that by claiming that Poma deAyala’s figure is wrong. It is
possible that GPY is a device that hadmultiple uses based
on the mathematical expertise of the user just as calcu-
lating devices like the slide rule can be used in different
ways. But what we are interested in is its function that is
matched to the four columns on the board. All the pre-
vious proposals fail this test and they are not intuitively
reasonable.
The theories that consider a positional system in pow-

ers of 10 are motivated by the knowledge that in Quechua
language (which was the language of the Inca Empire)
number words use base 10. Here is a short list of number
words from Huallaga Quechua (Gildorf 2000):

ch’usaq – 0, huk – 1, iskay – 2, kimsa – 3, tawa – 4,
pichqa – 5, suqta – 6, qanchis – 7, pusaq – 8, isqun
– 9; chunka – 10, pachak – 100, waranqa – 1000.

For more complex number words, the nucleus is al-
ways a power of 10. Thus isqon pachak is 900; qanchis
chunka pichqa is 7; and kimsa pachak tawa chunka qan-
chis waranqa iskay is 347,002.
We have evidence that the Inca were very proficient at

mathematics, as from the claim of the Spanish priest José
de Acosta who lived amongst them and wrote Historia
Natural Moral de las Indias:

To see them use another kind of quipu, withmaize
kernels, is a perfect joy. In order to carry out a
very difficult computation for which an able com-
puter would require pen and paper, these Indians
make use of their kernels. They place one here,
three somewhere else and eight, I know not where.
They move one kernel here and there and the fact
is that they are able to complete their computation
without making the smallest mistake. As a matter
of fact, they are better at practical arithmetic than
we are with pen and ink. Whether this is not inge-
nious and whether these people are wild animals
let those judge who will! What I consider as cer-
tain is that in what they undertake to do they are
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superior to us. (Acosta 1596; quoted also in Joseph
2000)

Numerical information associated with administrative,
military, and business uses was stored in the knots of
khipu (quipu) strings in base-10 digits as in the Quechua
language. Numerical calculations were done on a vari-
ety of yupanas in which piles of tokens, seeds, or pebbles
were moved between different compartments of the yu-
pana for the calculation to take place. The Inca also per-
formed cyclic computations and multiplication with frac-
tions (Ascher 1983). We expect, therefore, that Pomo’s
yupana was based on sound mathematical principles –
in addition to being intuitive–and this paper presents a
new explanation based on non-uniform representation of
numbers. We show that this mathematical basis yields
numbers that are plausibly connected to Inca astronomy.

2 Non-uniform representation of
numbers

In our familiar mathematics with Indian numerals (also
in khipu), each place can have one of 10 different num-
bers. This constitutes a uniform representation system in
which the total count as one increases the size of the sys-
tem to, say, 𝑣 places is simply 10𝑣. In 𝑣 = 4 as below, then
number of tokens in each cell is 10.

10 10 10 10

Figure 3 Base–10 representation.

The largest four-digit number than can be counted is
104 − 1 = 9999. The weights associated with the 10 dif-
ferent digits are shown in the row below, where the least
significant digit is to the right:

10 10 10 10
Weights: 103 102 10 1

Figure 4 Base–10 representation with weights.

The GPY, however, is a non-uniform representation
system since the squares in each row have different num-
ber of tokens (Figure 5). The counting scheme must take
this fact into consideration.

5 3 2 1

Figure 5 Number of tokens in each row of GPY.

We take the count to be zero for a token that is not fully
dark (implying it has not been placed in the square) and
one if it is. Note also that it is intuitive to take the left-most
square as the least significant place because of the five to-
kens assigned there. Incidentally, this is how the assign-
ment is done in the Chinese abacus suànpán as well.
To understand the workings of a non-uniform number

representation system, consider now the 6-place system
given below.

Columns: I II III IV V VI
j k m n p q

Figure 6 A 6–place, non-uniform representation system.

For it to count numbers in a regular fashion, the
weights will have to be as follows:

Column I: The weight should be 1, and the total
count achieved by it is 𝑗 .
Column II: Theweight should be (𝑗+1) since num-
bers up to j have been counted by the previous col-
umn. The total count achieved by Columns I and
II is (𝑗 + 1) 𝑘 + 𝑗 = (𝑗 + 1) (𝑘 + 1) − 1 .
Column III: This column should count starting
with 1 more than the total count of Columns I
and II. The weight of each token here is, therefore,
(𝑗 + 1) (𝑘 + 1) . The total count in Columns I, II,
and III is (𝑗 + 1) (𝑘 + 1) 𝑚 + (𝑗 + 1) (𝑘 + 1) − 1 ,
which is (𝑗 + 1) (𝑘 + 1) (𝑚 + 1) − 1 .

We can now generalize the count and conclude that the
total count in Column VI is: (𝑗 + 1) (𝑘 + 1) (𝑚 + 1) (𝑛 +
1) (𝑝 + 1) (𝑞 + 1) − 1 . This constitutes the proof of the
theorem below.

Theorem

For a non-uniform number representation system with 𝑠
places, with the number of tokens in the positions count-
ing from the least significant to be 𝑛1, 𝑛2, … 𝑛𝑠, the total
count is

𝑠
∏
𝑖=1

(𝑛𝑖 + 1) − 1

3 Analysis of GPY

The Inca society had expert record keepers known as
khipukamayuq whose work involved much abstraction.
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To the main cord were attached pendant strings some
of which were attached to secondary and tertiary strings
(Boone and Urton 2011). The number of pendants can be
as high as 1,500. In a recently discovered collection of 32
khipu, the range of knots varies from 6 to 762, with the
average being 149 (Urton 2003).
The knots on the strings were tied in patterned arrange-

ments that indicated higher powers of ten. The knots also
came in different colors. Clearly, the record-keepers in
the Inca society dealt with complex numerical and other
information. Given this, we consider the following as-
sumptions to determine the workings of GPY to be rea-
sonable:

• It represents numbers in a unique fashion
• Systematicmathematical operations can bemade on
it

• It represents numbers efficiently

Note that the left two columns of GPY have elements
in two columnar groups. It is possible for the items to
have had different positional value in each of these sub-
columns, but we begin by assuming that the items were
lumped together and represented in two columns only for
aesthetic purposes.

4 Basic function GPY

In the basic function GPY, the board has 4 columns.
The lowest row of GPY is described by 𝑗, 𝑘,𝑚, and 𝑛 (or
𝑛1, 𝑛2, 𝑛3, 𝑛4 values of Theorem) of 5, 3, 2, and 1, the total
count in this row is (5+1)(3+1)(2+1)(1+1) = 144−1 =
143.

5 3 2 1
weights: 1 6 24 72

Figure 7 Basic GPY counting in the lowest row.

This counting may be continued in the higher rows,
where the computation is in powers that are increased by
122 = 144 as one climbs each row. This would be the case
if the board is used to represent a single number. For such
a case, the board together with values for each row and
that of the tokens is shown in Figure 9.

Number Yupana columns
1 1 0 0 0
2 2 0 0 0
3 3 0 0 0
4 4 0 0 0
5 5 0 0 0
6 0 1 0 0
7 1 1 0 0
. . . . .
18 0 3 0 0
19 1 3 0 0
. . . . .
23 5 3 0 0
24 0 0 1 0
. . . . .

143 5 3 2 1
weights: 1 6 24 72

Figure 8 Basic GPY counting up to 143.

It is significant that counting by 6, 24 and 72 is basic to
GPY. We do know that the Incas used 12 solar and lunar
months.

128 2 1 2 0
126 1 1 0 1
124 5 0 1 0
122 1 1 0 1
120 2 3 0 1

weights: 1 6 24 72

Figure 9 Basic GPY token values for each row if
used to represent a single number.

122 5 0 0 0
120 0 0 0 0

Figure 10 The number 720.

Mathematical operations can be done easily on the yu-
pana. Let us wish to add 57 and 49. They would be rep-
resented as in Figure 11 in the bottom two rows with the
sum in the top row:

4 1 1 1 106
3 1 2 0 57
1 0 2 0 49

Figure 11 Adding 49 and 57.
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The addition operation simply involves adding the corre-
sponding numbers in each column and once the maxi-
mum of a specific column has been exceeded, taking the
extra digit to the next column on the right. Thus in the
example above the third columnmaximum is 2 and since
the column to its right equals three tokens from it, the to-
tal of 2+ 2 = 4 is distributed as a carry of 1 (which equals
3) and the remainder of 1, which remains in the column.
Similarly, subtraction can be done in 1s, 6s, 24s, and 72s.

Performing addition and subtraction repeatedly implies
the capability to do multiplication and division.

5 The GPY numbers

In the general case, the numbers in the different rows
could all be in the same basis and used, for example,
for representation of independent numbers. If that was
done, then the tokens on GPY correspond to the numbers
shown in Figure 12.

2 1 2 0 56
1 1 0 1 79
5 0 1 0 29
1 1 1 0 31
2 3 0 1 92

weights: 1 6 24 72

Figure 12 Numbers on GPY.

The five numbers add up to 287, which is 78 short of 365,
the duration of the solar year.
The number 78 is important in ancient astronomy for

being exactly 1
10
of the synodic period of Mars. If we take

that as a clue then we would like to determine if the five
numbers mentioned in Figure 12 also have connections
with astronomical facts likely to have been known to the
Incas. But before we do so we examine whether the GPY
was used in an advanced 6-column mode.

6 Possible advanced usage

In the advanced function GPY, the board has 6 columns.
The lowest row of the advanced functionGPY is described
by 𝑗, 𝑘, 𝑚, 𝑛, 𝑝, and 𝑞 (or 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 values of our
Theorem) of 3, 2, 2, 1, 2, and 1, the total count in this row
will be (3 + 1) (2 + 1) (2 + 1) (1 + 1) (2 + 1) (1 + 1) − 1 =
432 − 1 = 431.

5 0 0 0 0 0
0 0 0 0 0 0

weights: 1 4 12 36 72 216

Figure 14 The number 2,160 (6 years of 360 days each).

3 2 2 1 2 1
weights: 1 4 12 36 72 216

Figure 13 Advanced GPY token values for each row.

The number 6 years equal to 2,160 days is represented
in this mode as in Figure 14. When the GPY row numbers
are taken to be independent in this mode, they turn out to
be 278, 85, 83, 229, and 185 with the total of 860. These
numbers appear randomwithout any specific significance
and, therefore, we believe that GPY was not used in the 6-
column mode.

7 Astronomical content of GPY numbers

Inca astronomers computed equinoxes, solstices, and
likely zenith passages. Their calendar was lunisolar for
they kept parallel counts for lunar and solar months. As
twelve lunar months are 11 days shorter than the full
365-day solar year, an adjustment was needed to mark
the winter solstice. A system of solar horizon markers
was used to time equinoxes and solstices. These mark-
ers were stone structures of considerable size (Dearborn
2000). The names of the months are provided in Guáman
Poma’s book. There is other evidence related to the cal-
endar that includes the ceque system and reports in other
early Spanish texts and on khipus (Bauer 1998; Zuidema
2005).
Details of Inca astronomy are also provided by the

early 17th century secret Jesuit manuscript Exsul Im-
meritus Blas Valera Populo Suoi that recently came to
light (Laurencich-Minelli and Magli 2009/2010; Zuidema
2005). Figure 15 summarizes the counts of the months
of the Inca year represented by the use of knots on 13
pendants connected to the main cord as described in the
Pachakhipu, a sheet of paper inserted in Exsul Immeritus.
In additional to the monthly count, the days were

counted in groups of 15 each by the use of alternate colors
of red (hanan) and green (hurin) knots and in groups of 10
by spacing the knots. In the last pendant, the 13th, there
are five green knots, which represent the days needed to
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Month 1 2 3 4 5 6 7 8 9 10 11 12 13
Days 29 30 29 29 30 29 30 30 30 29 30 30 10

Figure 15 The twelve Inca months according to Pachakhipu; the 13th column is for intercalary days.

bring the total to 360 (due to the presence of 5 synodic
months of 29 days) and five red further knots represent-
ing additional intercalary days, needed to bring the solar
count to 365. I would like to propose that the extra 10 in-
tercalary days were seen as harmonizing the 354 days of
the lunar year (approximated by 355 so as to leave room
for the extra week of 10 days) with the 365 solar days.
We come back to the use of GPY in its four-column stan-

dardmode and examine the five numbers of GPY, namely
92, 31, 29, 79, and 56, going from bottom to top. In a pre-
vious section, it was suggested that the number 78 (im-
plied by its absence) is one-tenth the Mars period. Other
numbers should then be related similarly to other planet
periods. If the Mars number of 78 is a primary number,
then only four of the five GPY numbers should be inde-
pendently significant, since the fifthwould be fixed by the
constraint of the sum being equal to 365.
Note first that the Inca had strong traditions of count-

ing by both the sun and themoon. Given the clarity of the
Andean night, and the Inca mapping of the sky into the
sacred landscape of Tawantinsuyu (the Inca Empire), one
would expect that the periods of the planets were known
and represented in terms of coded relationships of the syn-
odic periods. If one were to see Inca astronomy as having
parallels with Mayan astronomy, one would expect the
knowledge of the following numbers:

949-day cycle: relating Venus and Sun and equal to
the sum of 584-day synodic period of Venus and 365-
day period of Sun. This shows up in the long count
calendar of 18,980 days (Thompson 1960).
819-day cycle: related to mean synodic periods of
Jupiter and Saturn which was seen in the Maya
world as incorporating the Jupiter and Saturn peri-
ods of 399 and 378 in the following way:
63 × 6 = 378; 63 × 19 = 399 × 3 = 1197 = 819 + 378
The 819-day period is in the Dresden codex. The ev-
idence for the 819 cycle is from Palenque (Chiapas)
on a stucco panel commemorating an event in the
life of the ruler Pacal II in the year 668 (Lounsbury
1978).

Onewould also expect to see evidence of the knowledge
of the asymmetric quarters of the year due to the very pre-
cise determination of the solstice and equinox points. The
lengths of the four quarters in the Southern Hemisphere
are:

• Autumn equinox to Winter solstice: 92 days
• Winter solstice to Spring equinox: 93 days
• Spring equinox to Summer solstice: 91 days
• Summer solstice to Autumn equinox: 89 days

The correct synodic periods of the five planets are:

Mercury: 116; Venus: 584; Mars: 780; Jupiter: 399;
and Saturn: 378.

Our proposal for the GPY numbers is as follows:

Number 78. Mars, whose synodic period is 780.
This is the sixth number associated with GPY by
virtue of the constraint of the sum being equal to
365.
Number 56, at the top of the yupana. Jupiter and

Saturn. Jointly through the number 819 as in the
Maya system through the equation:

56 × 117 = 819 × 8

This interpretation rests on special significance be-
ing given to 8 cycles of the 819-day period. Alterna-
tively, the Inca may have held to the theory that 56
codes the synodic periods of Jupiter and Saturn be-
cause its factors 8 and 7 almost exactly divide 399
(Jupiter) and 378 (Saturn), respectively.
Number 79. Venus. The synodic period of Venus

is 584. The Maya represented this information by
considering 584 + 365 = 949. The Inca appear to
have done so by 79 × 12. That there is a discrep-
ancy of 1 in this product is a weakness of our inter-
pretation but theremay have been an astronomical
reason in taking the sum to be 948.
Number 29. Mercury: Synodic period is 29×4 =

116.
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Number 31. This number is astronomically sig-
nificant in the sense of being the length of certain
months as in the ceque system (Zuidema 2005).
But this should be seen only as a coincidence and,
in our view, this was not one of the primary num-
bers.
Number 92. Quarter of the year from the Au-

tumn equinox to Winter solstice.

This above interpretation of the fiveGPYnumbers is be-
ing made as no more than a preliminary hypothesis that
needs further elaboration and confirmation. The interpre-
tation as it stands has the weakness of the approximation
of 1 in the products associatedwith Jupiter andVenus. On
the other hand, the Inca made other adjustments of one
day for the sake of symmetry related to knowledge they
indubitably possessed. I refer here to the apparent count
of 355 for the lunar year (rather than the more accurate
354) in the khipu calendar where the intercalary month
on the 13th pendant has 10 days (Figure 15).

8 Conclusions

This paper has proposed that the yupana of Guáman
Poma most likely served the purpose of counting days
for calendric use. The unique number representation as-
sociated with the yupana is non-uniform that counts in
units, sixes, twenty-fours, and seventy-twos. We show
that this representation lends itself to intuitive procedures
for mathematical operations. A parallel may be drawn
with ritual calendrics in India where also a lunisolar sys-
tem was used and intercalation was required to harmo-
nize the solar and lunar years and different priests were
responsible for different counts (Caland 1982; Kak 2000).
The non-uniform number representation system asso-

ciated with GPY leads to the numbers 92, 31, 29, 79, and
56. Based on certain parallels with Mayan astronomy, we
have proposed that these numbers imply knowledge of
the synodic periods of the planets and the unequal quar-
ters of the year. Even if the Mayan calendar counts were
known to the Inca, this system was not adopted since the
counting schemes in the two civilizations were different.
If our proposal on the astronomical basis of the five

GPY numbers is correct, corroborating evidence should
exist in the ceque system and in calendric khipus. There
is also the further possibility that the planetary period

counts were not derived from the Mayan system and it
constituted an independent tradition.
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