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Abstract

The computation of the true daily-motion of a heavenly body is an important precursory step in several
calculations in Indian astronomy, like those for eclipses, planetary conjunctions, longitude corrections,
etc. In this article we examine all aspects of the daily-motion calculation as given in the Sūryasiddhānta,
an ancient Indian text of astronomy. It is observed that these algorithms are based on the standard Indian
planetary model. In the standard model, the true longitude of a planet is determined by the combined
effects of themanda and śīghra epicycles. In an analogous manner, the daily-motion of a planet is seen to
be the sum of itsmanda and śīghra components. Computed results based on the daily-motion algorithms,
when compared with actuality, were found to be considerably accurate.
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1 Introduction

The true daily-motion of a planet is employed in several
computations in Indian astronomy, and its calculation il-
lustrates, among other things, the advanced nature of the
Indian science. As far as we can tell, no other ancient civ-
ilization, including the Greek and the Arab, has shown
interest in computing the daily-motion of a planet as a
stand-alone calculation. Thus, the conception and com-
putation of the daily-motion as a distinct entity appears to
be unique to Indian Astronomy. Uniqueness aside, three
other features of this Indian computation are apt to draw
our attention — first, the sheer brevity or conciseness of
the calculation; second, the considerable accuracy of the
computed result; third, and most interesting, the curious
presence of heliocentric features in the computation.
Though the Indian planetary model is essentially geo-

centric, some of its core features have intimations of he-
liocentricity. For example, consider the planetary mean-
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motions, which form the very core of any astronomical
system. Yet another heliocentric feature can be found
in the 4-step procedure for calculation of planetary lon-
gitudes. The computation of the third or penultimate
step results in the heliocentric longitude of the planet,
with the fourth and final step merely converting the he-
liocentric longitude to geocentric. These examples serve
to illustrate the curious undercurrent of heliocentricity
in the avowedly geocentric Indian planetary model. In
this present article, we will see that the daily-motion algo-
rithm adds yet another heliocentric feather in the cap for
Indian astronomy.

There are two definitions of daily-motion for a heavenly
body: (1) the mean daily-motion, and, (2) the true daily-
motion. The mean daily-motion is simply the average
daily-motion of the planet taken over a sufficiently long
period of time, which, for all practical purposes, is a con-
stant. The true daily-motion, on the other hand, varies
considerably from day to day. It is the arc traversed by the
planet in the heavens on any particular day, as seen from
the earth. The magnitude of this true daily-motion oscil-
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lates about the mean daily-motion, sometimes being less
that it and at other times being greater.
Besides being an interesting parameter in itself, the

true daily-motion is also an essential ingredient in sev-
eral other computations in Indian astronomy, like those
for eclipses, planetary conjunctions, rising and setting of
planets, time of meridian crossing and determination of a
correction factor for the true longitude.
While the daily-motion formulae have beenmentioned

in several books and articles, there appear to have been
few attempts at a rigorous analysis of the complete al-
gorithm. The Indian text we will mainly refer is the
Sūryasiddhānta (Burgess 1858), the oldest and most
revered of all Indian works on astronomy. Like most In-
dian texts, the Sūryasiddhānta is at places somewhat terse
and succinct. Data and computation techniques are pre-
sented in as compact a form as possible, with no explana-
tory notes whatsoever. Rather than being a conventional
textbook, it is more a concise aid to instruction for the ex-
perienced teacher. The original text is estimated to be
older than 3000 bce (Brennand 1896; Narayanan 2010,
2011).
In this article, we will first analyze the complete set of

daily-motion algorithms, and follow it up with some sam-
ple computations based on these algorithms and compare
the results with actuality. We begin by taking a brief look
at the Indian planetary model.

2 Overview of the Indian planetary
model

The Indian planetary model employs the epicycle for its
basis. In this respect, it is similar to the Greek, Islamic
and early European models. The Indian epicycle, how-
ever, differs from the rest in a curious way. While the
other epicycles are of constant size, the radius of the In-
dian epicycle changes with motion. That is, the epicycle
expands and contracts as it moves on the deferent circle.
Thus, it is sometimes called the pulsating Indian epicycle.
Figure 1 shows a schematic of the basic Indian epicy-

cle model. The earth (𝐸) is located at the center of the
larger circle, the deferent. The smaller circle, called the
epicycle, moves on the deferent in a CCW (counter-clock-
wise) manner, at an angular rate that equals the planet’s
mean motion. The mean planet is situated at the center
of the epicycle at𝐶. The actual planet (𝑃) revolves around

the epicycle in one of two ways—CW (clock-wise) for the
mandamodel and CCW for the śīghramodel (Figure 1 de-
picts the manda model). The angular rate of motion of
the actual planet on the epicycle equals the relative rate
of motion between themean planet and the apsis (apogee
for the manda and conjunction for the śīghra models re-
spectively).

Figure 1 The Indian epicycle model.

The manda epicycle scheme, as shown in Figure 1,
starts off at time 𝑇0, at bottom right in the Figure with the
actual planet (𝑃) being farthest away from the earth. The
planet at this point is said to be at its apogee (𝐴). As seen
from the earth, the direction of the mean-planet (𝐶) here
coincides with the actual planet (𝑃). Sometime later, at
time 𝑇1, the epicycle has moved CCW on the deferent by
an angle 𝜃 (the anomaly), and its center is now at 𝐶1. In
that same time interval, the actual planet has moved CW
on the epicycle, by the same angle, to 𝑃1. At this new loca-
tion, the actual planet, as seen from the earth, no longer
coincides with the mean-planet. The longitude of the ac-
tual planet is now the mean-planet’s longitude minus the
correction angle (𝛼), which can be found by simple geom-
etry. In this manner, the truemanda-corrected longitude
of the planet may be determined for any time.
Note that there is an added complication in the Indian

model which we have omitted in the above description.
As mentioned earlier, the radius of the Indian epicycle
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is not constant but varies as a function of 𝜃. The inter-
ested reader can look up Narayanan (2011) for details on
how this additional feature is handled. This completes the
basic Indian epicycle model. For the Sun and the Moon,
whose orbits are centered on the earth, the manda epicy-
cle model yields longitudes with remarkable accuracy, far
more accurate than the Greek, Islamic or European mod-
els (Narayanan 2011, 2013). However, for the five visible
planets, whose motion is centered on the Sun, themanda
model by itself would not have obviously provided accu-
rate results. Both the Indians and the Greeks took diver-
gent paths to resolve the issue. While the Greeks resorted
to various mechanical devices like cranks and off-center
designs, the Indians employed the simpler idea of a sec-
ond epicycle.

It appears that the ancient Indians perceived two other
factors, apart from the mean motion, that influences the
progress of a planet in its orbit: (1) a decelerating entity,
called the manda, and, (2) an accelerating entity, called
the śīghra. In Sanskrit, thewordsmanda and śīghramean
slow and fast respectively. The manda and śīghra can be
conceived to be two entities that reside at specific points
in the orbit of a planet. The motion of the planet at any
instant is therefore the result of the combined influence
of these two entities, the magnitude of influence depend-
ing upon the nearness of the planet to either entity. An
additional twist is that themanda and śighra entities are
themselves in motion. In mathematical form, the effect
of these two entities on the planet’s mean motion can be
expressed as two epicycles— themanda epicycle and the
śīghra epicycle. Thus, to calculate the true longitude of
a planet at any instant, one would first apply the manda
correction to the mean-planet, followed by a śīghra cor-
rection applied to the result of themanda operation.

Verses 34–38 in chapter-II of the Sūryasiddhānta pro-
vide the dimensions of the manda and śīghra epicycles
of various heavenly bodies and it is interesting to make a
comparison of the physical dimensions of the two types of
epicycles,manda and śīghra. Figure 2a shows the relative
sizes of the manda epicycle for various heavenly bodies.
It can be seen from the figure that the manda epicycles
are relatively small when compared to the deferent cir-
cle. Figure 2b shows a similar illustration for the śīghra
epicycles. Here it can be observed that śīghra epicycles
are much larger than the manda. Note that the Sun and
the Moon have onlymanda epicycles.

One other item to consider is the effect of epicycle pul-
sation— the phenomenonwhich increases and decreases
the epicycle radius. To what degree are the manda and
śīghra epicycle dimensions altered by pulsation? Table 1
shows the pulsation parameters of themanda and śīghra
epicycles for each planet. In Indian astronomy, the size of
the epicycle is usually specified in terms of its circumfer-
ence (𝐶) rather than the radius (𝑟). The circumference of
the deferent is assumed to be 360 degrees and the epicycle
circumference is specified as a fraction of that in degrees.
It can be seen from the max. and min. columns of Ta-
ble 1 that the magnitude of pulsation for bothmanda and
śīghra epicycles is quite small, very fine in fact. Doubtless,
the ancient Indians had good reasons for crafting such
fine control of the epicycle size. Today, with our as yet in-
complete analysis of Indian astronomy, we can only mar-
vel and conjecture about their reasons for doing so.

In modern astronomical terms, the manda correction
is related to the correction for the equation-of-center of a
planet’s orbit. Thus, the manda location for all the plan-
ets coincides with the aphelion of those planets, while for
the Sun and the Moon it equates to the apogee of their or-
bits (Narayanan 2012). The equation-of-center is in turn
dependent on the eccentricity of the orbit. Thus, we may
expect the size of themanda epicycle to reflect the relative
magnitude of eccentricity of the planetary orbit. This sur-
mise is borne out in Figure 3a which shows the orbital ec-
centricity and relative sizes of themanda epicycle for the
Sun,Moon and the five planets. For the inner planetsMer-
cury andVenus, the numerical comparison of eccentricity
to epicycle-size is not as good as that of the outer planets,
though the trend is matched. This is expected, since the
orbit of these two inner planets does not enclose the earth.
For a discussion on the manda of the inner planets refer
to the article mentioned above (Narayanan 2012).

The śīghra correction, on the other hand, is related to
the conversion of heliocentric coordinates to geocentric.
Thus, we may expect the śīghra epicycle dimension to
depend upon the ratio of orbital radii of the planet in
question and the earth. This conjecture is borne out ad-
mirably in Figure 3b which shows the ratio of the mean
orbital radii of the five planets and the relative sizes of
their śīghra epicycles. Note that the ratio of orbital radii
for the two sets of planets, inner and outer, is reversed.
The reason, though not complex, is beyond the scope of
the current article.
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(a) Relative sizes ofmanda epicycles. (b) Relative sizes of śīghra epicycles.

Figure 2

(a) Correlating planetary orbital eccentricity withmanda
epicycles.

(b) Correlating planetary orbital radii with śīghra epicy-
cles.

Figure 3
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Table 1 Maximum and minimum pulsating circumferences formanda and śīghra epicycles.

Planet
manda epicycle śīghra epicycle

max. deg min. deg max. deg min. deg.
Sun 14 13.66 – –
Moon 32 31.66 – –
Mercury 30 28 133 132
Venus 12 11 262 260
Mars 75 72 235 232
Jupiter 33 32 72 70
Saturn 49 48 40 39

Having covered the background of the Indian planetary
system, we nowmove on to the 4-step procedure for deter-
mining the true longitude of a planet. As a preliminary
step, the mean longitude (𝐿𝑚) of the planet is determined
at the required date-time. Next, the śīghra epicycle is ap-
plied to this mean longitude and the śīghra correction ob-
tained. Half of this correction is applied to the mean to
get the first corrected longitude 𝐿1. Next, a similar oper-
ation is carried out for the manda epicycle. The manda
correction is obtained and half of it applied to 𝐿1 to pro-
duce longitude 𝐿2. In the 3rd step, once again themanda
correction is found, but this time the full correction is ap-
plied to the mean longitude 𝐿𝑚, which gives us longitude
𝐿3. In the 4th and final step, the śīghra correction is ob-
tained and applied in full to𝐿3 to produce𝐿4, which yields
the true longitude of the planet. The procedure may be
summarized as follows:

• Step-1: Use 𝐿𝑚 as mean; find śīghra correction; ap-
ply half to 𝐿𝑚; get 𝐿1

• Step-2: Use 𝐿1 as mean; findmanda correction; ap-
ply half to 𝐿1; get 𝐿2

• Step-3: Use 𝐿2 as mean; findmanda correction; ap-
ply full to 𝐿𝑚; get 𝐿3

• Step-4: Use 𝐿3 as mean; find śīghra correction; ap-
ply full to 𝐿3; get 𝐿4 (true longitude)

Examining the 4-step process in detail, we observe that
steps 1 and 2 effectively reset the mean longitude in a cer-
tain manner. Steps 3 and 4 then apply the full manda
and śīghra corrections in tandem to this corrected mean
longitude. In other words, the 4-step procedure is essen-
tially a 2-step process comprising the manda and śīghra

corrections being applied to a modified mean longitude.
One remarkable output of the 4-step process is 𝐿3, the
longitude obtained after the 3rd step in the process. For
the outer planets (Mars, Jupiter and Saturn), 𝐿3 turns out
to be equal to the heliocentric longitude of these planets
(Burgess, 1858; Narayanan, 2012). The 4th and final step
simply converts this heliocentric longitude to geocentric.
Having covered the Indian planetarymodel in brief, we

now proceed to the main topic of this paper, namely, the
calculation of the true daily-motion of a planet. Of course,
using the 4-step procedure outlined above, one can always
calculate the true longitude of a planet on two consecutive
days, and take the difference, which will be the true daily-
motion at that point in time. Indian astronomy, however,
provides a shorter algorithm to determine the same, and
that is what we are about to examine.

3 Calculation of the true daily-motion

The calculation of the true daily-motion of a planet in-
volves the determination of its two components, namely—
the manda daily-motion, and the śīghra daily-motion.
The true daily-motion is then simply the sum of these an-
cillary daily motions. Let us examine these component
daily-motions in detail.

3.1 Daily motion due to the manda

Themanda daily-motion is derived from the dynamics of
themanda epicycle. Figure 4a shows a schematic for the
manda daily-motion calculation. Say, at time 𝑇1 themean
planet (or epicycle) is located at 𝐶1 and the actual planet
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at 𝑃1. Subsequently, after a time interval of one day, at
time 𝑇2, the mean planet has moved to 𝐶2 and the actual
planet is now at 𝑃2. Note that due to the pulsation effect
the epicycle radius 𝑟2 at time 𝑇2 will be smaller than 𝑟1, the
epicycle radius at 𝑇1. That is, 𝐶1𝑃1 > 𝐶2𝑃2.
Then, the daily-motion of the planet due to themanda

can be expressed as 𝐿2−𝐿1, where 𝐿1 and 𝐿2 are the actual
longitudes of the planet at time 𝑇1 and 𝑇2 respectively.
Referring to the figure, 𝐿1 and 𝐿2 can be written as:

𝐿1 = 𝜃1 − 𝛼1 (1)
𝐿2 = 𝜃2 − 𝛼2 (2)

…where 𝜃1 and 𝜃2 are the anomalies measured from the
apogee 𝐴0 at times 𝑇1 and 𝑇2, and 𝛼1 and 𝛼2 are the re-
spectivemanda corrections.
The manda daily-motion (Δ𝑀) can therefore be ex-

pressed as:

Δ𝑀 = 𝐿2 − 𝐿1 = (𝜃2 − 𝜃1) − (𝛼2 − 𝛼1) (3)

Since 𝜃2−𝜃1 is themandamean daily-motion (Δ𝑀𝑚𝑒𝑎𝑛)
of the planet, (3) becomes:

Δ𝑀 = Δ𝑀𝑚𝑒𝑎𝑛 − (𝛼2 − 𝛼1) (4)

Now, 𝛼1 and 𝛼2 may be expressed as: 𝛼1 =
𝐴1
𝑅
and 𝛼2 =

𝐴2
𝑅
, where 𝐴1 and 𝐴2 are the arcs 𝐶1𝑒 and 𝐶2𝑜 and 𝑅 is the

radius of the deferent.
Thus, (4) becomes:

Δ𝑀 = Δ𝑀𝑚𝑒𝑎𝑛 −
(𝐴2 − 𝐴1)

𝑅 (5)

Assuming the epicycle radius and the pulsation to be
small in relation to the deferent, the following approxima-
tions can be made:

𝑟1 = 𝐶1𝑃1 = 𝐶2𝑃2 = 𝑟2 = 𝑟
𝐴1 = 𝐶1𝑒 = 𝑚𝑝1 = 𝑟 × sin 𝜃1
𝐴2 = 𝐶2𝑜 = 𝑛𝑝2 = 𝑟 × sin 𝜃2

Substituting the above into (5), we obtain:

Δ𝑀 = Δ𝑀𝑚𝑒𝑎𝑛 − (sin 𝜃2 − sin 𝜃1) ×
𝑟
𝑅 (6)

Multiplying and dividing the last term in (6) by
Δ𝑀𝑚𝑒𝑎𝑛 = (𝜃2 − 𝜃1) we get:

Δ𝑀 = Δ𝑀𝑚𝑒𝑎𝑛 − Δ𝑀𝑚𝑒𝑎𝑛 𝑟 (sin 𝜃2– sin 𝜃1)
(𝜃2 − 𝜃1)

× 1
𝑅 (7)

As mentioned, in Indian astronomy the epicycle size is
usually specified by its circumference 𝐶, which is given
as a fraction of the deferent circumference (assumed to
be 360 degrees). That is, 𝑟

𝑅
= 𝐶

360
, where 𝐶 is the epicycle

circumference in degrees and 𝑟 and 𝑅 are the radii of the
epicycle and deferent respectively.
Thus:

𝑟 = 𝐶 × 𝑅
360

Substituting the above in (7) we obtain:

Δ𝑀 = Δ𝑀𝑚𝑒𝑎𝑛 − Δ𝑀𝑚𝑒𝑎𝑛 × 𝐶 × (sin 𝜃2 − sin 𝜃1)
(𝜃2 − 𝜃1) × 360

(8)

The above equation is essentially the expression given
in the Sūryasiddhānta for the daily-motion of a planet due
to its manda (Chapter II, verses 48, 49), but adapted for
usage with the Indian R-sine table.
For example, say 𝜃2 and 𝜃1 are 30 and 15 degrees respec-

tively. Then, a modern computation of the expression
sin(𝜃2)−sin(𝜃1)

(𝜃2−𝜃1)
, using regular sines, yields (0.5−0.2588)

(30−15)
× 180

𝑃𝐼
=

0.921. The Sūryasiddhānta equivalent of this computa-
tion using R-sines is as follows: (1719−890)

(4×225)
= 0.921, where

R-sine (30) = 1719, R-sine (15) = 890. The angle incre-
ments in each row of the R-sine table by 3.75 degrees or
225 minutes, and there are 4 such divisions of 225 min-
utes between 30 and 15 degrees, that is, (30 − 15) = 15
degrees = 900minutes = 4 × 225.
Note that two assumptions were made in the analysis:

(1) epicycle size is relatively small compared to the def-
erent, and, (2) pulsation is small. It can be observed from
Figure 2a and Table 1 that both these assumptions are rea-
sonable for themanda scheme.
There is one other observation with regard to the

manda daily-motion. In the 4-step process described ear-
lier, the manda daily-motion represents the daily-rate-of-
change of 𝐿3, the longitude obtained after the 3rd step.
Since 𝐿3 for the outer planets is equal to the heliocen-
tric longitude of the planet, themanda daily-motionmust
equal the heliocentric daily-motion of these planets. If so,
we have come upon a physical meaning for the manda
daily-motion.

3.2 Daily motion due to the śīghra

The śīghra daily-motion algorithm is derived from the dy-
namics of the śīghra epicycle and is similar to themanda
calculation. There are, however, two major differences
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(a) Schematic for analysis of manda daily-motion. (b) Schematic for analysis of śīghra daily-motion.

Figure 4

between the two. Firstly, the śīghra epicycles are much
larger than those of the manda and so some approxima-
tionsmade during themanda analysis will not be valid for
the śīghra. Secondly, while the movement of the manda
entity for all heavenly bodies (except the Moon) is ex-
tremely slow, the śīghra has an exceedingly rapid motion.
In fact, the śīghra motion in all cases is faster than the
mean motion of the planet itself.

Figure 4b shows a schematic for the śīghra daily-
motion calculation. At time 𝑇1 the mean planet is located
at 𝐶1, the actual planet at 𝑃1 and the śīghra at 𝑆1. The
correction factor is 𝛼1 and planet’s longitude 𝐿1. Subse-
quently, after a time interval of one day, at time 𝑇2, the
mean planet has moved to 𝐶2, the śīghra to 𝑆2 and the ac-
tual planet to 𝑃2. The correction factor is now 𝛼2 and lon-
gitude 𝐿2. This schematic, though similar to the manda
instance, is different in an important way; the anomaly 𝜃
is nowmeasured from amoving reference (𝑆) instead of a
static one (the apogee). Also, since the śīghramoves faster
than the mean planet, the arc 𝑆1𝑆2 will always be greater
than the arc 𝐶1𝐶2. However, note that in Figure 4b, the
arc 𝑆1𝑆2 is shown smaller than 𝐶1𝐶2 due to space con-
straint. Apart from being a representation of the śīghra

daily-motion, the schematic shown in Figure 4b has also
another interpretation. It depicts the 4th and final step
of the 4-step process, namely, the application of the final
śīghra correction to obtain the true longitude. The mean
longitudes, i.e. longitudes of𝐶1 and𝐶2, are those obtained
after the 3rd step in the calculation and the difference of
the final longitudes (𝐿2 − 𝐿1) is the actual daily-motion
of the planet. Now if (𝐿2 − 𝐿1) amounts to the true daily-
motion, that raises the question of what constitutes the
śīghra daily-motion? The answer is that the śīghra daily-
motion (Δ𝑆) is the daily-motion or daily-rate-of-change of
the correction factor 𝛼. That is:

Δ𝑆 = 𝛼2 − 𝛼1 (9)

As earlier, 𝛼1 =
𝐴1
𝑅
and 𝛼2 =

𝐴2
𝑅
, where 𝐴1 and 𝐴2 are

the arcs 𝐶1𝑒 and 𝐶2𝑜 and 𝑅 is the radius of the deferent.
Thus (9) becomes:

Δ𝑆 =
(𝐴2 − 𝐴1)

𝑅 (10)

The śīghra pulsations being small, like those of the
manda, we can once again make the following approxi-
mation: 𝑟1 = 𝐶1𝑃1 = 𝐶2𝑃2 = 𝑟2 = 𝑟.
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In addition, the Sūryasiddhānta appears to make one
other approximation that is related to the hypotenuse,
namely, 𝐻1 = 𝐸𝑃1 = 𝐸𝑃2 = 𝐻2 = 𝐻, the hypotenuse.
The assumption here is that the daily rate of motion of
the planet on the epicycle being small, the change of hy-
potenuse length from one day to the next is small enough
to be neglected. Since the largest daily mean motion of
any planet is only 4 degrees per day (for Mercury), this
assumption may be considered passable.
Then, the arcs 𝐴1 and 𝐴2 may be closely approximated

as:

𝐴1 = 𝐶1𝑒 = (𝑟 × sin 𝜃1)
𝑅
𝐻

𝐴2 = 𝐶2𝑜 = (𝑟 sin 𝜃2)
𝑅
𝐻

Substituting the above into (10) we obtain:

Δ𝑆 = (sin 𝜃2 − sin 𝜃1)
𝑟
𝐻 (11)

Referring to Figure 4b, the anomalies 𝜃1 and 𝜃2 may be
written as follows:

𝜃1 = 𝐿𝐶1 − 𝐿𝑆1 (difference of longitudes of 𝐶1 and 𝑆1)
𝜃2 = 𝐿𝐶2 − 𝐿𝑆2 (difference of longitudes of 𝐶2 and 𝑆2)

Thus,
𝜃2 − 𝜃1 = (𝐿𝐶2 − 𝐿𝐶1) − (𝐿𝑆2 − 𝐿𝑆1) (12)

Now, 𝐿𝐶1 and 𝐿𝐶2 are the resultant longitudes after the
3rd step (themanda correction step) in the 4-step process.
That is, (𝐿𝐶2 − 𝐿𝐶1) constitutes the manda daily-motion.
Also, (𝐿𝑆2−𝐿𝑆1) is the śīghramean daily-motion (Δ𝑆𝑚𝑒𝑎𝑛).
Incorporating these changes, (12) can be expressed as:

𝜃2 − 𝜃1 = Δ𝑀 − Δ𝑆𝑚𝑒𝑎𝑛 (13)

Multiplying and dividing (11) by (13), we obtain:

(sin 𝜃2 − sin 𝜃1)
(𝜃2 − 𝜃1)

×
𝑟 × (Δ𝑀 − Δ𝑆𝑚𝑒𝑎𝑛)

𝐻 (14)

For small anomaly changes, the rate of change of sin 𝜃
is cos 𝜃. Thus (14) can be written as:

Δ𝑆 =
cos 𝜃 × 𝑟 × (Δ𝑀 − Δ𝑆𝑚𝑒𝑎𝑛)

𝐻 (15)

Making another approximation, namely 𝐻 − 𝑅 = 𝑟 ×
cos 𝜃 and substituting in (15) we obtain:

Δ𝑆 =
(Δ𝑀 − Δ𝑆𝑚𝑒𝑎𝑛) × (𝐻 − 𝑅)

𝐻 (16)

Eqn. 16 is the concise expression given in the Sūryasid-
dhānta for the daily-motion of a planet due to its śīghra
(Chapter II, verses 50, 51). 𝐻 is referred to as the last hy-
potenuse in the text, indicating the hypotenuse employed
in the final śīghra step in the 4-step process discussed ear-
lier.

3.3 The total daily motion

As mentioned, Figure 4b portrays not only the śīghra
daily-motion but also the 4th and final step in the compu-
tation of true longitude of a planet. Thus, the difference
of longitude of the planet at times𝑇2 and𝑇1 represents the
actual (total) daily motion (Δ).
That is,

Δ = 𝐿𝑃2–𝐿𝑃1 (17)

Since 𝐿𝑃2 = 𝐿𝐶2 − 𝛼2 and 𝐿𝑃1 = 𝐿𝐶1 − 𝛼1, we obtain:

Δ = (𝐿𝐶2 − 𝐿𝐶1) − (𝛼2 − 𝛼1) (18)

As seen earlier, the first term in brackets on the right
side is the daily-motion due to the manda while the sec-
ond term is that due to the śīghra. Generalizing, we have:

Δ = Δ𝑀 + Δ𝑆 (19)

Eqn. 19 is the expression given in the Sūryasiddhānta
for the true daily-motion of a planet in its simple and el-
egant form (Chapter II, verse 51). We will employ it for
computation of the daily-motion in the next section.

4 Computational results

Using the expressions derived above, we will now calcu-
late themanda, śīghra and true daily motions for various
heavenly bodies and compare the results with expected or
actual values. We will determine the actual longitude of
a planet using well-known empirical formulae in current
use (Meeus 2000). To obtain the actual daily-motion of a
planet we find its actual longitude from the empirical for-
mulae on two consecutive days, and take the difference.
The test date-range for each heavenly body is shown in

Table 2. The time-range of the test dates for each body
was chosen to be its orbital period or greater. All test dates
employed here, except for the Sun, are around the 2000 ce
timeframe. For the Sun, the test dates were chosen in the
4700 bce timeframe. The Indian epicycle model for the
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Table 2 Test Date Ranges.

Body Start-date End date Total days
Sun Oct 13,

−4699
Oct 17,
−4698

370

Moon Jan 4,
2000

Feb 7,
2001

400

Mercury Jan 17,
2000

Feb 19,
2001

400

Venus June
12,
2000

Mar 8,
2003

1000

Mars Jan 17,
2000

Jul 8,
2005

2000

Jupiter Jan 17,
2000

Sep 24,
2013

5000

Saturn Jan 17,
2000

Nov 23,
2032

12000

Sun is interesting in that it becomes progressively more
accurate as we go back in time (Narayanan, 2011). Peak
accuracy is reached around 4500–5500 bce. With that in
mind, the Sun’s test data was set in that timeframe.
Let us first examine the results for the manda daily-

motion.

4.1 Results for manda daily-motion

We have seen that the manda daily-motion reflects the
daily-motion of 𝐿3, the longitude obtained after the 3rd
step in the 4-step process. Figures 5a and 5b show the cal-
culated manda and 𝐿3 daily-motions for the inner plan-
ets, Mercury and Venus, for periods of 400 and 500 days
respectively. It can be seen that while the manda daily-
motion varies smoothly, the 𝐿3 daily-motion has some
fluctuations, especially for Mercury. Even so, the manda
daily-motion curve appears to be a fair approximation of
the 𝐿3 curve for these planets. The closeness of match of
the two curves is an indication of the goodness of approxi-
mations thatweremade in the analysis. Themanda epicy-
cle for Venus being very small, the approximations made
there have a less deleterious effect than those for Mercury
whosemanda epicycle is much larger.
As mentioned, the longitude 𝐿3 in the case of the outer

planets is the actual heliocentric longitude of the planet.
Thus, for the outer planets, the 𝐿3 daily-rate-of-change

is the daily-motion of the heliocentric longitude of the
planet. In other words, the manda daily-motion for the
outer planets represents the heliocentric daily-motion of
these planets. Figures 5c, 5d and 5e show the calculated
manda daily-motion and the actual heliocentric daily-
motions of the outer planets Mars, Jupiter and Saturn. It
can be seen from the Figures that there is a very good
match between the two curves.
The Sun and the Moon have only manda epicycles.

Thus, theirmanda daily-motions are also their true daily-
motions. We will discuss these results under section 4.3
further below.

4.2 Results for śīghra daily-motion

The śīghra daily-motion, as described in section 3.2, is a
measure of the daily-rate-of-change (or daily motion) of
the 𝐿4 correction in the 4-step process. Figures 6a to 6e
show a comparison of the modern value of śīghra daily-
motion and the daily-motion of the 𝐿4 correction for the
five visible planets. ForMercury, Jupiter and Saturn there
is excellent agreement between the two curves. Venus
and Mars are a little off, though still in good agreement.
These latter two planets, as seen from Figure 2b, possess
the largest śīghra epicycles and thus the greater inaccu-
racy is a measure of the error that has crept in due to the
approximations made in the analysis. At the present time
there appears no discernible physicalmeaning that can be
attributed to the śīghra daily-motion, apart from the con-
nection to the 4-step process.

4.3 Results for true daily-motion

For computational purposes we have taken the true daily-
motion to be the sum of the manda and śīghra daily-
motions. The true daily-motionwas calculated for the five
visible planets for various intervals ranging from 400 days
to 2000 days and the results are depicted in Figures 7a –
7e. The actual daily-motion is also shown for comparison.
In addition, themanda and śīghra daily-motions are pre-
sented as well for reference purposes. A few things stand
out in these Figures. The variation in magnitude of the
manda daily-motion appears small when compared to the
śīghra variation. Another observation is that while the
śīghra daily-motion occasionally becomes negative (retro-
grade), the manda daily-motion is always positive (pro-
grade). It can be seen in these figures that the calculated
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(a)Manda and 𝐿3 daily-motions for Mercury. (b)Manda and 𝐿3 daily-motions for Venus.

(c)Manda and actual heliocentric daily-motions for
mars.

(d)Manda and actual heliocentric daily-motions for
Jupiter.

(e)Manda and actual heliocentric daily-motions for Sat-
urn.

Figure 5
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(a) Modern value of the śīghra and 𝐿4 correction daily-
motions for Mercury.

(b)Modern value of the śīghra and 𝐿4 correction daily-
motions for Venus.

(c) Modern value of the śīghra and 𝐿4 correction daily-
motions for Mars.

(d)Modern value of the śīghra and 𝐿4 correction daily-
motions for Jupiter.

(e)Modern value of the śīghra and 𝐿4 correction daily-
motions for Saturn.

Figure 6
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true daily-motion is quite close to actuality, especially for
the two outermost planets.
We shall discuss these points further in section 6.
The Sun, as mentioned earlier, has only the manda

epicycle. Thus, its manda daily-motion is also its true
daily motion. This calculated true daily-motion is plotted
in Figure 7f along with the actual daily-motion for a pe-
riod of 370 days. It can be seen that there is a very close
match between the two curves.
Like the Sun, the Moon also has only one epicycle (the

manda). However, there is an added complication in the
calculation of lunar daily motion. Among the heavenly
bodies theMoon is somewhat of an anomaly in that itsmo-
tion is strongly influenced by two bodies, the Earth and
the Sun. Therefore, its expression for daily-motion must
contain a sun-related component too. However, we note
that the manda daily-motion expression, as given in (8),
has no Sun-related parameters. Thus, it is to be expected
that the calculated result for theMoon’s daily-motion will
not match actuality. This is indeed proved so in Figure
7g which shows a large discrepancy between the Moon’s
actual and calculated daily motions, over a period of 400
days.
Figure 7h shows a similar graph, but this time with

a Sun-correction applied to the manda daily-motion ex-
pression. From this figure we observe that the calculated
daily-motion results are now greatly improved. The Sun-
correction for theMoon’s daily-motion is described in sec-
tion 5.1 below and discussed further in section 6. Now
that we have examined the complete daily-motion algo-
rithm as given in the Sūryasiddhānta, we are in a po-
sition to briefly review the works of some other Indian
astronomers with regard to the daily-motion algorithm.
Note that this is not an exhaustive study of all existing In-
dian works but only a representative survey to get a gist
of the daily-motion algorithm in these other works.

5 The daily-motion algorithm in other
ancient works

As mentioned, apart from the Sūryasiddhānta, several
other Indian texts also indicate algorithms for calculating
daily-motion. Of them Manjula observes a special men-
tion.

5.1 Manjula (932 CE)

Manjula’s Laghumānasa (Shukla, 1990) has two verses
that describe the manda and śīghra daily-motions re-
spectively and one other verse that describes a second-
correction for the Moon alone. Manjula’s Sun-related cor-
rection (𝑍) for the Moon’s daily-motion appears to be as
follows:

𝑍 = Δ𝑀𝑚𝑒𝑎𝑛 × 𝐶 × cos(𝜃𝑎𝑝𝑜 − 𝜃𝑠𝑢𝑛) × cos(𝜃 − 𝜃𝑠𝑢𝑛) × 360

where,

𝜃𝑎𝑝𝑜 = longitude of the lunar Apogee
𝜃𝑠𝑢𝑛 = longitude of the Sun
𝜃 = longitude of the Moon

Applying this to (8), the full (Sun-corrected) equation
for the Moon’s daily-motion becomes:

Δ𝑀 = Δ𝑀𝑚𝑒𝑎𝑛 − (Δ𝑀𝑚𝑒𝑎𝑛 × 𝐶 × cos(𝜃) × 360)(𝑍)

This expression was used to compute the Moon’s true
daily-motion, as shown in Figure 7h.

5.2 Nīlakaṇṭha (1500 CE)

Nīlakaṇṭha’s Tantrasaṅgraha (Ramasubramanian and
Sriram, 2011) contains a couple of verses dealing with the
daily-motion.

Let the product of the koṭiphala and the daily mo-
tion of the kendra be divided by the square root
of the square of the bāhuphala of the Moon sub-
tracted from the square of the trijyā (radius). The
quantity thus obtained has to be subtracted from
the (mean) dailymotion if beginning frommakara
and is to be added to the daily motion if beginning
from karkaṭaka. This will be a far more accurate
value of the instantaneous velocity of theMoon, for
the Sun also (Chapter–II, Verse 23).

For the Sun and the Moon, Nīlakaṇṭha gives above
what we now understand to be the manda daily-motion
per (8), though in a different form.

The longitude of the planet found for tomorrow is
subtracted from the longitude of the planet today.
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(a) Calculated and actual daily-motion for Mercury. (b) Calculated and actual daily-motion for Venus.

(c) Calculated and actual daily-motion for Mars. (d) Calculated and actual daily-motion for Jupiter.

(e) Calculated and actual daily-motion for Saturn. (f) Calculated and actual daily-motion for the Sun.

Figure 7

417



ARTICLES IJHS | VOL 54.4 | DECEMBER 2019

(g) Calculated and actual daily-motion for the Moon
(without Sun Correction).

(h) Calculated and actual daily-motion for theMoon (with
Sun Correction).

Figure 7

The result (if positive) is the retrograde daily mo-
tion of the planet; if otherwise, the result gives the
direct dailymotion of the planet (Chapter–II, Verse
29)

For the planets, Nīlakaṇṭha above dispenses with the
need for a separate algorithm to calculate the daily-
motion. He advocates finding the actual planetary posi-
tion for two consecutive days and taking the difference.

6 Discussion

It was noted earlier that other than at peak retrograde
points, the calculated daily-motion is in general a smooth
curve. In the actual daily-motion data there are some-
times sharp fluctuations which are not captured very well
by the calculated daily-motion curve; the calculated curve
passes through these fluctuations smoothly. It may be
that the calculated daily-motion is not intended to be of
extreme accuracy but something in the nature of amedian
true daily-motion. As mentioned, the calculated daily-
motion result is used in a number of other computations.
It appears that a close-enough approximation of the ac-
tual daily-motionmay have been considered good enough
by the ancient Indian astronomers. However, this is only
a conjecture, andwe await further research to throwmore
light on the matter.
One of the remarkable things in the Indian planetary

model is that for the outer planets the longitude produced
at the 3rd step (𝐿3) is the actual heliocentric longitude of
the planet. In this paper we have seen that Δ𝑀 , which
represents the daily-motion of (𝐿3), matches the actual he-
liocentric daily-motion of these outer planets. This adds
to the list of heliocentric features in the Indian planetary
model.
The Indian epicycle model for the Sun predicts its lon-

gitude with reasonable accuracy. From the results of this
study it is seen that the daily-motion expression for the
Sun also predicts the actual daily-motionwith remarkable
precision. The Moon, unlike the planets, is strongly influ-
enced by two objects instead of just one. Its daily-motion
is the result of the combined influence of the Earth and
the Sun. Thus, in the algorithm for calculation of the
Moon’s daily-motion, one would expect to find some Sun-
related parameters as well. However, per our current un-
derstanding of the Sūryasiddhānta, there appears to be no
such Sun-specific factors in the text. On the other hand,
the Sun-related correction of theMoon’s daily-motion pro-
vided by Manjula seems to fit into the Sūryasiddhānta’s
basic formula perfectly, with the combination providing
fairly accurate values of the lunar daily-motion, as seen
in Figure 7h.
The works of later Indian astronomers appear to con-

tain daily-motion algorithms that are very similar to those
given in the Sūryasiddhānta, though there also appear to
be some discrepancies. A detailed study comparing these
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algorithms is called for to sort out the matter.

7 Conclusion

Some conclusions that may be drawn from this study on
the daily-motion of planets in Indian astronomy are as fol-
lows:

• The distinct, stand-alone calculation of daily-motion
of a heavenly body is unique to Indian astronomy.
The calculation algorithms are based on the stan-
dard Indian planetary model.

• Computed values of the true daily-motion which we
have to be the sumofmanda and śīghramotionwere
found to be considerably accurate for all the planets.

• Themanda daily-motion of a planet corresponds to
the daily-motion of 𝐿3, the longitude obtained after
the 3rd step in the 4-step process. For the outer plan-
ets, the manda daily-motion equals their actual he-
liocentric daily-motion.

• The śīghra daily-motion of a planet corresponds to
the daily-motion of the longitude correction factor
in the 4th and final step of the 4-step process.

• For the Sun, the daily-motion model predicts the ac-
tual daily-motion with good accuracy.

• For the Moon, the standard daily-motion formula,
along with a Sun-related correction, results in fairly
accurate values of its daily-motion.
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