Precise Determination of the Ascendant in the Lagnaprakarana - III

Aditya Kolachana ${ }^{\text {a, }, *}$, K. Mahesh ${ }^{\text {b }}$, K. Ramasubramanian ${ }^{\text {b }}$
${ }^{\text {a }}$ Indian Institute of Technology Madras
${ }^{\mathrm{b}}$ Indian Institute of Technology Bombay

(Received 22 March 2020)

Abstract

Authored by the celebrated mathematician-astronomer Mādhava, the Lagnaprakaranaa is an important astronomical text dedicated to the determination of the udayalagna or the ascendant, and is notable for its technical brilliancy and multiple approaches to a given problem. In continuation of our previous papers on this text, here we discuss additional methods for precisely determining the udayalagna as described in the third chapter of the Lagnaprakarana. The procedure prescribed here makes use of two quantities knows as the śañku and the drggati.

Key words: Ascendant, drkkkṣepakoṭikā, drggati, lagna, Lagnaprakarana, Mādhava, śañku

1 Introduction

In our previous two papers, ${ }^{1}$ we have discussed a variety of methods of determining the ascendant described in verses 31-52 of the Lagnaprakaraṇa, constituting its second chapter. In this paper, we discuss further methods for determining the ascendant described in verses 5361 of the Lagnaprakaraṇa, constituting its third chapter. These verses describe the method to determine the gnomons (śañku and drggati) corresponding to the Sun and an ecliptic point whose longitude is ninety degrees less than that of the Sun's, and then show how to determine the ascendant therefrom.

It may be noted that this paper is to be read in conjunction with our earlier paper as various physical and mathematical quantities described therein are employed here as

[^0]well. In this regards, it may be reiterated that we employ the symbols λ, α, δ, and z to respectively refer to the longitude, right ascension, declination, and zenith distance of a celestial body. The kālalagna, the latitude of the observer, and the obliquity of the ecliptic are denoted by the symbols α_{e}, ϕ, and ϵ respectively. It may also be mentioned that all the figures in this paper depict the celestial sphere for an observer having a northerly latitude ϕ. In these figures, N, S, E, and W denote the cardinal directions north, south, east, and west, while P and K denote the poles of the celestial equator and the ecliptic respectively.

2 Obtaining the śañku

कृतायनार्कस्य भुजां द्युजीवां ${ }^{2}$
चरं कलाप्राणभिदां च नीत्वा।
कलासुभेदं पुनरत्र भानौ संस्कृत्य तद्वर्जितकाललग्नात् ॥५३॥
नीतां भुजाज्यां समभिन्नदिक्त्वे

[^1]चरान्वितोनां द्युगुणेन ${ }^{3}$ हत्वा ।
हृत्वा त्रिजीवाकृतिलम्बकांरोन
अवाप्तमर्कस्य ${ }^{4}$ वदन्ति शाङ्कुम् ॥५४॥
krtāyanārkasya bhujạ̣̄ dyujūvāṃ
caraṃ kalāprāṇabhidāṃ ca nītvā।
kalāsubhedaṃ punaratra bhānau
saṃskrtya tadvarjitakālalagnāt \|53\|
nītāṃ bhujājyāṃ samabhinnadiktve
carānvitonāṃ dyuguṇena hatvā ।
hrtvā trijīvākrtilambakāṃśena
avāptamarkasya vadanti śan்kum ||54\|

Having computed the Rsine of the precession corrected longitude of the Sun, the day-radius (dyu$j \bar{\imath} v \bar{a}$), the ascensional difference (cara), and the prāṇakalāntara, and having applied the prāṇakalāntara to [the longitude of] the Sun, the kālalagna is decreased by that [quantity]. The Rsine computed from that [modified kālalagna], increased or decreased by the [Rsine of] ascensional difference (cara) depending on the sameness or difference in the directions [of the declination and the latitude], is multiplied by the day-radius (dyuguṇa) and divided by one-lambath part of the square of the radius (trijī$v \bar{a}$). [Scholars] state the quotient [thus obtained] to be the gnomon (śañku) of the Sun.

These two verses, in the upajāti metre, gives the following relation for the measure of the gnomon corresponding to the height of the Sun at any instant:

$$
\begin{aligned}
\text { śaṅku }= & {[\text { bhujājyā }(k a \bar{a} l a l a g n a-[k r t a \overline{y a n a ̄ r k a ~} \pm} \\
& \text { kalāsubheda }]) \pm \text { carajyā }] \times \text { dyuguṇa } \div \\
& \text { trij̄̄vākrrtilambakāṃśa }
\end{aligned}
$$

or,

$$
\begin{equation*}
R \cos Z S=\frac{\left[R \sin \left(\alpha_{e}-\alpha\right) \pm R \sin \Delta \alpha_{s}\right] \times R \cos \delta}{\frac{R^{2}}{R \cos \phi}} \tag{1}
\end{equation*}
$$

where α_{e} is the kālalagna, α and δ are the Sun's right ascension ${ }^{5}$ and declination, and $\Delta \alpha_{S}$ refers to the 'instan-
${ }^{3}$ चरान्वितोना द्युगुणेन in [17] and चरान्वितोनाद्द्युगुणेन in [18]. Both appear to be transcribing errors.
4त्रिजीवाह्टतिलम्बकांशोनावाप्तमर्कस्य in the manuscripts. This appears to be a transcribing error.
${ }^{5}$ The expression krtāyanārka \pm kalāsubheda is equal to $\lambda \pm \mid \lambda-$ $\alpha \mid=\alpha$.
taneous' ascensional difference of the Sun, calculated using δ.

The validity of the above relation can be understood with the help of Figure 1a, which depicts the Sun (S) having declination δ at a given instant. The altitude of the Sun is given by the arc $S F=90-Z S$. Therefore, the measure of a gnomon corresponding to the height of the Sun is given by

$$
\text { śànku }=S X=R \sin S F=R \cos Z S
$$

Now, considering the spherical triangle $P Z S$ in the figure, we have $P S=90+\delta$, and $P Z=90-\phi$. We note that the angle $H=B T=90-B E .{ }^{6}$ However, $B E=\alpha_{e}-\alpha{ }^{7}$ Therefore, $H=90-\left(\alpha_{e}-\alpha\right)$. Now, applying the cosine rule in the spherical triangle $P Z S$, we have

$$
\begin{aligned}
\cos Z S= & \cos (90-\phi) \cos (90+\delta)+ \\
& \sin (90-\phi) \sin (90+\delta) \cos H \\
= & {\left[\sin \left(\alpha_{e}-\alpha\right)-\tan \phi \tan \delta\right] \cos \phi \cos \delta, }
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\cos Z S=\left[\sin \left(\alpha_{e}-\alpha\right)-\sin \Delta \alpha_{s}\right] \cos \phi \cos \delta, \tag{2}
\end{equation*}
$$

where $\sin \Delta \alpha_{s}$ is the cara calculated using (16) from [14], however using the declination of the Sun at the given instant, rather than at sunrise. In the given figure, the declination of the Sun is negative. That is, the Sun and the latitude-represented by the $\operatorname{arc} Z T$-are on opposite sides of the equator. Therefore, the ascensional difference is negative in the above relation.

When the Sun's declination is positive, it will lie on the same side of the equator as the arc representing the latitude. Then, in the spherical triangle $P Z S$, we will have $P S=90-\delta$, while the other parameters stay the same. Upon applying the cosine rule in this spherical triangle again, we get

$$
\begin{align*}
\cos Z S= & \cos (90-\phi) \cos (90-\delta)+ \\
& \quad \sin (90-\phi) \sin (90-\delta) \cos H \\
= & \sin \phi \sin \delta+\cos \phi \cos \delta \sin \left(\alpha_{e}-\alpha\right) \\
= & {\left[\sin \left(\alpha_{e}-\alpha\right)+\sin \Delta \alpha_{s}\right] \cos \phi \cos \delta . } \tag{3}
\end{align*}
$$

[^2]Converting to the Indian cosine, and taken together, (2) and (3) yield

$$
R \cos Z S=\left[R \sin \left(\alpha_{e}-\alpha\right) \pm R \sin \Delta \alpha_{s}\right] \cos \phi \cos \delta
$$

which is the same as (1).

3 Obtaining the drggati

अथ त्रिभोनिताद्भानोः अपमं तस्य कोटिकाम् ।। चरं प्राणकलाभेदं अपि प्राग्वदिहानयेत् ॥५५॥ कृत्वा भास्वति वित्रिभे निजकलाप्राणान्तरं तत्पुनः त्यक्त्वा कालविलग्रतो भुजगुणस्तछेषजातः क्रमात्। दिग्भेदैक्यवशाचरोनसहितः कोट्यापमस्याहतः त्रिज्याकृत्यवलम्बकांराविहृतो भानोर्भवेद्दृग्गतिः ॥५६॥ atha tribhonitādbhānoḥ apamaṃ tasya koṭikām | caraṃ prāṇakalābhedaṃ api prāgvadihānayet \|I55\|
$k r t v a ̄ ~ b h a ̄ s v a t i ~ v i t r i b h e ~ n i j a k a l a ̄-~$
-prāṇāntaraṃ tatpunah
tyaktvā kālavilagnato bhujaguṇas-
-tacheṣajātah kramāt |
digbhedaikyavaśāccaronasahitaḥ
kotyāpamasyāhataḥ
trijyākrtyavalambakāṃśavihṛto
bhānorbhaveddrggatih ||56||
Now, one should compute [the Rsine of] the declination (apama) and its Rcosine, the ascensional difference (cara), and also the prāṇakalāntara from the longitude of Sun minus three signs (tribhonitādbhānu) as earlier.
Having applied the prāṇakalāntara to the Sun's longitude minus three signs (vitribha bhāsvat), and again subtracting that [result] from the kālalagna, [compute] the Rsine of the residue obtained. That increased or decreased by the ascensional difference (cara) depending on the directions [of the declination and the latitude] being same or different, multiplied by the Rcosine of the declination (kotyāpama) and divided by one-lambath part of square of radius (trijyā) would become the drggati of the Sun.

These two verses, in the anusțubh and śārdūlavikrïditam metres respectively, give the following relation
for the drggati of the Sun, which is defined as the height of a point on the ecliptic whose longitude is ninety degrees less than that of the Sun:

$$
\begin{aligned}
\text { drggati }= & {[\text { bhujaguṇa }(\text { kālalagna }-[\text { vitribha bhāsvat } \pm} \\
& \text { nija-kalāprāṇāntara }]) \pm \text { carajyā }] \times \\
& \text { kotyapama } \div \text { trijyākrtyavalambakāṃśa }
\end{aligned}
$$

or,

$$
\begin{equation*}
R \cos Z S^{\prime}=\frac{\left[R \sin \left(\alpha_{e}-\alpha^{\prime}\right) \pm R \sin \Delta \alpha_{s}^{\prime}\right] \times R \cos \delta^{\prime}}{\frac{R^{2}}{R \cos \phi}} \tag{4}
\end{equation*}
$$

where α_{e} is the kālalagna, α^{\prime} and δ^{\prime} are the right ascension ${ }^{8}$ and declination of an ecliptic point (S^{\prime}) ninety degrees behind the Sun, and $\Delta \alpha_{s}^{\prime}$ is the 'instantaneous' cara of this point, computed using δ^{\prime}.

The validity of the above relation can be understood with the help of Figure 1b, which depicts the point S^{\prime} on the ecliptic, having declination δ^{\prime}, and which is ninety degrees behind the position of the Sun depicted in Figure 1a. The altitude of the point S^{\prime} is given by the arc $S^{\prime} F^{\prime}=90-Z S^{\prime}$. Therefore, the measure of a gnomon corresponding to the height of S^{\prime} is given by

$$
\text { drggati }=S^{\prime} Y=R \sin S^{\prime} F^{\prime}=R \cos Z S^{\prime}
$$

Now, considering the triangle $P Z S^{\prime}$ in the figure, we have $P S^{\prime}=90+\delta^{\prime}$, and $P Z=90-\phi$. We note that the angle $H^{\prime}=T B^{\prime}=90-B^{\prime} W .{ }^{9}$ However, $B^{\prime} W=\alpha^{\prime}-\left(\alpha_{e}-180\right) .{ }^{10}$ Thus, $H^{\prime}=\left(\alpha_{e}-\alpha^{\prime}\right)-90$. Now, applying the cosine rule in the spherical triangle $P Z S^{\prime}$, we have

$$
\begin{aligned}
\cos Z S^{\prime}= & \cos (90-\phi) \cos \left(90+\delta^{\prime}\right)+ \\
& \sin (90-\phi) \sin \left(90+\delta^{\prime}\right) \cos H^{\prime} \\
= & {\left[\sin \left(\alpha_{e}-\alpha^{\prime}\right)-\tan \phi \tan \delta^{\prime}\right] \cos \phi \cos \delta^{\prime}, }
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\cos Z S^{\prime}=\left[\sin \left(\alpha_{e}-\alpha^{\prime}\right)-\sin \Delta \alpha_{s}^{\prime}\right] \cos \phi \cos \delta^{\prime}, \tag{5}
\end{equation*}
$$

[^3]

Figure 1 Determining the śañku and the drggati.
where $\sin \Delta \alpha_{s}^{\prime}$ is the cara calculated using (16) in [14], however using the declination (δ^{\prime}) of the point S^{\prime}. In the given figure, the declination of S^{\prime} is negative. That is, S^{\prime} and the latitude-represented by the arc $Z T$-are on opposite sides of the equator. Therefore, the ascensional difference is negative in the above relation.

When the declination of S^{\prime} is positive, it will lie on the same side of the equator as the arc representing the latitude. Then, in the spherical triangle $P Z S^{\prime}$, we will have $P S^{\prime}=90-\delta^{\prime}$, while the other parameters will stay the same. Upon applying the cosine rule again in this spherical triangle, we get

$$
\begin{align*}
\cos Z S^{\prime}= & \cos (90-\phi) \cos \left(90-\delta^{\prime}\right)+ \\
& \sin (90-\phi) \sin \left(90-\delta^{\prime}\right) \cos H^{\prime} \\
= & \sin \phi \sin \delta^{\prime}+\cos \phi \cos \delta^{\prime} \sin \left(\alpha_{e}-\alpha^{\prime}\right) \\
= & {\left[\sin \left(\alpha_{e}-\alpha^{\prime}\right)+\sin \Delta \alpha_{s}^{\prime}\right] \cos \phi \cos \delta^{\prime} . } \tag{6}
\end{align*}
$$

Converting to the Indian cosine, and taken together, (5) and (6) yield

$$
R \cos Z S^{\prime}=\left[R \sin \left(\alpha_{e}-\alpha^{\prime}\right) \pm R \sin \Delta \alpha_{s}^{\prime}\right] \cos \phi \cos \delta^{\prime}
$$

which is the same as (4).

4 Relationship between the śañku, the drggati, and the dṛkkṣepakoṭikā

शङ्ङुद्ग्गतिवर्गैक्यमूलं दृक्क्षेपकोटिका।

सैवापक्रमवृत्तस्य क्षितिजात्परमोन्नतिः ॥५७॥
śaṅkudrggativargaikyamūlaṃ dṛkkṣepakoṭikā | saivāpakramavṛttasya kṣitijātparamonnatih ||57\|

The square root of the sum of squares of śañku and drggati is the Rcosine of drkksepa (drekksepa$k o t i k \bar{a})$. That itself is the maximum height of the ecliptic from horizon.

This verse, in the anusṭubh metre, gives the following relation between dṛkkṣepakoṭik \bar{a}, śañku, and drggati:

$$
\begin{align*}
& \text { drkkṣepakotik } \bar{a}=\sqrt{\text { śaṅku }}+{ }^{2}+\text { drggati }^{2} \\
& \text { or, } \quad R \cos z_{d}=\sqrt{(R \cos Z S)^{2}+\left(R \cos Z S^{\prime}\right)^{2}} \tag{7}
\end{align*}
$$

where, z_{d} is the zenith distance of the drkkṣepalagna or the nonagesimal.

Deriving the relation between dṛkkṣepakoṭikā, śaṅku, and drggati

The validity of this relation can be understood with the help of Figure 2a, which depicts the celestial sphere from the point of view of the ecliptic. Here, S and S^{\prime} refer to the positions of the Sun, and a point ninety degrees behind it, while D represents the $d r k k s ̣ e p a l a g n a$, and Z the zenith of the observer. Figure 2b depicts the perpendiculars $Z X, Z D^{\prime}$, and $Z Y$ dropped from Z on to the radii $O S^{\prime}, O D$, and $O S$ of the celestial sphere respectively. ${ }^{11} \mathrm{We}$ therefore have

$$
\begin{array}{lll}
Z X=R \sin Z S^{\prime}, & Z D^{\prime}=R \sin z_{d}, & Z Y=R \sin Z S \\
O X=R \cos Z S^{\prime}, & O D^{\prime}=R \cos z_{d}, & O Y=R \cos Z S,
\end{array}
$$

where z_{d} is the zenith distance of the drkksepalagna. We have previously referred to the terms $R \sin z_{d}$ and $R \cos z_{d}$ to be the dṛkkṣepajyā and the paraśañku or dṛkkṣepakotikā respectively. ${ }^{12}$

Now, in right-angled triangle $Z D^{\prime} X$, we have

$$
X D^{\prime 2}=\left(R \sin Z S^{\prime}\right)^{2}-\left(R \sin z_{d}\right)^{2}
$$

which can be rewritten as

$$
X D^{\prime 2}=\left(R \cos z_{d}\right)^{2}-\left(R \cos Z S^{\prime}\right)^{2}=O D^{\prime 2}-O X^{2}
$$

which proves that the triangle $D^{\prime} O X$ is right-angled at X. Similarly, we can show that the triangle $D^{\prime} O Y$ is rightangled at Y. Therefore, $D^{\prime} X O Y$ is a rectangle, whose diagonal $O D^{\prime}$ is equal to $R \cos z_{d}$ (shown above). Now, from either of the triangles $D^{\prime} O X$ or $D^{\prime} O Y$, it can be easily seen that

$$
R \cos z_{d}=\sqrt{(R \cos Z S)^{2}+\left(R \cos Z S^{\prime}\right)^{2}}
$$

which is the relation given in the verse. It may be noted that the above relation will be valid for any two points separated by ninety degrees on the ecliptic. ${ }^{13}$ It may also be noted that when the Sun is at the drkkṣepalagna, the drggati will have to be measured from the setting ecliptic point, which is the point ninety degrees behind the Sun. As this point lies on the horizon, the drggati is zero. In this case, the Sun's śañku is equal to the dṛkkṣepakoṭik \bar{a}.

[^4]
(a) Visualising the śañku, drggati, and the dṛkkṣepakoṭik \bar{a} on the plane of the ecliptic.

(b) The relation between the śañku, drggati, and the dṛkkṣepakoṭik \bar{a}.

Figure 2 Determining the drkkșepakotik \bar{a}.

Showing that the dṛkkṣepakoṭikā is the maximum altitude of the ecliptic

From the discussion for (12) in [12] we know that the paraśañku or the dṛkssepakoṭik \bar{a} is the altitude of the $d r k k s ̣ e p a l a g n a$. It can be shown that this is the maximum altitude of the ecliptic by considering Figure 3. In this figure, the points D, L, and Z indicate the drkksepalagna, the udayalagna, and the zenith respectively. The point B is a general point on the ecliptic. Now, in the spherical triangle $Z B L$, we have $Z L=90$. Applying the cosine rule in this triangle, we have

$$
\cos Z B=\sin B L \cos (B \hat{L} Z) .
$$

The point B will correspond to the highest point of the ecliptic when $Z B$ is the least, or equivalently, when $\cos Z B$ is maximum. Inspecting the above relation, we can see that at any given instant, $\cos Z B$ is maximum when $\sin B L$ is maximum, ${ }^{14}$ or $B L=90$. However, from (14) in [12], we know this is only possible when B coincides with the $d r k k s ̣ e p a l a g n a$ at D. Therefore, one can conclude that the altitude of the ecliptic is maximum at the drkkṣepalagna. Thus, the gnomon corresponding to this point, which is the paraśanku or the drkkṣepakotik \bar{a}, is the maximum height of the ecliptic. Indeed, the name paraśañku itself indicates that this is the tallest śañku.

A note on the drggati

From (7), it is clear that

$$
\begin{aligned}
\text { drggati } & =\sqrt{\left(R \cos z_{d}\right)^{2}-(R \cos Z S)^{2}} \\
& =\sqrt{(R \sin Z S)^{2}-\left(R \sin z_{d}\right)^{2}} .
\end{aligned}
$$

The Mahābhāskarīya, ${ }^{15}$ the Śisyadhīvrddhidatantra, ${ }^{16}$ and the Siddhāntaśiromaṇi ${ }^{17}$ also define the drggati as above. However, the Sūryasiddhānta, ${ }^{18}$ and the Tantrasañgraha ${ }^{19}$ define it as

$$
\text { drggati }=\sqrt{R^{2}-\left(R \sin z_{d}\right)^{2}}=R \cos z_{d},
$$

[^5]which however is called the dṛkkṣepakotik \bar{a} in this text. From (7) we can see that $R \cos z_{d}$ can be equal to the drggati only when the Sun is on the horizon and the śañku is zero. In this case, the drggati would be the the gnomon corresponding to the drkkṣepalagna, which would be the point ninety degrees away from the Sun. This is obviously the drkkṣepakotikā itself. As we have already shown, this is the maximum height of the ecliptic, and therefore, the maximum possible value of the drggati. Nīlakaṇtha seems to have recognised this and clarifies in his $\bar{A} r y a b h a t ̣ \bar{\imath} y a-b h a ̄ s ̣ y a ~ t h a t ~ t h e ~ v a l u e ~ g i v e n ~ i n ~ t h e ~ S u ̄ r y a-~$ siddhānta is the maximum drggati. ${ }^{20}$ Perhaps, this is how the Tantrasangraha definition is to be understood as well.

5 Determining the udayalagna using the śańku and the drggati

त्रिज्याहते दृग्गतिशाङ्कुजीवे
दृक्क्षेपकोट्या विहतते यथोक्तम्।
चापीकृते वित्रिभभानुभान्वोः
कुर्यात्क्रमेणोदयलग्रसिद्ध्रै ॥५८॥
स्वर्णं दृग्गतिजं राङ्कुदृग्गत्योर्दिग्भिदैक्यतः ${ }^{21}$ ।
तत्र इाङ्कोरजादित्वे चक्रार्धमपि योजयेत्॥५९॥
शाङ्कुजं राङ्कुद्गृत्योर्दिक्साम्येडन्तरतः क्रमात्।
स्वर्णं क्षेप्यं च चक्रार्धं तुलादित्वे तु दृग्गतेः ॥६०॥
trijyāhate drggatiśañkujīve
dṛkkṣepakotyā vihṛte yathoktam |
cāpīkrte vitribhabhānubhānvoḥ
kuryātkrameṇodayalagnasiddhyai ॥58\|
svarṇaṃ drggatijaṃ śañku-
-drggatyordigbhidaikyatah ।
tatra śañkorajāditve
cakrārdhamapi yojayet ||59\|
śaṅkujaṃ śaṅkudrggatyor-
-diksāmye'ntarataḥ kramāt ।
svarṇaṃ kṣepyaṃ ca cakrārdhaṃ
tulāditve tu drggateḥ |l60\|
The Rsines corresponding to the drggati and the śañku, which are multiplied by the radius (tri$j y \bar{a})$ and divided by the Rcosine of the drkkssepa (dṛkkṣepakoṭikā), are converted to arc. One should

[^6]

Figure 3 Proving that the dṛkksepakoṭik \bar{a} is the maximum altitude of the ecliptic.
apply those (arcs) to [the longitudes of] the Sun minus three signs and the Sun respectively, as stated [now], in order to obtain the rising ecliptic point (udayalagna).
That [arc] obtained from drggati becomes additive or subtractive [to the longitude of the Sun minus three signs] depending on the difference or similarity in the directions of the śañku and the drggati [with respect to the horizon]. There, if the śank $k u$ is in [the six signs] Aries etc. (ajādi) [from the setting ecliptic point], then one should add a semi-circle (cakrārdha) also.
That [arc] computed from the śañku is additive or subtractive [to the longitude of the Sun] depending on if the directions of the saniku and the $d r g$ gati are the same or different [with respect to the horizon] respectively. And, indeed a semi-circle (cakrārdha) needs to be added if the drggati is in [the six signs] Libra etc. (tulādi) [from the setting ecliptic point].
and the latter two in the anustubh metre respectively, prescribe a method to determine the udayalagna using the drggati or the śañku. The relation to determine the udayalagna from the drggati is stated to be as follows:

$$
\begin{array}{r}
\text { udayalagna }=\text { vitribhabhānu } \pm \text { cāpa }\left(\frac{\text { drggati } \times \text { trijy } \bar{a}}{\text { drkkssepakoțik } \bar{a}}\right) \\
\\
\ldots \text {.. }[\text { śañku in tulādi }] \\
\text { udayalagna }=\text { vitribhabhānu } \pm \text { cāpa }\left(\frac{\text { drggati } \times \text { trijy } \bar{a}}{\text { drkkssepakotik } \bar{a}}\right) \\
\\
+ \text { cakrārdha. } \quad \ldots[\text { śañku in ajādi }]
\end{array}
$$

Taking λ_{l} as the longitude of the udayalagna, λ as the longitude of the $\operatorname{Sun}(S), \lambda^{\prime}=\lambda-90$ as the longitude of a point S^{\prime} ninety degrees behind the Sun, and accounting for the sameness or difference in the directions of the śañku and the drggati, the above relations can be written in mathematical notation as follows:
$\lambda_{l}=\lambda^{\prime}-R \sin ^{-1}\left(\frac{d r g g a t i \times R}{R \cos z_{d}}\right)+180$
... [S and S^{\prime} above horizon]

Figure 4 Determining the arc $S L$ using a planar triangle.
$\lambda_{l}=\lambda^{\prime}+R \sin ^{-1}\left(\frac{d r g g a t i \times R}{R \cos z_{d}}\right)$
... [S below, S^{\prime} above horizon]
$\lambda_{l}=\lambda^{\prime}-R \sin ^{-1}\left(\frac{d r g g a t i \times R}{R \cos z_{d}}\right)$
... [S and S^{\prime} below horizon]
$\lambda_{l}=\lambda^{\prime}+R \sin ^{-1}\left(\frac{d r g g a t i \times R}{R \cos z_{d}}\right)+180$.
... [S above, S^{\prime} below horizon]
It may be noted that the mathematical relations for the drggati and the dṛkkṣepakoṭika are given by (4) and (7) respectively.
The verse also gives the following relations to determine the udayalagna from the śañku:

$$
\begin{array}{r}
\text { udayalagna }=\text { bhānu } \pm \text { cāpa }\left(\frac{\text { śaṅku } \times \text { trijy } \bar{a}}{\text { drkkksepakoṭikāa }}\right) \\
\ldots \text {... } \text { drggati in ajādi }] \\
\text { udayalagna }= \\
\text { bhānu } \pm \text { cāpa }\left(\frac{\text { śañku } \times \text { trijyā }}{\text { drkkksepakotik } \bar{a}}\right) \\
\\
+ \text { cakrārdha. } \quad \ldots[\text { drggati in tulādi }]
\end{array}
$$

) Accounting for the sameness or difference in the directions of the śañku and the drggati, the above relations can be expressed in mathematical notation as
$\lambda_{l}=\lambda-R \sin ^{-1}\left(\frac{\text { śañku } \times R}{R \cos z_{d}}\right)+180$
... [S above, S^{\prime} below horizon]
$\lambda_{l}=\lambda+R \sin ^{-1}\left(\frac{\dot{s} a \dot{n} k u \times R}{R \cos z_{d}}\right)$
... [S and S^{\prime} above horizon]
$\lambda_{l}=\lambda-R \sin ^{-1}\left(\frac{s \dot{a} \dot{n} k u \times R}{R \cos z_{d}}\right)$
... [S below, S^{\prime} above horizon]
$\lambda_{l}=\lambda+R \sin ^{-1}\left(\frac{\text { śañ } k u \times R}{R \cos z_{d}}\right)+180$.
... [S and S^{\prime} below horizon]
Here, the mathematical relation for the śañku is given by (1).

In what follows, we show the validity of the above expressions. For convenience, we first show the derivation of the udayalagna from the śañku below. However, first,
a brief note on how the quadrants of the ecliptic are to be understood for the purpose of this verse.

The quadrants of the ecliptic

In standard practice, the four quadrants of the ecliptic are considered to be the four ninety degree arcs confined between adjacent equinoctial and solstitial points, with the arc between the vernal equinox and the summer solstitial point being considered the first quadrant. In contrast to this standard practice, for the purpose of this verse, the author appears to have conceived of the ecliptic as consisting of four quadrants, where the first quadrant corresponds to the ninety degree arc from the setting ecliptic point $\left(L^{\prime}\right)$ to the nonagesimal (D). The second quadrant in this case would be the arc between the nonagesimal and the rising ecliptic point (L). The third and fourth quadrants are to be understood accordingly. The Sun is depicted in the first to the fourth quadrants thus defined in Figures 5a-5d respectively.

With respect to this convention, the terms ajādi (0 to 180 degrees) and tulādi (180 to 360 degrees) in the verse clearly correspond to the halves of the ecliptic which lie above and below the horizon respectively. The purpose of this definition will become clear in our discussion below.

Deriving the udayalagna from the śañku

The derivation of the udayalagna from the śañku can be understood by considering Figure 1a. Here, the udayalagna (L) can be obtained by adding the arc $S L$ to the Sun's (S) longitude. In spherical triangle $S F L$, we have $S F=90-Z S, S \hat{F} L=90,{ }^{22}$ and from (17) in [12] we know $S \hat{L} F=90-z_{d}$. Then, applying the sine rule in this spherical triangle, we have

$$
\sin S L=\frac{\cos Z S \times \sin 90}{\cos z_{d}}
$$

which gives the measure of the arc from the Sun to the udayalagna:

$$
\left.\begin{array}{rl}
S L & =R \sin ^{-1}\left(\frac{R \cos Z S \times R}{R \cos z_{d}}\right) \\
& =R \sin ^{-1}\left(\frac{\text { śañku } \times \text { trijy } \bar{a}}{d r k k s ̣ e p a k o t ̣ i k a}\right. \tag{17}
\end{array}\right) . ~ .
$$

[^7]It may be noted that we have considered the Sun to be in the eastern hemisphere here. If the Sun were in the western hemisphere instead, the above relation would give the measure of the arc $L^{\prime} S$ from the setting ecliptic point (L^{\prime}) to the Sun.

Alternatively, the same relation can be derived using the planar triangle $S X Y$ shown in Figure 4. In this figure, S once again gives the position of the Sun, and $Z S F$ is the vertical passing through S. The point L is the udayalagna, and O is the centre of the celestial sphere. The line segment $S X$ is the perpendicular dropped from S on to the horizon, which we know as the śañku. The line segment $S Y$ is the perpendicular dropped from S on to the radius $O L$ in the plane of the ecliptic, and is therefore equivalent to $R \sin S L . X Y$ is a line segment on the horizon. The angle between $S Y$ and $X Y$ represents the angle between the horizon and the ecliptic. Thus, from (17) in [12], we have $S \hat{Y} X=90-z_{d}$. Now, in the planar right-angled triangle $S X Y$, which is perpendicular to the horizon, we have

$$
\sin \left(90-z_{d}\right)=\frac{\text { śán } k u}{R \sin S L} .
$$

Upon rearranging, we obtain the length of the arc

$$
S L=R \sin ^{-1}\left(\frac{\text { śañ } k u \times R}{R \cos z_{d}}\right),
$$

which is equivalent to the second expression in the RHS of the relations (12)-(15). In Figure 4, adding this arc to the longitude of Sun gives the udayalagna. It may be noted that, with respect to the special convention adopted for counting the quadrants of the ecliptic in this verse, the Sun can be considered to be in the second quadrant in this case. This is clearly seen in Figure 5b, where the Sun lies between the nonagesimal (D) and the rising ecliptic point (L). It may also be noted that both S and S^{\prime} are above the horizon in this case, and that S^{\prime} is ajādi (first quadrant). Thus, we obtain (13).
When the Sun is in the third quadrant, as shown in Figure 5 c, it can be seen that the arc $L S$ needs to be subtracted from the Sun's longitude to obtain the udayalagna. This gives (14). In this case, S and S^{\prime} are on opposite sides of the horizon, and S^{\prime} is $a j \bar{a} d i$ (second quadrant).

When the Sun is in the fourth quadrant, as shown in Figure 5d, the arc determined by the above relation will actually be the arc $S L^{\prime}$. Therefore, to obtain the udayalagna, we need to add this arc to the Sun's longitude to obtain L^{\prime}, and then add a further 180 degrees to obtain

(a) S above and S^{\prime} below horizon

(b) S and S^{\prime} above horizon

(c) S below and S^{\prime} above horizon

(d) S and S^{\prime} below horizon

Figure 5 Determining the udayalagna from the śañku and the drggati.
the longitude of point L. This is the procedure laid out in (15). In this case, S and S^{\prime} both lie below the horizon, and S^{\prime} is tulādi (third quadrant).

Finally, when the Sun is in the first quadrant of the ecliptic, as shown in Figure 5a, we need to subtract the $\operatorname{arc} L^{\prime} S$ (whose magnitude is the same as $S L$ above) from the Sun's longitude (to obtain L^{\prime}), and then add 180 degrees to obtain the longitude of point L. We thus obtain (12). Here, S and S^{\prime} are on opposite sides of the horizon, and S^{\prime} is tulādi (fourth quadrant).

It may be noted that a similar procedure for obtaining the udayalagna is also discussed by Nīlakanṭha in his Tantrasañgraha. ${ }^{23}$

Deriving the udayalagna from the drggati

The derivation of the udayalagna from the drggati can be understood by considering Figure 1b. Here, the udayalagna can be obtained from the longitude of S^{\prime} by first subtracting the arc $L^{\prime} S^{\prime}$ to obtain the setting ecliptic point $\left(L^{\prime}\right)$, and then adding 180 degrees to obtain the rising ecliptic point. The measure of the arc $L^{\prime} S^{\prime}$ can be obtained from the spherical triangle $S^{\prime} F^{\prime} L^{\prime}$. In this triangle, we have $S^{\prime} F^{\prime}=90-Z S^{\prime}, S^{\prime} \hat{F}^{\prime} L^{\prime}=90,{ }^{24}$ and from (17) in [12] we know $S^{\prime} \hat{L}^{\prime} F^{\prime}=90-z_{d}$. Applying the sine rule in this spherical triangle, we have ${ }^{25}$

$$
\sin L^{\prime} S^{\prime}=\frac{\cos Z S^{\prime} \times \sin 90}{\cos z_{d}}
$$

which gives the measure of the arc

$$
\begin{aligned}
L^{\prime} S^{\prime} & =R \sin ^{-1}\left(\frac{R \cos Z S^{\prime} \times R}{R \cos z_{d}}\right) \\
& =R \sin ^{-1}\left(\frac{\text { drggati } \times \text { trijy } \bar{a}}{\text { drkksepakoṭika}}\right),
\end{aligned}
$$

which is the same as the second expression in the RHS of the relations (8)-(11). ${ }^{26}$ Subtracting this arc from S^{\prime} yields the point L^{\prime}, whereupon, adding 180 degrees gives the udayalagna. Thus, we obtain the expression (8). With

[^8]respect to the special convention adopted for measuring the quadrants of the ecliptic in this verse, S^{\prime} can be considered to be in the first quadrant in this case. This is clearly seen in Figure 5b, where S^{\prime} lies between the setting ecliptic point $\left(L^{\prime}\right)$ and the nonagesimal. Here, both S and S^{\prime} are above the horizon, and S is $a j \bar{a} d i$ (second quadrant).

When S^{\prime} lies in the second quadrant, as shown in Figure 5 c , the udayalagna can be obtained by simply adding the $\operatorname{arc} S^{\prime} L$ (whose magnitude is the same as $L^{\prime} S^{\prime}$ above) to it. This yields (9). In this case, S and S^{\prime} are on opposite sides of the horizon, and S is tulādi.
When S^{\prime} lies in the third quadrant, as shown in Figure 5d, the udayalagna can be obtained by subtracting the $\operatorname{arc} L S^{\prime}$ (whose magnitude is the same as $L^{\prime} S^{\prime}$ above) from it. This gives (10). Here, S and S^{\prime} lie below the horizon, and S is tulādi.

Finally, when S^{\prime} lies in the fourth quadrant, as shown in Figure 5a, the udayalagna can be obtained by adding the $\operatorname{arc} S^{\prime} L^{\prime}$ to obtain L^{\prime}, and then adding a further 180 degrees to obtain L. Thus, we get (11). In this case, S and S^{\prime} again lie on opposite sides of the horizon, and S is ajādi.

6 Determining the udayalagna from any two ecliptic points which are ninety degrees apart

एवमेवेष्टलग्राच ततो वित्रिभतोऽपि च ।
 प्राग्विलग्नमिहानेयं भुक्तिजैर्न्यायदर्शिभिः ॥६१॥

evamevesṭalagnācca

> tato vitribhato'pi ca \mid
> prāgvilagnamihāneyaṃ bhuktijñairnyāyadarśibhiḥ $\|61\|$

Similarly, from any desired point on the ecliptic (isṭalagna) and from the ecliptic point three signs less from it (vitribha) also, the orient ecliptic point should be computed by the scholars of planetary motions who understand the principles [of astronomy].

A careful inspection of the relations given in this chapter reveals that the only necessary condition for determining the udayalagna as prescribed here is that we consider two points on the ecliptic which are ninety degrees apart. Therefore, this verse, in the anustubh metre, states that the udayalagna can be determined from any two desired
ecliptic points (say σ and σ^{\prime}) which are ninety degrees apart, using the procedure described in verses 58-60. For this, the śankku of σ, and the drggati from σ^{\prime}, should be first determined using (1) and (4), however substituting the right ascension, ascensional difference, and declination of the S and S^{\prime} with the corresponding quantities of σ and σ^{\prime}. Then, as in the case of the S and S^{\prime}, the udayalagna can be determined from σ and σ^{\prime} using (12)-(15) and (8)-(11) respectively.

7 Conclusion

In this paper, we have discussed two techniques for determining the ascendant by respectively employing the two gnomons (śañku and drggati) corresponding to the Sun and a point on the ecliptic ninety degrees behind the Sun. The methods discussed in our previous papers first determine positions on the ecliptic such as dṛkkṣepalagna, rāśikūṭalagna, unmaṇḍalalagna, etc., and determine the ascendant therefrom. However, the third chapter of the Lagnaprakaraṇa-discussed in this paper-describes the procedure of determining the exact lagna directly from the position of the Sun at any given instance, by determining its corresponding gnomon at that instance.

The procedures for determining the śañku and drggati makes use of the innovative concept of kālalagna, ${ }^{27}$ as well as the 'instantaneous' ascensional difference. The author gives different relations for determining the ascendant depending upon the directions and positions of the śaṅku and the drggati. He states this complex relationship in two short verses. This once again highlights the ability of the author to not only superbly visualise the motions of the celestial bodies in the celestial sphere, but also to effectively communicate the resulting relationships in a precise and succinct manner.

Verses 57 and 61 in this chapter are also quite interesting. The former verse states the relationship between the sanjku, the drggati, and the dṛkkṣepakoṭik \bar{a}, which is of the form of the sides of a right-angled triangle. Thus, it is evident that the author was able to visualise the relevant right-angled triangle clearly in his mind. The latter verse generalises the procedure given in this chapter by noting that the ascendant can be determined from any two ecliptic points which are ninety degrees apart, using the stated

[^9]procedure. This implies that the author was well aware of the rationale behind the procedure, and understood that one did not always have to start with the position of the Sun and determination of its gnomon. Indeed, the author employs a similar procedure for determining the ascendant by considering the gnomons dropped from the equinoctial and solstitial ecliptic points (which are ninety degrees apart) in the fifth chapter of the Lagnaprakaraṇa. These and other procedures of determining the ascendant, as given in the Lagnaprakaraṇa, will be discussed in future papers.

Acknowledgements

We would like to place on record our sincere gratitude to the Ministry of Education, Government of India, for the generous support extended to carry out research activities on Indian science and technology by way of initiating the Science and Heritage Initiative (SandHI) at IIT Bombay. We pay our obeisance to the late Prof. K. V. Sarma, who saved the Lagnaprakaraṇa for future generations by painstakingly copying the crumbling manuscripts of the text. We are also extremely grateful to the Prof. K. V. Sarma Research Foundation, Chennai, for preserving and sharing the copies of these manuscripts, which has enabled us to study this interesting and important work. Finally, we would also like to thank the anonymous referee for thoroughly reviewing our paper and making constructive suggestions.

Bibliography

[1] Āryabhaṭa. Āryabhaṭiya. Golapāda. With the commentary of Nīlakaṇṭhasomasutvan. Ed. by S. K. Pillai. .3. Trivandrum Sanskrit Series 185. Trivandrum: University of Travancore, 1957.
[2] Āryabhaṭa. Āryabhaṭīya. Ed., trans., and comm., with an introd., by Kripa Shankar Shukla and K. V. Sarma. New Delhi: Indian National Science Academy, 1976.
[3] Bhāskara I. Mahābhāskarīya. With the Bhāsya of Govindasvāmin and the Super-commentary Siddhāntadīpikā of Parameśvara. Ed. by T. S. Kuppanna Sastri. Chennai (formerly Madras): Government Oriental Manuscripts Library, 1957.
[4] Bhāskara II. Siddhāntaśiromaṇi. With a comment. by Satyadeva Sharma. Varanasi: Chaukhamba Surabharati Prakashan, 2007.
[5] Brahmagupta. Brāhmasphuṭasiddhānta. Ed. and comm. by Sudhakara Dvivedi. Reprint from The Pandit. Benares: Printed at the Medical Hall Press, 1902.
[6] Śrī Kṛ̣̣̣a Candra Dvivedī, ed. Sūryasiddhānta. With the commentary Sudhāvarṣiṇi of Sudhākara Dvivedī. Sudhākara Dvivedī Granthamālā. Varanasi: Sampurnanand Sanskrit University, 1987.
[7] Phanindralal Gangooly, ed. Sūryasiddhānta. Trans. and comm. by Ebenezer Burgess. With an intro. by Prabodhchandra Sengupta. Reprint from the edition of 1860. Delhi: Motilal Banarasidass Publishers Private Limited.
[8] Jñanarāja. Siddhāntasundara. Trans. and comm. by Toke Lindegaard Knudsen. Baltimore: John Hopkins University Press, 2014.
[9] Jyesṭhadeva. Gaṇita-yukti-bhāṣā. Ed. and trans. by K. V. Sarma. With a comment. by K. Ramasubramanian, M. D. Srinivas, and M. S. Sriram. 2 vols. Culture and History of Mathematics 4. New Delhi: Hindustan Book Agency, 2008.
[10] Aditya Kolachana, K. Mahesh, and K. Ramasubramanian. "Determination of kālalagna in the Lagnaprakaraṇa." In: Indian Journal of History of Science 54.1 (2019), pp. 1-12.
[11] Aditya Kolachana, K. Mahesh, and K. Ramasubramanian. "Mādhava's multi-pronged approach for obtaining the prāṇakalāntara." In: Indian Journal of History of Science 53.1 (2018), pp. 1-15.
[12] Aditya Kolachana, K. Mahesh, and K. Ramasubramanian. "Precise determination of the ascendant in the Lagnaprakaraṇa-I." In: Indian Journal of History of Science 54.3 (2019), pp. 304-316.
[13] Aditya Kolachana, K. Mahesh, and K. Ramasubramanian. "Precise determination of the ascendant in the Lagnaprakaraṇa-II." In: Indian Journal of History of Science 55.1 (2020), pp. 1-25.
[14] Aditya Kolachana et al. "Determination of ascensional difference in the Lagnaprakaraṇa." In: Indian Journal of History of Science 53.3 (2018), pp. 302-316.
[15] Lalla. Śiṣyadhīvrddhidatantra. With the commentary of Mallikārjuna Sūri. Trans. and comm., with an introd., by Bina Chatterjee. Vol. 2. 2 vols. New Delhi: Indian National Science Academy, 1981.
[16] Lalla. Śiṣyadhīvrddhidatantra. With the commentary of Mallikārjuna Sūri. Ed., with an introd., by Bina Chatterjee. Vol. 1. 2 vols. New Delhi: Indian National Science Academy, 1981.
[17] Mādhava. "Lagnaprakaraṇa." KVS Manuscript No. 37a. Prof. K. V. Sarma Research Foundation, Chennai.
[18] Mādhava. "Lagnaprakaraṇa." KVS Manuscript No. 37b. Prof. K. V. Sarma Research Foundation, Chennai.
[19] Mādhava. "Lagnaprakaraṇa." Manuscript 414B, ff. 53-84. Kerala University Oriental Research Institute and Manuscripts Library, Thiruvananthapuram.
[20] Nīlakaṇṭha Somayājī. Tantrasañgraha. Trans. and comm. by K. Ramasubramanian and M. S. Sriram. Culture and History of Mathematics 6. New Delhi: Hindustan Book Agency, 2011.
[21] Putumana Somayājī. Karaṇapaddhati. Trans. and comm. by Venketeswara Pai et al. Culture and History of Mathematics 9. New Delhi: Hindustan Book Agency, 2017.

[^0]: DOI: 10.16943/ijhs/2020/v55i2/154672
 *Corresponding author: aditya.kolachana@gmail.com
 ${ }^{1}$ See [12] and [13]. Also see [11], [14], and [10] for our discussion on some of the foundational astronomical parameters described by Mādhava in the first chapter of the Lagnaprakaraṇa.

[^1]: ${ }^{2}$ भुजा द्युजीवां in the manuscripts. Corrected for grammar.

[^2]: ${ }^{6}$ From (5) in [12] we know that the difference between the madhya$k \bar{a} l a$ and the kālalagna, that is the $\operatorname{arc} T E$, is 90 degrees.
 ${ }^{7}$ This is the difference in the right ascensions of the east cardinal point $\left(\alpha_{e}\right)$ and the Sun (α).

[^3]: ${ }^{8}$ Taking λ as the longitude of the Sun, the expression vitribha bhāsvat \pm nija-kalāprāṇāntara is nothing but $\lambda^{\prime} \pm\left|\lambda^{\prime}-\alpha^{\prime}\right|$, where $\lambda^{\prime}=\lambda-90$. The nija-kalāprāṇāntara (see verse 31), which is the same as the nija-prāṇakalāntara discussed in verse 31, has no special meaning here as it is being applied to the longitude.
 ${ }^{9}$ From (5) in [12] we know that the difference between the madhya$k \bar{a} l a$ and the kālalagna, that is the $\operatorname{arc} T E$, is 90 degrees. As $E W=$ 180, we have $T W=90$.
 ${ }^{10} \mathrm{This}$ is the difference in the right ascensions of $S^{\prime}\left(\alpha^{\prime}\right)$ and the west cardinal point $\left(180-\alpha_{e}\right)$.

[^4]: ${ }^{11}$ It may be noted that the base $D^{\prime} X O Y$ of this figure is a rectangle as we shall show below. It only appears to be a parallelogram as we are trying to depict a three dimensional figure here.
 ${ }^{12}$ For the drkkșepajyā see (9) in [12], or (2) and (3) in [13]. For paraśañku or drkkṣepakoṭikā see (12) in [12] and (10) in [13].
 ${ }^{13}$ Indeed, this property is later made use of in Chapter 5 of the Lagnaprakarana, with respect to the equinoctial and solstitial points of the ecliptic.

[^5]: ${ }^{14}$ At any given instant, the angle $B \hat{L} Z$ is fixed irrespective of the position of B on the ecliptic.
 ${ }^{15}$ [3], p. 275.
 ${ }^{16}$ [15], p. 135.
 ${ }^{17}$ [4], p. 381.
 ${ }^{18}$ [7], p. 166
 ${ }^{19}$ [20], pp. 309-312

[^6]: ${ }^{20}$ [1], p. 81.
 ${ }^{21}$ राङ्कुं दृग्गत्योर्दिग्भिदैक्यतः in [17]. Appears to be a transcribing error.

[^7]: ${ }^{22}$ The great circle arc $Z F S$, which is the vertical passing through S, is perpendicular to the horizon.

[^8]: ${ }^{23}$ See [20], pp. 245-248.
 ${ }^{24}$ This is the angle made by the vertical passing through S^{\prime} with the horizon.
 ${ }^{25}$ This relation can also be determined using planar triangles as shown in the case of the saniku.
 ${ }^{26}$ It may be noted that we have considered S^{\prime} to be in the western hemisphere here. If S^{\prime} were in the eastern hemisphere instead, the above relation would give the measure of the $\operatorname{arc} S^{\prime} L$ from S^{\prime} to the rising ecliptic point (L).

[^9]: ${ }^{27}$ For a detailed discussion on kālalagna, see [10].

