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1 Introduction

Bhāskarācārya ( b. 1150 CE) is one of the greatest names
in the history of ancient and medieval Indian mathemat-
ics and astronomy [Gupta, 2008]. Siddhāntaśiromaṇi
composed in 1150 CE by him is one of the most com-
prehensive treatises on Indian astronomy [Siddhānta-
śiromaṇi, 1861, 2005 ; 1981; Satyadev Sharma, 2011]. It
was a canonical textbook for students of astronomy in In-
dia for the next few centuries, and is taught in the Sanskrit
institutes in India, even now.

Siddhāntaśiromaṇi has two parts, namely, Graha-
gaṇita and Golādhyāya. Grahagaṇita expounds on all
the standard calculations and algorithms in astronomy
of Bhāskara’s times [Siddhāntaśiromaṇi, 2005; Arkaso-
mayaji, 2000]. It has 460 verses in 12 chapters. TheGolād-
hyāya has the definitions, more fundamental issues (like
the nature of the earth, the placement of stars and plan-
ets around it and so on), whereas the Grahagaṇita gives
the principles and theoretical details of the calculations
[Siddhāntaśiromaṇi, 2005; Wilkinson, 1861]. While the
source verses of these two parts of Siddhāntaśiromaṇi
present the basic results and procedures, Bhāskara him-
self has written a commentary called the Vāsanābhāṣya
or Mitākṣara on his own work, which gives a detailed
exposition, almost like classroom lectures, on the entire
subject. This includes details of proofs and justifications
along with diagrams etc., in the upapattis (rationales), dis-
cussion on how theoretical concepts are linked with obser-
vations, constructions and use of instruments etc.

Many scholars have worked on both the parts of
Siddhāntaśiromaṇi in the past. The verses of Graha-
gaṇitādhyāya have been translated into English by Arka-
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somayaji, nearly 40 years back. However, the translation
needs improvement. Moreover, the vāsanā for the verses
have not been translated. This is a serious lacuna, as
Bhāskara has laid out his methodology only in the com-
mentary. Hence, there is a crying need to translate the
Vāsanābhāṣya systematically, to understand Bhāskara’s
astronomy fully. I was the prinicipal investigator of an
INSA project on Grahagaṇitādhyāya in two phases to un-
dertake this task. Dr. Sita Sundar Ram was the Research
Associate, and Dr. R. Venketeswara Pai was a Consultant
in the first phase, and both were informal consultants in
the second phase of the project. The first phase was op-
erational at the Department of Theoretical Physics of the
University of Madras, Chennai during December 2011 –
March 2015. The second phase was taken up at the Prof.
K.V. Sarma Research Foundation, Chennai during Octo-
ber 2016 – March 2018.

We have translated all the verses of Grahagaṇitād-
hyāya, with the accompanying vāsanā. We have also
provided detailed explanations of the algorithms in mod-
ern notation with a large number of diagrams, using the
Vāsanābhāṣya mainly.

Grahagaṇita has 460 verses in 12 chapters : (1) Mad-
hyamādhikāra (Mean longitudes), (2) Spaṣṭādhikāra
(True longitudes), (3) Tripraśna (Three problems: Time,
direction and space), (4) Parvasambhava (Possibility of
eclipses), (5) Candragrahaṇa (Lunar eclipse), (6) Sūrya-
grahaṇa (Solar eclipse), (7) Grahacchāyādhikāra (Shad-
ows of planets), (8) Grahodayāstādhikāra [(Heliacal) ris-
ing and setting of planets], (9) Śṛ ̇𝑛gonnati (Elevation of
Lunar cusps), (10) Grahayuti (Conjunctions of planets),
(11) Bhagrahayuti (Conjunctions of planets with stars),
(12) Pātādhyāya (Vyatīpāta : Equality of declinations of
the Sun and the Moon).
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In the following we provide a summary of each chapter,
and discuss some specific important topics in some detail.

2 Madhayamādhikāra (Mean longitudes)

This chapter has seven sections : Kālamāna, Bha-
gaṇa, Grahānayana, Kakṣādhyāya, Pratyabdaśuddhi,
Adhimāsadinirṇaya and Bhūparidhi, with 120 verses.
This is long compared to the chapter on mean longitudes
in other texts. It gives the various measures of time, the
revolution numbers and other parameters of the plan-
ets, dimensions of their orbits, continued fraction method
for the longitudes and the frequency of adhimāsas (inter-
calary months) and kṣayamāsa ( a lunar month which has
two rāśi transits of the sun within it, which is a very rare
occurence). It also gives the method for determining the
planetary periods and other parameters like apogee etc.
using a Golayantra (armillary sphere).

2.1 Sidereal period of the Moon and its
revolution number

The number of revolutions of a planet in a kalpa cannot
be determined directly, as the sidereal periods of the ap-
sides and nodes, and even that of the planet Saturn itself
are long. Bhāskara discusses the strategy for finding the
revolution numbers in the vāsanā for verses 1–6 in the
bhagaṇādhyāya part of the madhyamādhikāra. We will
describe his method for the sideral period of the the Moon
in the following.

Bhāskara prescribes the use of a golayantra or an armil-
lary sphere to find the revolution numbers of the planets
and the associated points (like apsides and nodes), begin-
ning with the Moon. A sketch of the golayantra is given
in Figure 1. It has a fixed celestial equator and an ecliptic
which can be rotated around the polar axis. There is also
a vedhavalaya to locate the planet, which is a moveable
ring and is a secondary to the ecliptic. There is a sight at
the centre of the sphere.

The zero point of Indian zodiac which is the beginning
point of theAśvinī nakṣatra, or the end point of the Revatī
nakṣatra is located in the sky, and the point 𝑅 correspond-
ing to that is marked on the ecliptic. Let the Moon be lo-
cated at 𝑀 at some instant on a particular day. Consider
the point𝑋 , where the vedhavalaya on which the Moon is
located, intersects the ecliptic. Then the arc 𝑅𝑋 is the ( ni-

rayana (without precession) longitude of the Moon, that
is, with respect to a fixed stellar background, and the arc
𝑋𝑀 is the vikṣepa, or the latitude of the Moon. Let 𝑋1
and 𝑋2 be the true longitudes of the Moon at the same
ghaṭī or instant on two successive days. Then 𝑋2 − 𝑋1,
which is the difference in the true longitudes is the true
daily motion of the Moon. Now, the mean longitudes 𝑋10
and 𝑋20 on the two consecutive days can be found from
the true longitudes, by an inverse process, as described in
verse 45 in the chapter on “spaṣṭādhikāra” or the “true
longitudes”1. Then 𝑋20 − 𝑋10 is the daily motion of the
mean Moon. From this, the sideral period of the Moon
can be computed. The number of revolutions of the Moon
in a kalpa can then be determined from the rule of pro-
portions. The method is described in the commentary in
detail.

3 Spaṣṭādhikāra (True longitudes)

The Spaṣṭādhikāra or the chapter on true longitudes has
many new features. The sine table is discussed at length.
Bhāskara discusses the instantaneous rates of motion
(tātkālikagati) of planets (Sun, Moon and the actual plan-
ets) in this chapter, where the derivative of the sine func-
tion is taken to be the cosine function. This is remark-
able considering the importance of the concept of instan-
taneous velocity in the development of calculus. For the
actual planets, his expression for the rate of motion is
based on an ingenious geometrical construction. This ex-
pression can be used to discuss the retrograde motion of
the planets straight away. The second order interpolation
formula of Brahmagupta for finding the sine or cosine of
an arbitrary angle is explained in this chapter. This indi-
cates that Bhāskara had a rough understanding of the sec-
ond derivative of a function. The “Udayāntara” , which
is essentially the part of the equation of time due to the
obliquity of the ecliptic is discussed in this chapter and a
simple and accurate approximate expression for the differ-
ence between the longitude and the right ascension of the
Sun is also given.

1The true longitude 𝜃𝑚𝑠 can be found from the mean longitude 𝜃0,
using the expression for 𝜃𝑚𝑠 in the next subsection. The mean longi-
tude, 𝜃0 can be obtained from the true longitude, 𝜃𝑚𝑠 by an inverse
process. Here, as the argument of the inverse sine function in the ex-
pression for 𝜃𝑚𝑠 itself depends upon 𝜃0, one has to use an iterative
procedure to find 𝜃0, where 𝜃𝑚𝑠 is substituted for 𝜃0 in the argument,
in the first approximation.
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Figure 1 Finding the true longitude of the Moon using the golayantra.

3.1 The instantaneous rate of motion of the Sun,
the Moon, and the planets

The instantaneous rate of motion of the mandas-
phuṭa (planet corrected for the equation centre)

Let 𝜃0 be the mean longitude (madhyamagraha) , 𝜃𝑀
be the longitude of the apside (mandocca), and 𝑀 =
𝜃0 −𝜃𝑀 be the mean anomaly (mandakendra) . Then the
longitude of the mandasphuṭa (planet corrected for the
equation of centre) denoted by 𝜃𝑚𝑠 is given by

𝜃𝑚𝑠 = 𝜃0 − sin−1 (𝑟0𝑅 sin𝑀) ,

where 𝑟0 is the radius of the epicycle, and 𝑅 is the radius
of the deferent.

The mandocca (apside) is the apogee, and the mandas-
phuṭa, 𝜃𝑚𝑠 is the ‘true longitude’ in the case of the Sun
and the Moon (neglecting the second correction for the
latter, which is essentially the ‘evection’ term, included
in some texts). For the tārāgrahas (actual planets), Mer-
cury, Venus, Mars, Jupiter and Saturn, the mandocca is
the aphelion, and the mandasphuṭa is essentially the he-
liocentric true longitude.

Now 𝑟0 is much smaller than 𝑅. When 𝜃0, 𝜃𝑚𝑠 and 𝑀
are all in minutes, the arcsine should also be in minutes.
Then, sin−1 𝜓 ≈ 𝑅𝜓 , when the argument of the arcsine,

𝜓 is small, and we have,

𝜃𝑚𝑠 = 𝜃0 − sin−1 (𝑟0𝑅 sin𝑀) ≈ 𝜃0 −
𝑟0
𝑅 𝑅 sin𝑀.

With our present knowledge, we can now say that

Δ𝜃𝑚𝑠
Δ𝑡 = Δ𝜃0

Δ𝑡 − 𝑟0
𝑅 (cos𝑀)Δ𝑀Δ𝑡 ,

where Δ𝜃0, Δ𝑀 and Δ𝜃𝑡 are the (small) changes in 𝜃0, 𝑀
and 𝜃𝑚𝑠 respectively in a small time-interval Δ𝑡, as

Δ(𝑅 sin𝑀) = (cos𝑀)Δ𝑀,

when Δ𝑀 is in minutes. Here, Δ𝜃𝑚𝑠
Δ𝑡

is the rate of motion

of the mandasphuṭa, and Δ𝜃0
Δ𝑡

is the mean rate of motion.
Choosing Δ𝑡 to be one day, and denoting

(i) the daily motion of the mean longitude , Δ𝜃0
Δ𝑡

by 𝑛0 ,

(ii) the daily motion of the mandasphuṭa , Δ𝜃𝑚𝑠
Δ𝑡

by 𝑛𝑚𝑠 ,

and (iii) the daily motion of the anomaly, Δ𝑀
Δ𝑡

by 𝑛𝑀 ,

we have
𝑛𝑚𝑠 = 𝑛0 −

𝑟0
𝑅 (cos𝑀)𝑛𝑀 .
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This is essentially stated by Āryabhaṭa-II in his Mahāsid-
dhānta. It is stated in a slightly different form even ear-
lier in Laghumānasa of Munjālācārya, which appears to
be the first text to consider the instantaneous rate of mo-
tion and use the cosine function as the derivative of the
sine function, though they are not stated as such.

In verses 36b, 37 and 38 of the chapter on spaṣṭād-
hikāra (true longitudes) in the Grahagaṇitādhyāya part
of Siddhāntaśiromaṇi, Bhāskara points out the need for
finding an instantaneous (tātkālikī) rate of motion which
varies from moment to moment, and gives the explicit
expression for it, which is the same as the above equa-
tion for 𝑛𝑚𝑠. This is explained in far greater detail in
the vāsanā for the verses 36b–38 in spaṣṭādhikāra by
Bhāskara himself [Ramasubramanian and Srinivas, 2010;
Sriram, 2014].
Bhāskara’s discussion of the instantaneous rate of
motion

Now, apart from a sign, the correction term in the true
longitude is 𝑟0

𝑅
𝑅 sin𝑀. He takes the

Rate of change of 𝑅 sin𝑀 (wrt time) =
Rate of change of 𝑀 wrt time (𝑛𝑀)
× Rate of change of 𝑅 sin𝑀 wrt angle 𝑀

The rate of change of 𝑅 sin𝑀 wrt angle 𝑀 is taken as the
difference of Rsines at the beginning and the end of a
225-minute interval around 𝑀 and divided by 225. It is
in this sense that what is understood as the ‘deriva-
tive’ of the sine function in modern times, is con-
ceptualised in this part of Siddhāntaśiromaṇi. It is
correctly stated to be equal to the ratio of 𝑅 cos𝑀 and 𝑅,
that is cos𝑀. Putting these things together, the magni-
tude of the correction term in the instantaneous rate of
motion is 𝑟0

𝑅
times the rate of change of 𝑅 sin𝑀, which is

𝑟0
𝑅
(cos𝑀) 𝑛𝑀 , as per verse 37. Bhāskara could have ar-

rived at the result based on a geometrical reasoning sim-
ilar to the ones he uses in various contexts in the work
[Sriram, 2014].
The true instantaneous rate ofmotion of the planets

We now consider the instantaneous rate of motion of
the tārāgrahas, that is, Mars, Jupiter, Saturn (exterior
planets), and Mercury and Venus (interior planets). For
these planets, a second correction, namely, the śīghra-
saṃskāra has to be applied, apart from the equation of
centre, to obtain the true geocentric longitude. The śīghra-
saṃskāra is equivalent to a conversion from the heliocen-

tric to geocentric coordinates. Again, an epicycle or ec-
centric model is used to determine the correction. Just
as the mandocca (apside) plays a major role in the appli-
cation of manda-saṃskāra, so too, the śīghrocca plays a
key role in the application of the śīghra-saṃskāra.2 The
śighrakendra is the difference between the śighrocca and
the mean planet. For the planets, the computation of the
true rate of motion would involve finding the derivative
of the arcsine function, whose argument is a ratio of two
functions. Bhāskara did not have the machinery to com-
pute such a quantity.

In verse 39 of spaṣṭādhikāra Bhāskara gives an alter-
nate expression for the ‘true velocity’ which would in-
volve finding only the derivative of the sine function. In
the accompanying vāsanā, he gives an ingenious geomet-
rical method for obtaining that expression [Sriram, 2019].
In verse 41 of the spaṣṭādhikāra, Bhāskara discusses the
retrograde motion and states the values of the śīghrak-
endra corresponding to the stationary points of the five
planets. At the stationary points, the true rate of motion
is zero. We can compute the values of the śighrakendra
corresponding to this. There is a remakable agreement
between the computed and the stated values of the sta-
tionary points [Sriram, 2019].

4 Tripraśnādhikāra (The three
questions)

The third chapter on the “three questions” (of direction,
location and time) is a long one with 109 verses, where
the geometrical insights of Bhāskara come into full play.
Here he uses the ‘trairāśika’, or ‘the rule of three’ very ef-
fectively to solve diurnal problems. The topics include:
fixing the east-west direction taking into account the vari-
ation of Sun’s declination over a day, discussion of vari-
ous latitudinal triangles which are helpful in diurnal prob-
lems, arriving at the formula for the zenith distance in a
general situation, and so on. Elegant alternate methods
are proposed, wherever possible. As an example of his
methods, we present his derivation of the expression for
the zenith distance of the Sun in terms of the hour angle
and the declination for a place with a given latitude, in the
next subsection.

2For the exterior planets, the śighrocca is the mean Sun. For the inte-
rior planets, the śighrocca is the mean heliocentric planet.
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4.1 Zenith distance, 𝑧 as a function of the hour
angle, 𝐻

In Figure 2, 𝑂 is the centre of the celestial sphere of ra-
dius 𝑅. Let the declination of the Sun be 𝛿 on some day.
𝑆𝑟𝑆2𝑈𝑆′𝑆1𝑆𝑡 is the diurnal circle of the Sun with 𝐶 as the
centre , whose radius is 𝑅 cos 𝛿, termed dyujyā. The plane
of the diurnal circle is inclined to the plane of the horizon
at an angle, 90∘−𝜙. To be specific, we consider a northern
declination, and an instant after the noon, when the Sun
is at 𝑆′, when its zenith distance is 𝑧 (angle corresponding
to the arc 𝑍𝑆′), and the hour angle is𝐻. Draw 𝑆′𝐹 perpen-
dicular to the horizon meeting it at 𝐹. 𝑆′𝐹 = 𝑅 cos 𝑧 and
is known as the śa ̇𝑛ku or the gnomon.
Dinārdhaśaṅku or Mid-day gnomon

The Sun would have crossed the meridian at 𝑈. Draw
𝑈𝐺 perpendicular to the horizon meeting it 𝐺. This is
clearly the mid-day gnomon, termed the ‘Dinārdhaśaṅku’.
The line passing through 𝑈 and 𝐶 intersects the horizon
at 𝑇. 𝑂𝐶 is perpendicular to 𝑈𝑇. Then 𝑂𝐶𝑇 is a right-
angled triangle with 𝑂𝐶 = 𝑅 sin 𝛿, and 𝐶 ̂𝑇𝑂 = 90∘ − 𝜙.
Hence 𝐶𝑇 = 𝑅 sin 𝛿 sin𝜙

cos𝜙
, and is known as kśitijyā (Earth-

sine). 𝐶𝑈 = 𝑅 cos 𝛿, and is thedyujyā (Day-radius). Then,
in verse 34 of the chapter on three questions, a quantity
called hṛti is defined as the sum of the day-radius and the
earth sine. This is just 𝑈𝑇. So,

hṛti = 𝑈𝑇 = 𝑅 cos 𝛿 + 𝑅 sin 𝛿 sin𝜙
cos𝜙.

𝑈𝐺𝑇 is also a right-triangle with 𝑈 ̂𝑇𝐺 = 𝜙. Then,

Dinārdhaśaṅku = 𝑈𝐺 = cos𝜙 × hṛti = 𝑅 cos 𝛿 cos𝜙+
𝑅 sin 𝛿 sin𝜙,

as stated in verse 36.
The desired gnomon, 𝑅 cos 𝑧
From 𝑆′, draw a perpendicular, 𝑆′𝐶′ on 𝑈𝑇. The arc

𝑈𝑆′ is along the diurnal circle, and 𝑆′ ̂𝐶𝐶′ = 𝐻, the
hour angle. As 𝐶𝑆′ = 𝐶𝑈 = 𝑅 cos 𝛿, we have 𝐶𝐶′ =
𝑅 cos 𝛿 cos𝐻, and 𝐶′𝑈 = 𝐶𝑈 − 𝐶𝐶′ = 𝑅 cos 𝛿(1 − cos𝐻).
Draw 𝐶′𝑉 perpendicular to 𝑈𝐺. It can be seen that 𝑆′, 𝐶′

and 𝑉 are in a plane parallel to the horizontal plane. 𝑈𝑉
is called the ūrdhva (upwards), as it is the upper portion
of the dinārdhaśa ̇𝑛ku, 𝑈𝐺. As 𝑈 ̂𝐶′𝑉 = 90∘−𝜙, it is clear
that

Ūrdhva (upwards) = 𝑈𝑉 = 𝑅 cos 𝛿 cos𝜙(1 − cos𝐻).

This is the expression for ūrdhva, as described in verses
58 and 59; then in verse 60, it is stated that :

Desired gnomon, 𝑅 cos 𝑧 = 𝑆′𝐹 = 𝑉𝐺 = 𝑈𝐺 – 𝑈𝑉 =
Dinārdhaśa ̇𝑛ku – Ūrdhva.

Substituting for the expressions for dinārdhaśa ̇𝑛ku (mid-
day gnomon) and ūrdhva (upwards), we have :

𝑅 cos 𝑧 = 𝑅 sin𝜙 sin 𝛿 + 𝑅 cos𝜙 cos 𝛿 cos𝐻.

This is the same as the relation obtained using the cosine
formula.

The hour angle 𝐻 can be determined in terms of 𝑧, 𝛿,
and 𝜙, by rewriting the relation as :

𝑅 cos𝐻 = 𝑅 cos 𝑧
cos𝜙 cos 𝛿 −

𝑅 sin𝜙 sin 𝛿
cos𝜙 cos 𝛿 .

The Phalakayantra discussed in Golādhyāya is based on
this relation [Sriram, 2016].

5 Parvasambhava (Possibility of the
occurence of an eclipse)

This is a small chapter with only 5 verses, but the explana-
tions in the vāsanā are quite detailed. First, simple arith-
metical expressions for the number of lunar months be-
tween the beginning of the kaliyuga and the specified new
moon, and the ‘Sun – node’ (sapātasūrya) are given. Then
the criterion for the occurence of an eclipse is given. IfΔ𝜆
is the difference between the longitudes of the Sun and
one of the nodes of the Moon at the ‘parvānta’, Δ𝜆 < 14∘
for a lunar eclipse, and Δ𝜆 < 7∘ for a solar eclipse. The
rationale for these limits are provided in the commentary.
In the case of a solar eclipse, the effect of parallax has also
to be taken into account.

6 Candragrahaṇa (Lunar eclipse)

This is a long chapter with 39 verses. The dimensions of
the orbits of the Sun and the Moon (689377 and 52566 yo-
janas repsectively), and their diameters ( 6522 and 480 yo-
janas respectively) are stated. The diameter of the Earth
was given in an earlier chapter to be 1250 yojanas. The
correction due to the equation of centre should be applied
to find the true distances of the Sun and the Moon. The ex-
pression for the diameter of the earth’s shadow-disc, 𝐷𝑠ℎ
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Figure 2 Bhaskara’s geometrical construction for finding 𝑧 in terms of 𝜙, 𝛿, and 𝐻.

in the plane of Moon’s motion is given to be

𝐷𝑠ℎ = 𝐷𝐸 −
(𝐷𝑆 − 𝐷𝐸)𝑑𝑚

𝑑𝑠
,

where 𝐷𝑆 and 𝐷𝐸 are the diameters of the Sun and the
Earth, and 𝑑𝑚 and 𝑑𝑠 are the distances of the Moon and
the Sun from the Earth. This can be explained through
a diagram described in the vāsanā (Figure 3). Simple ex-
pressions for the angular diameters of the Sun, the Moon,
and the shadow-disc are given.

The standard expression for the latitude of the Moon is
given. The magnitude of the eclipse (sthagita) is defined.
The half-durations of an eclipse as a whole, and totality
can be understood from Figure 4.

Here, the bigger disc at the centre of the figure repre-
sents the eclipsing body, and the smaller disc, the eclipsed
body. The expressions for the first and second half-
durations of the eclipse in nāḍis, 𝑡1 and 𝑡2, are given by

𝑡1 =
√(𝑟1 + 𝑟2)2 − 𝛽21

𝑑𝑡𝑚 − 𝑑𝑡𝑠
× 60 and

𝑡2 =
√(𝑟1 + 𝑟2)2 − 𝛽22

𝑑𝑡𝑚 − 𝑑𝑡𝑠
× 60, (1)

where 𝑟1, 𝑟2 are the radii of the eclipsing and eclipsed bod-
ies, 𝑑𝑡𝑚 and 𝑑𝑡𝑠 are the true rates of motion of the Moon
and the Sun in minutes per day, and 𝛽1, 𝛽2 are the lat-
itudes of the Moon at the beginning and the end of the
eclipse. 𝑡1, 𝑡2 are calculated using iterative procedures.
For the half-durations of totality, 𝑟1+𝑟2 is replaced by 𝑟1−𝑟2
and 𝛽1, 𝛽2 represent the latitudes of the Moon at the be-
ginning and the end of totality. The same figure and ex-
pressions are applicable for solar eclipses also. Similar ex-
pressions and figures can be used for finding the obscura-
tion at any instant, and also the instant corresponding to
a specified amount of obscuration.

The topic of valana (essentially, the angle between the
ecliptic and the local vertical at the eclipsed body) is dis-
cussed in detail. A graphical description of the progress of
an eclipse is discussed in detail in this chapter. Figure 5
depicts the progress of a lunar eclipse, as described in the
vāsanā.

7 Sūryagrahaṇa (Solar eclipse)

Parallaxes in longitude and latitude play very crucial roles
in the computations pertaining to a solar eclipse. To cal-
culate the parallax, one needs to know the vitribhalagna,
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Figure 3 Shadow-cone in a lunar eclipse and the earth’s shadow.

Figure 4 (a) Diagram for half-durations of an eclipse. (b) Diagram for half-durations of totality.

(i)(ii)
(iii)

(iv)

(v)

Figure 5 Progress of a lunar eclipse. If 𝑟1 and 𝑟2 are the radii of the eclipsing body (earth’s shadow) and the eclipsed
body (Moon), the small solid circle has radius 𝑟1 − 𝑟2, and the bigger solid circle with radius 𝑟2 represents
the Moon. The dashed circles with radius 𝑟1 represent the earth’s shadow at various instants: (i) At the
beginning of the eclipse (sparśa), (ii) at some instant between the beginning and the middle of the eclipse,
(iii) at the beginning of totality, (iv) at the end of totality and (v) at the end of the eclipse (mokṣa).
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or just vitribha, V, which is a point on the ecliptic 90∘
westwards of the lagna at any instant. From the lagna
at the middle of the eclipse (computed for the centre of
the Earth), the longitude of the vitribha, its declination
𝛿𝑣 and its hour angle 𝐻 can be found for a location with a
latitude, 𝜙. Then the vitribhaśaṅku, 𝑅 cos 𝑧𝑣 can be found
from the relation:

𝑅 cos 𝑧𝑣 = 𝑅 sin𝜙 sin 𝛿𝑣 + 𝑅 cos𝜙 cos 𝛿𝑣 cos𝐻.

The parallax in longitude (called ‘lambana’) in time units
is then stated as:

Lambana (ghaṭikās) = 4 ghaṭikās × cos 𝑧𝑣 sin(𝜆𝑠 − 𝜆𝑣),

where 𝜆𝑠 and 𝜆𝑣 are the longitudes of the Sun and the vit-
ribha. Bhāskara does not derive this, but gives a persua-
sive argument based on the rule of proportions for this
approximate relation. The expression for the parallax in
latitude, nati is given by

nati = 𝑃 sin 𝑧𝑣,

where 𝑃 is the maximum parallax of “Sun – Moon”.
The Parallax correction is applied to the instant corre-

sponding to the middle of the eclipse, and the corrected
middle of the eclipse is found. At this corrected instant,
the longitude of the Sun and Moon are calculated again,
and the parallax is also found and applied. In this way,
the exact middle of the eclipse is found using an iterative
process.

Bhāskara also proposes an epicycle-type of model for
finding the lambana similar to the one for obtaining the
śīghraphala of a planet, where the radius of the earth
plays the role of the epicycle-radius. This is shown in Fig-
ure 6.

8 Grahacchāyādhikāra (Shadows of
planets)

The maximum latitudes of planets which are essentially
inclinations of their orbits are stated. The expression for
the latitude of a planet, 𝛽, as observed from the earth
which involves its śīghrakarṇa is given. Let 𝛿′ be the dec-
lination of a point on the ecliptic with the same longitude
as the planet. Then, the true declination of a planet is
given by

𝛿 = 𝛿′ + 𝛽 cos 𝜃,

Figure 6 Model for lambana similar to the one for obtain-
ing the śīghraphala of a planet.

where 𝜃 is the angle between the secondaries to the eclip-
tic and the equator at the planet. This is depicted in
Figure 7 which is based on Bhāskara’s description. The

Figure 7 Component of the latitude (𝛽), 𝒫0𝒫′ along the
secondary to the equator.

udayalagna of the planet is the point on the ecliptic which
rises on the eastern horizon along with the planet. This
can be found using the concepts of ‘āyanadṛkkarma’ and
‘akṣadṛkkarma’. From the declination and the udaya-
lagna of the planet, its chāya can be obtained. The zenith
distance of the planet can be found using a ‘nalaka’.
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9 Grahodayāstādhikāra [(Heliacal) rising
and setting of planets]

In this chapter, the heliacal rising and setting of planets
is discussed. The minimum angular separations (in longi-
tudes) for the visibility of the five planets are listed. From
the given longitudes of a planet and the Sun, one can de-
termine the number of days yet to elapse before heliacal
rising, or the number of days elapsed after heliacal setting.

10 Śṛṅgonnati (Elevation of Lunar
cusps)

Bhāskara points out that the crescent shape of the Moon
is observed in the first and fourth quarters of the lunar
month, when |𝜆𝑀𝑜𝑜𝑛 − 𝜆𝑆𝑢𝑛| < 90∘, when the Moon is
less than half. The line of cusps will be deflected from
the horizontal, and it would have a vertical component. A
formula for this deflection is given, which is not entirely
satisfactory.

The ‘brightness’, or the ‘phase’, or the ‘śukla’, 𝑠 of the
Moon is taken to be 6 × 𝜌

90
aṅgulas, where 𝜌 = 𝐸′𝑀̂𝑆 in

Figure 8. Note that 𝜌 = 90∘ corresponds to the half-Moon.
This is satisfactory.

The rule for sketching the crescent is given. Bhāskara
points out that Brahmagupta’s method for sketching and
computing the elevation of lunar horns would not agree
with his computations based on observations.

11 Grahayuti (Conjunctions of planets)

The mean angular dimensions of the five planets are
stated. Their true dimensions are to be found using
their true distances which are calculated using their
śīghrakarṇas. If the longitudes of planets 1 and 2 are
𝜆1, 𝜆2 at some instant 𝑡0, then their instant of conjunc-
tion is 𝑇, where

𝑇 − 𝑡0 =
𝜆2(𝑡0) − 𝜆1(𝑡0)
( ̇𝜆1 − ̇𝜆2)

,

where ̇𝜆1 and ̇𝜆2 are the rates of motion of the two planets.
It is possible to take conjunction to mean the equality

of polar longitudes. Then, the āyanadṛkkarma has to be
applied to the longitude of a planet to convert it into its
polar longitude.

Parallax corrections have to be applied to the longitudes
and latitudes of planets before calculating the instant of
conjunction and the north-south (that is, the direction
perpendicular to the ecliptic) separation. Occultation will
happen if this north-south separation is less than the sum
of the semi-diameters of the discs of the planets.

12 Bhagrahayuti ( Conjunctions of
planets with stars)

The polar longitudes and latitudes of the 27 zodiacal stars,
Abhijit, Agastya (Canopus) and Lubdhaka (Sirius) are
stated. The measurement of these using an armillary
sphere is also discussed. The heliacal rising times (the
minimum angle of separation between the star and the
Sun in time units for the star to be observable) of Agastya
and Lubdhaka are stated to be 12 and 13 nāḍis respec-
tively. Āyanadṛkkarma has to be applied to a planet be-
fore finding the instant of its conjunction with a star. This
instant is found in the same mannner as the instant of con-
junction of two planets discussed in the previous chapter.
The visibility of a star vis-a-vis its location with respect to
the Sun is discussed in detail.

13 Pātādhyāya (Vyatīpāta: Equality of
declinations of the Sun and the
Moon)

This chapter has only 21 verses but it has elaborate vāsanā
for these. Vyatīpāta and vaidhṛta occur when the mag-
nitudes of the declinations of the Sun and the Moon are
equal, and one of them is increasing, while the other is
decreasing. In this verse, Bhāskara says that there is con-
fusion in the minds of even great ashonomers of the past
regarding their occurance and this chapter is devoted to
the clarification of the method for computing them.

Bhāskara describes the drawing of the celestial equator,
ecliptic, Moon’s orbit which is inclined to the ecliptic at
an angle of 4.5∘, its nodes, and the golasandhis of the Sun
and the Moon, as in Figure 9.

The true declination of the Moon has to be found, in-
cluding the contribution from its latitude. The instant of
vyatīpāta is found using an iterative procedure, originally
due to Brahmagupta. Bhāskara himself gives an example
of this procedure in the vāsanā.
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Figure 8 ‘Brightness’ or ‘Phase’ of the Moon. (a) Half-Moon. (b) Brightness for an arbitrary elongation.

⟶ Moon’s orbit

⟶ Ecliptic

⟶ Equator𝑅

𝑅′

Γ
𝐺

𝐺′

Γ′

Figure 9 Celestial equator, ecliptic, Moon’s orbit, Moon’s
nodes (𝑅, 𝑅′), Golasandhis of the Sun (Γ, Γ′),
and those of the Moon (𝐺,𝐺′).

Actually, the phenomenon of vyatīpāta stretches over
the time interval during which the magnitude of decli-
nation of any point on the lunar disc is equal to that of
some point on the solar disc. Clearly, at the beginning and
end of the vyatīpāta, the difference between the declina-
tions of the centres of the disks of the Sun and the Moon
would be equal to the sum of the semi-diameters of the
disks. Bhāskara gives the iterative procedure to find the
half-durations of vyatīpāta, which is essentially the same
as due to Brahmagupta and Lalla.

14 Concluding remarks

In the beginning of Grahagaṇita, in verse 4 of
Kālamānādhyāya of Madhyamādhikāra, Bhāskara
says:

Ancient astronomers did write, of course,
works abounding in intelligent expression;
nonetheless, this work is started by me
to give better expression to (or improve)
some of their special/important state-
ments. These (improvements) are given
by me here and there in their respective
places. So, I beseech the good-minded math-
ematicians to go through this entire work of
mine also.

Bhāskara lives up to his promise. In this work, most of
the standard calculations and algorithms in Indian astron-
omy of his times are included, mistakes in many of them
are rectified, generalisations are made where necessary,
and many new results are presented. All these are pre-
sented in the source verses of the text, and are explained
in detail in his own commentary, Vāsanābhāṣya. In this
project in two phases, we have translated all the verses,
and the accompanying auto-commentary, and have also
provided the explanatory notes which include nearly 140
diagrams based on the descriptions in the commentary.
We hope that our work will enable any serious reader to
understand Bhāskara’s astronomy, and his methodology
very well.
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