Theme 3.2

Nakṣatra Solar zodiac from Vedic times

Dating Maghādi and Śraviṣṭhādi Epochs

Observing the Sun's rhytmns

(agyana, rtu, nakṣatra, precession)

- The sunrise horizon point moves from north east to south east and back to same north east point after 366 sunrises - a solar year.
- The north east to south east journey is called dakṣināyana and the reverse is uttarāyaṇa
- In addition the sun cycles through six rtu-s in a year - śiśira, vasanta, grīṣma, varṣā, śarad, hemanta each of 61 sunrises.
- Specific background stars can be observed just before each sunrise. These stars are called naksatra-s, 27 in number.
- Each of the 2 ayana-s and 6 rtu-s are associated with specfic nakṣatra-s.
- Over ages this ayana/rtunakṣatra association changes due to the precession phenomenon.
- This change is used to date the ancient texts.

Nakṣatra solar zodiac

	Nakșatra	Star Count					Astrograph	Constituent Stars	Proxy Star （Author＇s）	Abhyankar＇s Yogatara
\＃		v^{3}		\sim^{2}						
1	K！tikā	6	6	6	6	6	Knife／Cleaver	（17，19，20，23，27，ๆ）Tau	η Tau	η Tau
2	Rohinị	5	5	1	5	5	Cart	（ $a, y, 81, \varepsilon, \theta 2$ ）Tau	a Tau	a Tau
3	Mrgaśra	3	3	3	3	3	Deer＇s Head	（ a, y, λ ）Ori	λ Ori	λ Ori
4	Ārdrā	1	1	1	1	1	Bāhuh（Arm） Red Dot＊	（y）Gem	y Gem	Y Gem
5	Punarvasu	2	2	2	2	5	Balance＊	(α, β) Gem	β Gem	β Gem
6	Puşa	1	1	1	3	3	Śarāva（Pot－lid）＊	（8） Cnc	$\delta \mathrm{Cnc}$	$\delta \mathrm{Cnc}$
7	Āśleṣā	6	6	6	1	6	Snake Head Flag＊	（ $\delta, \varepsilon, \zeta, \eta, \rho, \sigma$ ）Hya	乙 Hya	弓 Hya
8	Maghā	6	6	6	5	7	Enclosure	（ $\alpha, \gamma 1, \varepsilon, \zeta, \eta, \mu$ ）Leo	乙 Leo	a Leo
9	P Phalguni	2	2	2	2	2	Half－chair	(δ, θ) Leo	δ Leo	δ Leo
10	U Phalgunĩ	2	2	2	2	2	Half－chair	$(93, \beta)$ Leo	β Leo	β Leo
11	Hasta	5	5	5	5	5	Hasta（hand）	（ $a, \beta, \gamma, \delta, \varepsilon$ ）Crv	$\delta \mathrm{Crv}$	y Crv
12	Citrā	1	1	1	1	1	Madhupuspa （Flower）＊	（a） Vir	a Vir	a Vir
13	Svātī	1	1	1	1	1	Kilaka（Wedge）＊	（a）Boo	a Boo	a Boo
14	Viśākhā	2	2	2	2	5	Divider Rope＊	（ $\mathrm{a} 1, \mathrm{a} 2)$ Lib	a2 Lib	a Lib
15	Anūrādhā	4	4	4	4	5	Necklace	（ $\beta 1, \delta, \pi, \omega 1$ ）Sco	δ Sco	δ Sco
16	Jyesthā	3	3	1	3	3	Elephant Tusk＊	（ $a, \varepsilon, \sigma,(\tau))$ Sco	ε Sco	a Sco
17	Müla	6	2	7	7	1	Root Scorpion Tail＊	（ $22, \theta, 21, k, \lambda, v)$ Sco	к Sco	λ Sco
18	P Aṣāọhā	4	4	4	4	4	Gajavikrama （Elephant Step）＊	（ $\mathrm{y}, \delta, \varepsilon, \lambda$ ）Sgr	$\lambda \mathrm{Sgr}$	$\delta \mathrm{Sgr}$
19	U Aṣạ̣̄hā	4	4	4	4	4	Simimaniṣadya （Lion seat）＊	（ $\zeta, \sigma, \tau, \varphi) \mathrm{Sgr}$	$\tau \mathrm{Sgr}$	σ Sgr
＊＊	Abhijit	－	3	1	3	3	Gosírṣāvali＊	（？）Vega	－	a Aql
20	Śravaṇa	3	3	3	3	3	Ear Yavamadhya （Barleyseed） 1	（ α, β, y ）AqI	a Aql	β Del
21	Dhanisțthā	4	5	5	4	5	Śakuni－pañjara （Bird cage）＊	（ $a, \beta, y 2, \delta)$ Del	β Del	β Aqr
22	Śatabhişak	1	1	1	1	100	Puspopacāra （Flower Boquet）＊	（ $)^{\text {a }} \mathrm{Aq}$	$\lambda \mathrm{Aqr}$	a PsA
23	P Prostapada	2	2	2	2	2	Cow＇s Foot	$(\mathrm{a}, \beta$ ）Peg	a Peg	a Peg
24	U Prostapada	2	2	2	2	2	Cow＇s Foot	（v）Peg（a）And	Y Peg	Y Peg
25	Revatī	1	1	1	1	32	Boat＊	（ $\varepsilon,(\mathrm{a}, \zeta)$ ）Psc	ε Psc	ζ Psc（a And）
26	Aśvayuk	3	2	1	2	3	Horseneck	（ α, β, y ）Ari	β Ari	β Ari
27	Bharañi	3	3	3	3	3	Bhaga（Perineum）	$(35,39,41)$ Ari	41 Ari	41 Ari
		83	82	78	82	222				

The Sun completes one circuit in $\mathbf{3 6 6}$ days in clockwise direction The $\mathbf{r} \mathbf{t u} \mathbf{- s}$ complete one circuit in $\mathbf{\sim} \mathbf{2 5 , 8 0 0}$ years in anticlockwise direction

The Maghādi/dakṣināyaṇa epoch

Brahmāṇọa Purāṇa BP 21.143-149

- This BP passage defines visuvat to be of equal day and night duration of 15 muhūrtas each - equinox - in the mid of vasanta and śarat ṛtus.
- The passage further states the nakṣatra location at an amsa grain for equinoctal sun and moon at spring and autumn equinoxes.
- It turns out the sun and moon locus at each of the equinox are diametrically opposite - at $1 / 4$ krttikā and $3 / 4$ viśākhā, indicating the description are of the equinoctial full moon.

शरद्वसंतयोर्मध्ये मध्यमां गतिमास्थितः । अतस्तुल्यमहोरात्रं करोति तिमिरापहः ॥
हरिताश्च हया दिव्यास्तस्य युक्ता महारथे । अनुलिप्ता इवाभान्ति पद्मरक्तैर्गभस्तिभिः ॥
मेषान्ते च तुलान्ते च भास्करोदयतः स्मृताः । मुहूर्ता दश पञ्चैव अहो रात्रिश्च तावती ॥
कृत्तिकानां यदा सूर्यः प्रथमांशगतो भवेत् । विशाखानां तदा ज्ञेयश्चतुर्थांश निशाकरः ॥
विशाखानां यदा सूर्यश्चरतेंशं तृतीयकम् । तदा चन्द्रं विजानीयात्कृत्तिकाशिरसि स्थितम् ॥
विषुवं तं विजानीयादेवमाहर्महर्षयः । सूर्येण विषुवं विद्यात्कालं सोमेन लक्षयेत् ॥
समा रात्रिरहश्चैव यदा तद्विषुवं भवेत् । तदा दानानि देयानि पितृभ्यो विषुवेषु च ॥

Maitrāyanịya Āraņyaka Upaniṣat MAU 6.14

- The year commences in Maghādi (at dakṣiṇāyana).
- A year has 12 parts and each part has 9 amṣa.
- The year's first half, Āgneya,is from Maghādi to Śravișṭhārdha and
- The second half , Vāruṇa, is from Sārpādi to Śravișṭhārdha in reverse order.

सूर्यो योनिः कालस्य तस्य एतदूपं ।
यन्निमेषादि कालात्संभृतं द्वादशात्मकं वत्सरम् ।
एतस्याग्नेयमर्धमर्धं वारुणम् ।
मघाद्यं श्रविष्ठार्धमाग्नेयं क्रमेणोत्क्रमेण सार्पाद्यं श्रविष्ठार्धान्तं सौम्यम् ।
तत्र एकमात्मनो नवांशकं सचारकविधम् ।

Nidānasūtra NS 5.12

- Sun traverses 13 and an additional 5/9 ahorāṭras in each nakṣatra.
- To cover 27 nakṣatras the sun takes 366 ahorāṭras/days.

स एष नाक्षत्रः आदित्यसंवत्सरो । स: एष: नाक्षत्रः आदित्यसंवत्सरः।
आदित्यः खलु शश्वदेतावद्भिरहोभिर्नक्षत्राणि समवैति । आदित्यः खलु शश्वत् एतावत्मिः अहोर्भिः नक्षात्राणि समवैति ।
त्रयोदशाहं त्रयोदशाहमेकैकं नक्षत्रमुपतिष्ठति। त्रयोदशाहं त्र्योदशहम एकैकं नक्षत्रम् उपतिष्ठति ।
अहस्तृतीयं च नवधा कृतयोरहोरात्रयोर्द्व द्वे कले चेति संवत्सराः। अहः तृतीयं च नवधा कृतयोः अहोरात्रयोः द्वे द्वे कले चेति संवत्सराः ।
ताश्चत्वारिंशच्चतुःपञ्चाशतं कलाः। ताः चत्वारिंशत् चतुःपज्चाशतं कलाः ।
ते षण्णववर्गाःसषट्षष्टित्रिशतः ।। ते षट् नव वर्गाः सः षट्षष्टिः त्रिशतः ॥

From these MAU, NS and BP passages

1. Sun spends 13 and $5 / 9$ days equally with each naksatra of 4 amsa. The sun completes one trip through the 27 naksatras in 366 days
2. The sun is at Maghādi at start of dakṣināyana. (Further Mahāsaliaṃ chapter of Vṛddagārgīya Jyotiṣa (VGJ) states Maghā to be the first among the solar nakṣatras.)
3. The equality of the 27 nakṣatras and the start of sequence at at Maghā help allocate the day numbers to each nakșatra sector.
4. The BP verses specify the spring and autumnal equinoctial full moons at $1 / 4$ Krttikā and 3/4 Viśākhā nakṣatras. This information enables us to date the verses.
5. We mark the Kṛttikā and Viśākhā sectors such that equinoxes are at $1 / 4 \mathrm{krttika}$ and $3 / 4$ viśākhā.
6. We collect the visible Krttikā($\boldsymbol{\eta}$ Tau) and Viśākhā(a Lib) longitudes adjusted for precession from 2400BCE to OBCE.
7. We programatically collect all full moon longitudes that occur near the equinoxes from 2400BCE to OBCE, using astropy library. There are about 7 such events each century for each equinox. The equinoctial full moons are marked in the chart that follows.

A tech note-Collecting full moons programatically

The Astropy library, that uses Meeus algos, is used to collect the full moon longitudes programmatically.

1. Start at an ancient date-2400-03-21 BCE
2. Computed the full moon longitude for the date
3. If sun and moon longitudes are within $180^{\circ}+\epsilon$
-- a FM found, collect it
-- step up the date by 28 days and repeat
4. If not nudge the date by difference of sun and moon longitudes
5. Repeat 2 onwards till 0 BCE

Meeus, J., Astronomical Algorithms, 2nd ed, p337, p357
$\lambda_{\text {moon }}=218.3164477+481267.88123421 T$
$-0.0015786 T^{2}$
$+\frac{1}{538,841} T^{3}$
$-\frac{1}{65,194,000} T^{4}$
$+\frac{1}{1,000,000} \sum l$
$T=\frac{F M J D-2451545.0}{36525}$
$F M J D$ is Julian Day number of Full Moon

```
from astropy.coordinates import get_moon, get_sun, GeocentricTrueEcliptic
from astropy.time import Time
def collect_full_moons():
    jd = Time(808032.5, format='jd') # start scanning from '-2500-03-21 00:0
    full_moons = []
    while jd.to_value("decimalyear") < -200: # scan until '-200-01-01 00:00
        while True:
            # get sun moon co-ords for the date jd
            moon, sun = (
            x.transform_to(GeocentricTrueEcliptic())
            for x in (get_moon(jd), get_sun(jd))
            )
            # phase seperation of sun and moon
            sep = (sun.lon.deg - moon.lon.deg) % 360
            tol =.5 # tolerance in degrees for detecting full moon
            # full moon detected
            if 180-tol < sep < 180+tol:
            full_moons.append([jd.iso, jd.jd, sun.lon.deg, moon.lon.deg]
            if "TRACE" : # output trace messages .-
            jd = jd + 28.0 # advance to just prior to next full moon
            break
            # no full moon detected, advance to a date closer to the next fu
            delta_days_to_180 = (sep-180)*29.530588853/360
            jd = jd + delta_days_to_180
    return full_moons
full_moons = collect_full_moons()
```


Computing the information of BP

- Get full moon timeseries from 2400BCE to 800BCE. There are about 1237 FM per century - the top chart
- The series is then filtered for Equinoctial Full Moons - the mid chart

- The series is further filtered for EFM near krttikā and viśākhā - the bottom chart
- The yellow region shows the epoch when the visible krttikā and viśākhā are contained in their respective sectors - 2000BCE to 1600BCE

Inferring the BP epoch

1980-1610 BCE	The visible Kr ttikā \& Viśā khā are contained in their respective sectors
1700-1610 BCE	The equinoctial FM at $3 / 4$ viṣā $k h a ̄ ~ s e c t o r ~ i s ~ n e a r e s t ~ t o ~ v i s i b l e ~ v i s ́ a ̄ ~ k h a ̄ ~$
Maghādi scheme	The Maghādi scheme of MAU is consistent with the equinoctial full moon scheme of BP

Nakṣatra Chart 1700BCE - Maghādi epoch

- The equinoctial full moons of $B P$
- $1 / 4$ krttikā sector
- 3/4 viśākhā sector
- SE-AE axis of the chart
- aligns with maghādi of MAU - when maghādi (SS 1) is at
- start of dakṣiṇāyana
- around 1700 BCE

The Śraviṣṭhādi/uttarāyaṇa epoch VGJ/11 Ādityachāra and Parāśharatantra

- Ādityachāra, section 11 of VGJ, describes the transit of Sun through 9 seasonal nakṣatras.
- Similar information is presented in PT in prose.
- The Ādityachāra passage is shown below.
- Passage maps 6 rtus mapped to 9 seasonal nakṣatras
- Mapping enables passage dating

Verse	From	Rtu	Span
श्रविष्ठादीनि चत्वारि पौष्णार्धज्च* दिवाकरः। वर्धयन् सरसस्तिक्तं मासौ तपति शैशिरे ॥ 47	श्रविष्ठा begin	रेवती mid	शिशिर
रोहिण्यन्तानि विचरन् पौष्णार्धाद्याच्च भानुमान् । मासौ तपति वासन्तौ कषायं वर्धयन् रसम्॥ 48	रेवती mid	रोहिणी end	वसन्त
सार्पार्धान्तानि विचरन् सौम्याद्यानि तु भानुमान् । ग्रैष्मिकौ तपते मासौ कटुकं वर्धयन् रसम्॥ 52	मृगशिरा begin	आश्लेषा mid	ग्रीष्म
सावित्रान्तानि विचरन् सार्पार्धाद्यानि भास्करः। वार्षिकौ तपते मासौ रसमम्लं विवर्धयन्॥ 53	आश्लेषा mid	हस्ता end	वर्षा
चित्रादीन्यथ चत्वारि ज्येष्ठार्धज्च दिवाकरः। शारदौ लवणाख्यं च तपत्याप्याययन् रसम्॥ ॥ 54	चित्रा begin	ज्येष्ठा mid	शरद्
ज्येष्ठार्धादीनि चत्वारि वैष्णवान्तानि भास्करः। हेमन्ते तपते मासौ मधुरं वर्धयन् रसम् ॥ 55	ज्येष्ठा mid	श्रवण end	हेमन्त

Dating Ādityachāra - by minimizing error

- The best fit method finds the epoch where most stars of nakṣatra-s are in their prescribed span
- Get longitude of 83 stars from -2500 to 500 in 50 year epoch steps
- For each epoch compute this error metric $\mathbb{E}_{\text {epoch }}$
- The epoch with lowest error metric is the best fit $\mathbb{B}_{\text {epoch }}$
- The error metric for each epoch $\mathbb{E}_{\text {epoch }}$ is calculated as the mean of the containment error of each nakshatra. The containment error for each nakshatra is calculated as the mean of eachs star's error. The error for each star is calculated as follows:
- If the longitude of the star is within the prescribed span of the nakshatra, the error is 0 .
- Otherwise, the error is the minimum distance between the longitude of the star and the boundaries of the prescribed span of the nakshatra.

The Śravaṇādi epoch VGJ/59 Ṛtusvabhāva

- Rtusvabhāva dates to ~500 BCE
- This is different from आदित्यचार:
- Retu sequence begins with वसन्त not शिशिर
- Ṛtu are related to months, not nakṣatra span \& boundaries
- A 12 month solar zodiac, obviating intercalation, emerges
- It describes Sun's path through
- 6 seasons and their months
- 12 vaidika and equivalent laukika months and 12 nakṣatra-s for each of these months - $\sim 30^{\circ}$ apart

Minima at ~ - 500 indicates best fit for ऋतुस्वभावः

ऋतुस्वभावः - nakṣatra-s, vaidīka \& laukīka months

A chronology of Solar transits

Epoch	Scheme	Start	Season
earlier	2 Ayana/6 Rtu based sun transit		
$\begin{array}{r} 1800 \\ \text { BCE } \end{array}$	MAU/BP Equinoctial full moon scheme	Maghādi	dakșināyaṇa
$\begin{array}{r} 1300 \\ \text { BCE } \end{array}$	VGJ/ādityacāra and PT with 4½ nakṣatra-s per season	Śravișṭhādi	uttarāyaṇa
$\begin{aligned} & 500 \\ & \text { BCE } \end{aligned}$	VGJ/rtusvabhāva with 12 solar months	Śravaṇādi Revatyādi Bharaṇ yādi	uttarāyaṇa vasanta spring equinox

Solar zodiac is certainly part of original Indian knowledge - that has been recorded and evolved over time.

References

1	Misidentification of some Indian naksatras. Indian Journal of History of Abhyankar, K. D. (1991) Science, 26(1), 1-10.
2	Bhāgavata Cosmology; Vedic Alternative to Modern Cosmology, Tulsi Books, Mumbai. Das P. (2018)
3	The time keepers of the Vedas. Manohar.[ISBN 978-81-7304-969-9]. Gondalekhar, P. (2013)
4	Parāśara Tantra (Ed. Trans \& Notes). Jain University Press. [ISBN 978-81-9209-Iyengar, R. N. (2013) 924-8].
5	Astronomy in Vedic texts, (Book Chapter pp.107-169). lyengar R.N. (2016) History of Indian Astronomy A Handbook, (Ed. K.Ramsubramanian, A.Sule \&M. Vahia) Publn. by IITB and TIFR, Mumbai.
6	Equinoctial full moon of the Brahmānda Purāna and the nakṣatra
7	Transit of sun through the seasonal naksatra cycle in the Vrddha-Gārgīya Jyotiṣa, Indian Journal of History of Science 56:159-170. lyengar R.N. and Chakravarty, S (2021)
8	Astronomical dating of the Mahābhārata war. Erlenbach, Switzerland Koch D. (2014)
9	Vedānga Jyotiṣa of Lagadha. Indian Journal of History of Science, 19(4), 1-74. Sastry T. S. K. (1984)
10	Ancient Indian Chronology. Univ. of Calcutta. Sengupta, P. C. (1947)
11	The Untapped Wealth of Manuscripts on Indian Astronomy and Mathematics Srinivas M.D. (2019) Indian Journal of History of Science, 54.3, 243-268.
12	The Cosmology of the Bhāgavata Purāna (Indian Edn.) Motilal Banarsidass, Thompson R. L. (2007) Delhi.

Backup Slides from Here

Observational Astronomy of the Sun

Sun, Ayanas and Ṛtus

An observer noticing the sunrise point of the eastern horizon will notice the point oscillate between north-east in the summer to south-east in the winter and back to north-east in the summer - much like a swing.

The extreme north and south points are the dakṣiṇāyana and uttarāyaṇa start - the winter and summer solstices respectively. The points in between are called the viṣuvat - spring and autumn equinoxes.

One full swing of the sun lasts 366 days and is made of two ayanas the dakṣiṇāyana and uttarāyaṇa each of 183 days

In one full swing from uttarāyaṇa, the sun traverses through six ṛtus (seasons) in order - namely varṣā, śarad, hemanta, śiśira, vasanta, grīṣma,- each ṛtu is of 61 days.

Just as a swing appears to be stationary at the extreme points, the sun appears to be stationary at the uttarāyaṇa and dakṣiṇāyana start points before resuming its oscillation. An observer will notice that the sun is stationary at the uttarāyaṇa and dakṣiṇāyana start points for about 14 sunrises each.

The period from one sunrise to another is called a ahorātra/day. A ṛtu is made of 61 ahorātras/days. An ayana is made of 183 ahorāṭras/days.One swing of the sun with 366 ahorāṭras/days is samvatsara/year.

ahorāṭra				
rtu	ayana	samvatsara		
ahorāṭra	1			
rtu	61	1		
ayana	183	3	1	
samvatsara	366	6	2	1

Assuming the dakṣiñayana point to be the day 1 of the 366 day cycle, the following table shows the day number of the start of each rtu and ayanas.

day num	rtu	ayana	equinox/ solstice	sunrise image as seen by an observer
1	varṣā start	dakṣināyana start	summer solstice	\square जी sun rises north east
62	śarad start	dakșiṇāyana	-	-
92	śarad mid	viṣuvat	autumn equinox	sun rises true east
123	hemanta start	dakșiṇāyana	-	
$\begin{aligned} & 183 \\ & 184 \end{aligned}$	śiśira start	dakṣiṇāyana end uttarāyana start	winter solstice	sun rises south east
245	vasanta start	uttarāyaṇa	-	$-$
274	vasanta mid	viṣuvat	spring equinox	sun rises true east
306	grīṣma start	uttarāyaṇa	-	-
366	grīṣma-end	uttarāyana end dakṣiṇāyana start	summer solstice	sun rises north east

Sun's annual cycle

- The sunrise point at horizon moves/swings from
- north east to south east called dakṣiñāyana
- back to same north east called uttarāyana
- 366 sunrises makes a cycle - a solar year
- The sunrises are associated with specific background stars called nakṣatra-s

Sun and Nakṣatras

We noted that each of the 366 sunrises occurs at different points on the eastern horizon due to the sun's swing. In addition, the stars that are visible just prior to each sunrise at the sunrise point also change. The stars that are visible just prior to sunrise are said to belong to the naksatra of that day.

During uttarāyaṇa and dakṣiṇāyana the sun seems to rise at a stationary point for about 14 days. The stars visible prior to sunrise for these two stationary points define the sector/span of a naksatra - of about 14 days - more precisely 13 ⁵/<sub> $9</$ sub> days.

A nakṣatra is a span of time of about 14 days and contains the stars that are visible at sunrise in its time span. There are 27 such equal nakṣatra spans in a 366 day cycle. Each of the 27 nakṣtra while of equal time span contains varying counts of stars - between 1 and 6 - totaling 83 stars. The 27 nakṣatra are named in a fixed cyclical order.

The current order starting from Aśvinī along with their star count listed below, is an inherited order from around 1500 years ago. The order of the nakṣatra begins with Kṛttikā and ends with Revatī in more ancient texts.

$\begin{gathered} \text { Aśvinī } \\ 3 \end{gathered}$	$\begin{gathered} \text { Bharaṇī } \\ 3 \end{gathered}$	$\begin{gathered} \text { Krttikā } \\ 6 \end{gathered}$	$\begin{gathered} \text { Rohiṇī } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mrgaśiras } \\ 3 \end{gathered}$	Ārdrā	$\begin{gathered} \text { Punarvasu } \\ 2 \end{gathered}$	$\underset{i}{\text { Pusya }}$	Aśleṣā 6
$\begin{gathered} \text { Maghā } \\ 6 \end{gathered}$	Pūrva Phalgunī 2	Uttara Phalgunī 2	Hasta 5	$\begin{gathered} \text { Citrā } \\ 1 \end{gathered}$	$\begin{gathered} \text { Svātī } \\ 1 \end{gathered}$	Viśākhā 2	Anurādhā 4	$\begin{gathered} \text { Jyeșṭhā } \\ \mathbf{3} \end{gathered}$
Mūla 4	Pūrva Aṣāḍhā 4	Uttara Aṣāḍhā 4	$\begin{gathered} \text { Śravana } \\ 3 \end{gathered}$	$\begin{gathered} \text { Śraviṣthā } \\ 4 \end{gathered}$	$\begin{gathered} \text { Śatabhiṣā } \\ 1 \end{gathered}$	Pūrva Bhādrapadā 2	Uttara Bhādrapadā 2	$\begin{gathered} \text { Revatī } \\ 1 \end{gathered}$

The choice of the first nakṣatra to start the cycle contains information on the epoch and the convention for the year start.

There are texts that associate specific nakṣatras with the rtus - seasonal naksatras. Such seasonal naksatras also contain vital information on the epoch of the text.

Nakṣatra-s starting from Maghā at day 1

In this Maghādi epoch day 1 of dakșiṇāyana is at Maghā start.

- The sun traverses through the 27 nakṣatras in order and returns to Maghā start at the end of the 366 day cycle.
- The 1 st and 367 th sunrise are at
- the same nakṣatra/star Maghā/ ε-Leonis
- the same point on the horizon and

Over 100's of years,

- the nakṣatra/star to shift by about 1 day in about 72 years.

- This shift is called the ayanāp̣śa/precession.

Precession and its effects

We see the start of Maghā nakṣatra on day 1 of dakṣiṇāyana in the chart above. This is true for a certain epoch. After about a 1000 years, the start of Maghā nakșatra will be on day 14 of dakṣiṇāyana. Equivalently day 1 of dakṣiṇāyana will move to Āśleṣā start.

The precession is a slow process and takes about 25,800 years to complete one cycle. That is the sunrise point will return to the same nakṣatra/star for the same rtu after 25,800 years.

Precession causes the seasonal nakṣatras to drift with time. Many ancient text associate nakṣhatras with seasons - this association contains vital information on the epoch of the text.

The direction of precession is opposite to the direction of the sun's annual transit through the nakshatras.
Incidentally the moon also transits

through the nakṣatras in the same
direction as the sun. The moon's transit through the nakṣatras is called the lunar month of about 27 days.

Effect of precession over millennia

- About every 1000 years the start of season move backwark by one naksatra. In addition the precession causes the pole star to change.
- The following table/pictures shows the start of the spring equinox seasonal naksatra and the pole star for the last 5000 years.

Epoch	Spring Equinox	Dakșiñayana	Uttaryāña	Pole Star
Present	Uttara Bhādrapadā	Ārdrā	Mūla	Polaris
1000 years ago	Revatī	Punarvasu	Pūrva Aṣāḍhā	-
2000 years ago	Aṡvinī	Pușya	Uttara Aṣāḍhā	-
3000 years ago	Bharanī	Aśleṣā	Śravaṇa	-
4000 years ago	Krttikā	Maghā	Śravișṭhā	-
5000 years ago	Rohiṇi	Pūrva Phalgunī	Śatabhiṣā	Thuban

Precession over 5000 years

Precession of the Equinoxes

